CN106841688A - e指数型非线性纳米金属锥探针 - Google Patents

e指数型非线性纳米金属锥探针 Download PDF

Info

Publication number
CN106841688A
CN106841688A CN201710043058.8A CN201710043058A CN106841688A CN 106841688 A CN106841688 A CN 106841688A CN 201710043058 A CN201710043058 A CN 201710043058A CN 106841688 A CN106841688 A CN 106841688A
Authority
CN
China
Prior art keywords
probe
index type
nano
linear
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710043058.8A
Other languages
English (en)
Other versions
CN106841688B (zh
Inventor
匡登峰
滕学智
姚广宇
陈思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201710043058.8A priority Critical patent/CN106841688B/zh
Publication of CN106841688A publication Critical patent/CN106841688A/zh
Application granted granted Critical
Publication of CN106841688B publication Critical patent/CN106841688B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种高空间分辨率、高灵敏度、能产生强纵向偏振电场并能够对电场强度进行调节的e指数型非线性纳米金属锥探针。该探针由e指数型金属纳米非线性锥形结构构成,当入射光(特别是径向偏振光)照射e指数型非线性纳米金属锥探针底面时,在金属的表面激发出表面等离激元,沿非线性纳米金属锥弯曲表面传播,并压缩至顶端形成高度局域增强的电磁场分布,从而得到强纳米聚焦。本发明可用作扫描近场显微镜、原子力显微镜等扫描探针显微镜以及针尖增强拉曼光谱仪的探针,在单分子成像、热辅助磁记录、纳米传感、纳米成像、纳米光刻和纳米操纵等诸多领域有重要应用价值。

Description

e指数型非线性纳米金属锥探针
技术领域
本发明属于光学和光电技术领域,涉及纳米光电器件、表面等离子体激发、纳米聚焦和矢量场,是一种高空间分辨率、高灵敏度、能产生强纵向偏振电场,并且能够根据需要进行电场强度调节的金属光电探针。
背景技术
产生具有大纵向偏振电场分量的纳米聚焦强场,对于提高单分子成像、热辅助磁记录、纳米光刻及诱发热电子至关重要。目前已有多种增强纳米聚焦的金属结构,其中最常用的是金属纳米线性锥形结构,但是线性纳米结构的聚焦存在局限性,不能通过改变曲率半径对光场进行聚焦,不具有非线性特性,使得对表面等离激元的研究和应用存在局限性。
研究表明,若纳米金属锥的曲率增大(即非线性程度增加),则对于聚焦形成的电场强度有明显的增大效果。而目前已经被提出的对数型的非线性结构对于纳米聚焦场的增强效果也只能达到有限的程度(4个数量级)。
发明内容
本发明目的是为产生具有大纵向偏振电场分量的纳米聚焦矢量场,对金属锥的结构进行改进,提供一种高空间分辨率和高灵敏度的e指数型非线性纳米金属锥探针。
本发明提供的高空间分辨率和高灵敏度的e指数型非线性纳米金属锥探针,由e指数型金属纳米非线性锥形结构构成,该探针在柱状坐标系的结构方程h(ρ,θ)为:
其中:ρ和θ分别是柱状坐标系下的半径和角度,h0是预设的高度参数,r0是预设的底面半径,h0和r0的大小在纳米量级。a为e指数型非线性因子,且0.04≤a≤0.055,a的变化幅度为0.005;Δh是高度调制因子,且4≤Δh≤12,Δh取整数。
所述的e指数型非线性纳米金属锥探针,当入射光(特别是径向偏振光)照射e指数型纳米金属锥探针底面时,在金属表面激发表面等离激元,并沿着e指数型非线性纳米金属锥的弯曲表面向顶端传播,并不断压缩和聚焦,在顶端形成高度局域的纳米聚焦强场。
所述的e指数型非线性纳米金属锥探针,由于该探针的结构为e指数型非线性结构,表面等离激元沿曲面表面传播在顶端形成强度达5个数量级的纳米聚焦电场。
所述的e指数型非线性纳米金属锥探针,在金属材料和其结构参数确定的条件下,通过改变e指数型非线性因子a和高度调制因子Δh,能够得到不同强度增强的纳米聚焦场,且强度均能达到5个数量级。
附表:a与Δh的取值与的取值的对照关系表:
本发明的优点和积极效果:
本发明提供的e指数型非线性纳米金属锥探针,当入射光(特别是径向偏振光)照射探针底面时,在其底面的边缘激发表面等离激元,等离激元沿着锥的弯曲表面向顶端传播,并不断旋转、压缩和聚焦,在顶端形成纳米聚焦的高局域强电场。电场的强度可以达到5个数量级,比另一种非线性的结构——对数型的强度高出一个数量级。该聚焦电场具有很大的纵向偏振分量(占总强度的50.22%~50.55%),有利于提高纳米探测和成像的灵敏度,有利于实现纳米粒子的操纵和筛选。
另一方面,通过改变e指数型非线性纳米金属锥结构的非线性因子a和高度调制因子Δh,可以实现纳米聚焦电场的调控,这样便可以根据电场强度的实际需要、工艺条件、成本要求等等选择适当结构参数的纳米金属锥。
本发明可用作扫描近场显微镜、原子力显微镜等扫描探针显微镜以及针尖增强拉曼光谱仪的高分辨率和高灵敏度探针。
本发明在单分子成像、热辅助磁记录、纳米传感、纳米成像、纳米光刻和纳米操纵等诸多领域有重要应用价值。
附图说明
图1是高空间分辨率和高灵敏度的e指数型非线性金属锥探针结构图。其中:(a)是e指数型非线性金属锥探针的主剖视图;(b)是e指数型非线性金属锥探针的右剖视图;(c)是e指数型非线性金属锥探针的俯视图。
图2是当预设高度h0=600nm,预设底面半径r0=400nm时,e指数型非线性金属锥探针产生的纳米聚焦。其中:(a)和(b)分别是电场E在xz和yz平面的强度分布图,其在探针顶端形成纳米聚焦;(c)是在探针焦点附近所在xz平面上|E|2的强度分布。
图3是当预设高度h0=600nm,预设底面半径r0=400nm时,a在0.035至0.06分别取值,Δh在4至12分别取值,e指数型非线性纳米金属锥的增强因子的变化曲线。
具体实施方式
实施例1
如图1所示,一种高空间分辨率、高灵敏度、能产生强纵向偏振电场的e指数型纳米金属非线性锥形探针,该探针由e指数型金属纳米非线性锥形结构构成,该探针在柱状坐标系下的结构方程h(ρ,θ)为:
其中:ρ和θ分别是柱状坐标系下的半径和角度,h0是预设的高度参数,r0是预设的底面半径,h0和r0的大小在纳米量级。a为e指数型非线性因子,且0.04≤a≤0.055,(a的变化幅度为0.005),Δh是高度调制因子,且4≤Δh≤12,Δh取整数。
本发明中e指数型非线性金属锥探针的制作可采用电化学的方法来实现。其具体步骤如下:
(1)用质量分数为40%的氯化铁溶液做电解液,铜丝做阳级,铂做阴级,电源电压调至17v至20v之间,构成电化学系统;
(2)利用精密位移台控制金属丝的精密移动以完成最终的纳米金属锥的制作。
具体应用实例1
e指数型非线性金属锥探针的具体参数以如下为例:
材料为银,入射波长λinc=800nm,此时其相对介电常数εm=-30.1495+0.3932i,选取预设高度h0=600nm,预设底面半径r0=400nm,入射光为径向偏振光,设初始入射光强为1a.u。
图2是当预设高度h0=600nm,预设底面半径r0=400nm;调制因子a=0.04,Δh=8时e指数型非线性纳米金属锥探针产生的纳米聚焦,其电场的最大强度为188230a.u.,其纵向分量|Ez|2为95125a.u.,占50.54%。图2中(a)和(b)分别是电场E在xz和yz平面的强度分布图,其在探针顶端形成纳米聚焦;(c)是在探针焦点附近所在xz平面上|E|2的强度分布。
图3是当预设高度h0=600nm,预设底面半径r0=400nm;调制因子a在0.035至0.06分别取值,Δh在4至12分别取值,e指数型非线性纳米金属锥的增强因子的变化曲线。

Claims (3)

1.一种能提高空间分辨率和灵敏度以及能产生强纵向偏振电场的e指数型非线性纳米金属锥探针,其特征在于该e指数型非线性纳米金属锥探针由非线性锥形结构构成,该探针在柱状坐标系下的结构方程h(ρ,θ)为:
h = h 0 ( e - a · ρ 5 - e - a · r 0 5 ) - 5 Δ h
其中:ρ和θ分别是柱状坐标系下的半径和角度,h0是预设的高度参数,r0是预设的底面半径,h0和r0的大小在纳米量级;a为e指数型非线性因子,且0.04≤a≤0.055,a的变化幅度为0.005;Δh是高度调制因子,且4≤Δh≤12,Δh取整数。
2.根据权利要求1所述的e指数型非线性纳米金属锥探针,其特征在于该探针的e指数型非线性结构,当入射光照射e指数型非线性纳米金属锥探针底面时,在金属表面激发表面等离激元,表面等离激元沿e指数弯曲表面传播,在顶端形成高强度纳米聚焦光场。
3.根据权利要求1或2所述的e指数型非线性纳米金属锥探针,其特征在于在金属材料和结构参数确定的条件下,通过改变e指数型非线性因子a和高度调制因子Δh,能够得到不同强度增强的纳米聚焦场,且强度均能达5个数量级。
CN201710043058.8A 2017-01-19 2017-01-19 e指数型非线性纳米金属锥探针 Expired - Fee Related CN106841688B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710043058.8A CN106841688B (zh) 2017-01-19 2017-01-19 e指数型非线性纳米金属锥探针

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710043058.8A CN106841688B (zh) 2017-01-19 2017-01-19 e指数型非线性纳米金属锥探针

Publications (2)

Publication Number Publication Date
CN106841688A true CN106841688A (zh) 2017-06-13
CN106841688B CN106841688B (zh) 2019-03-29

Family

ID=59119844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710043058.8A Expired - Fee Related CN106841688B (zh) 2017-01-19 2017-01-19 e指数型非线性纳米金属锥探针

Country Status (1)

Country Link
CN (1) CN106841688B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445560A (zh) * 2018-02-09 2018-08-24 南京邮电大学 一种基于混合等离激元波导的场局域增强器件
CN116930130A (zh) * 2023-09-19 2023-10-24 清华大学 基于探针扫描的纳区光致发光探测系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712533B1 (en) * 1993-08-08 1999-03-24 LEWIS, Aaron Probe microscopy
US6452171B1 (en) * 1999-07-23 2002-09-17 Piezomax Technologies, Inc. Method for sharpening nanotube bundles
JP2006515682A (ja) * 2002-11-06 2006-06-01 ナノプティックス・リミテッド マイクロ及びナノ光学素子に係る統合されたシミュレーション、加工及び特性決定
CN1864066A (zh) * 2002-06-06 2006-11-15 乔舒亚·S·萨拉夫斯基 使用非线性光学技术检测涉及构象变化的相互作用的方法
WO2010011398A4 (en) * 2008-05-13 2010-07-29 Northwestern University Scanning probe epitaxy
CN102181914A (zh) * 2011-03-30 2011-09-14 浙江大学 倒指数形状、高长-径比扫描隧道显微镜探针的制备工艺
CN103439533A (zh) * 2013-09-05 2013-12-11 南开大学 纳米金属螺旋轴锥探针
CN104101737A (zh) * 2014-07-11 2014-10-15 华中科技大学 一种光纤探针的制备方法
CN105137127A (zh) * 2015-09-28 2015-12-09 南开大学 介质微螺旋锥和金属粮仓形纳米锥复合探针
CN105807096A (zh) * 2016-03-10 2016-07-27 南开大学 非线性纳米金属螺旋锥探针

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712533B1 (en) * 1993-08-08 1999-03-24 LEWIS, Aaron Probe microscopy
US6452171B1 (en) * 1999-07-23 2002-09-17 Piezomax Technologies, Inc. Method for sharpening nanotube bundles
CN1864066A (zh) * 2002-06-06 2006-11-15 乔舒亚·S·萨拉夫斯基 使用非线性光学技术检测涉及构象变化的相互作用的方法
JP2006515682A (ja) * 2002-11-06 2006-06-01 ナノプティックス・リミテッド マイクロ及びナノ光学素子に係る統合されたシミュレーション、加工及び特性決定
WO2010011398A4 (en) * 2008-05-13 2010-07-29 Northwestern University Scanning probe epitaxy
CN102181914A (zh) * 2011-03-30 2011-09-14 浙江大学 倒指数形状、高长-径比扫描隧道显微镜探针的制备工艺
CN103439533A (zh) * 2013-09-05 2013-12-11 南开大学 纳米金属螺旋轴锥探针
CN104101737A (zh) * 2014-07-11 2014-10-15 华中科技大学 一种光纤探针的制备方法
CN105137127A (zh) * 2015-09-28 2015-12-09 南开大学 介质微螺旋锥和金属粮仓形纳米锥复合探针
CN105807096A (zh) * 2016-03-10 2016-07-27 南开大学 非线性纳米金属螺旋锥探针

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡小鹏 等: "利用碳纳米管探针进行纳米加工的研究进展", 《仪器仪表学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445560A (zh) * 2018-02-09 2018-08-24 南京邮电大学 一种基于混合等离激元波导的场局域增强器件
CN108445560B (zh) * 2018-02-09 2023-07-14 南京邮电大学 一种基于混合等离激元波导的场局域增强器件
CN116930130A (zh) * 2023-09-19 2023-10-24 清华大学 基于探针扫描的纳区光致发光探测系统及方法
CN116930130B (zh) * 2023-09-19 2024-01-09 清华大学 基于探针扫描的纳区光致发光探测系统及方法

Also Published As

Publication number Publication date
CN106841688B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Mauser et al. Tip-enhanced near-field optical microscopy
Wang et al. Antenna effects in terahertz apertureless near-field optical microscopy
Lu et al. Live‐cell SERS endoscopy using plasmonic nanowire waveguides
Stadler et al. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy
US6002471A (en) High resolution scanning raman microscope
Cvitkovic et al. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy
Hubert et al. Role of surface plasmon in second harmonic generation from gold nanorods
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
Wang et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips
Permyakov et al. Probing magnetic and electric optical responses of silicon nanoparticles
Imura et al. Photoluminescence from gold nanoplates induced by near-field two-photon absorption
WO2019165715A1 (zh) 一种基于等离激元纳米钉结构的多功能近场光学探针
CN103439533B (zh) 纳米金属螺旋轴锥探针
Felts et al. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy
Astley et al. Characterization of terahertz field confinement at the end of a tapered metal wire waveguide
Mastel et al. Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading
CN106841688A (zh) e指数型非线性纳米金属锥探针
Brehm et al. Antenna-mediated back-scattering efficiency in infrared near-field microscopy
Kharintsev et al. Etchant-based design of gold tip apexes for plasmon-enhanced Raman spectromicroscopy
Taminiau et al. A monopole antenna at optical frequencies: single-molecule near-field measurements
CN105137127B (zh) 介质微螺旋锥和金属粮仓形纳米锥复合探针
Roy et al. Novel methodology for estimating the enhancement factor for tip-enhanced Raman spectroscopy
CN105807096B (zh) 非线性纳米金属螺旋锥探针
Merlen et al. A near field optical image of a gold surface: a luminescence study
CN106483340B (zh) 对数型非线性金属锥探针

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190329

Termination date: 20220119

CF01 Termination of patent right due to non-payment of annual fee