CN106483340B - 对数型非线性金属锥探针 - Google Patents

对数型非线性金属锥探针 Download PDF

Info

Publication number
CN106483340B
CN106483340B CN201610881864.8A CN201610881864A CN106483340B CN 106483340 B CN106483340 B CN 106483340B CN 201610881864 A CN201610881864 A CN 201610881864A CN 106483340 B CN106483340 B CN 106483340B
Authority
CN
China
Prior art keywords
probe
logarithmic
non linear
nano
linear metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610881864.8A
Other languages
English (en)
Other versions
CN106483340A (zh
Inventor
匡登峰
程芳
董立群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Publication of CN106483340A publication Critical patent/CN106483340A/zh
Application granted granted Critical
Publication of CN106483340B publication Critical patent/CN106483340B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种高空间分辨率、高灵敏度、能产生强纵向偏振电场的对数型非线性金属纳米锥探针。该探针由对数型金属纳米非线性锥形结构构成,当入射光(特别是径向偏振光)照射对数型非线性金属纳米锥探针底面时,入射光能量转化为表面等离激元,等离激元沿非线性金属纳米锥弯曲表面传播,并压缩至顶端形成高度局域增强的电磁场分布,从而得到强纳米聚焦。本发明可用作扫描近场显微镜、原子力显微镜等扫描探针显微镜以及针尖增强拉曼光谱仪的探针,在单分子成像、热辅助磁记录、纳米传感、纳米成像、纳米光刻和纳米操纵等诸多领域有重要应用价值。

Description

对数型非线性金属锥探针
技术领域
本发明属于光学和光电技术领域,涉及纳米光电器件、表面等离子体激发、纳米聚焦和矢量场,特别是一种高空间分辨率、高灵敏度、能产生强纵向偏振电场的金属光电探针。
背景技术
产生具有大纵向偏振电场分量的纳米聚焦强场,对于提高单分子成像、热辅助磁记录、纳米光刻及诱发热电子至关重要。目前已有多种增强纳米聚焦的金属结构,其中最常用的是金属纳米线性锥形结构,但是线性纳米结构的聚焦存在局限性,能通过改变曲率半径对光场进行聚焦,不具有非线性特性,使得对表面等离激元的研究和应用存在局限性。因此我们提出研究对数型非线性金属纳米锥结构。
发明内容
本发明目的是为产生具有大纵向偏振电场分量的纳米聚焦矢量场,提供一种高空间分辨率和高灵敏度的对数型非线性金属纳米锥探针。
本发明提供的高空间分辨率和高灵敏度的对数型非线性金属纳米锥探针,由对数型金属纳米非线性锥形结构构成,该探针在柱状坐标系的结构方程h(ρ,θ)为:
其中:ρ和θ分别是柱状坐标系下的半径和角度,h0是预设的高度参数,R是底面半径, h0和R的大小在纳米量级。N为对数型非线性因子,且24≤N≤27,N为正整数。
所述的对数型非线性金属纳米锥探针。当入射光(特别是径向偏振光)照射对数型金属纳米锥探针底面时,在金属表面激发表面等离激元,并沿着对数型非线性金属纳米锥的弯曲表面向顶端传播,并不断压缩和聚焦,形成高度局域的纳米聚焦强场。
所述的对数型非线性金属纳米锥探针,由于该探针的结构为对数型非线性结构,表面等离激元沿曲面表面传播在顶端形成强度达4个数量级的纳米聚焦电场。
所述的对数型非线性金属纳米锥探针,在金属材料和其结构参数确定的条件下,通过改变对数型非线性因子N可以得到不同强度增强的纳米聚焦场,且强度均可达4个数量级。
本发明的优点和积极效果:
本发明提供的对数型非线性金属纳米锥探针,当入射光(特别是径向偏振光)照射探针底面时,在其底面的边缘激发表面等离激元,等离激元沿着锥的弯曲表面向顶端传播,并不断旋转、压缩和聚焦,在顶端形成纳米聚焦的高局域强电场。该聚焦电场不仅具有很大的纵向偏振分量,有利于提高纳米探测和成像的灵敏度,有利于实现纳米粒子的操纵和筛选。另一方面,通过改变对数型非线性金属纳米锥结构的非线性因子N可以实现纳米聚焦电场的调控。
本发明可用作扫描近场显微镜、原子力显微镜等扫描探针显微镜以及针尖增强拉曼光谱仪的高分辨率和高灵敏度探针。
本发明在单分子成像、热辅助磁记录、纳米传感、纳米成像、纳米光刻和纳米操纵等诸多领域有重要应用价值。
附图说明
图1是高空间分辨率和高灵敏度的对数型非线性金属锥探针结构图。其中:(a)是对数型非线性金属锥探针的主剖视图;(b)是对数型非线性金属锥探针的右剖视图;(c)是对数型非线性金属锥探针的俯视图。
图2是当总高度h=600nm时,对数型非线性金属锥探针产生的纳米聚焦。其中:(a)和(b)分别是电场E在xz和yz平面的强度分布图,其在探针顶端形成纳米聚焦;(c)是在探针焦点附近所在xz平面上|E|2的强度分布。
图3是当24≤N≤27,对数型非线性金属纳米锥的增强因子与N的关系图。
具体实施方式
实施例1
如图1所示,一种高空间分辨率、高灵敏度、能产生强纵向偏振电场的对数型纳米金属非线性锥形探针,该探针由对数型金属纳米非线性锥形结构构成,该探针在柱状坐标系下的结构方程h(ρ,θ)为:
其中:ρ和θ是柱状坐标系下的半径和角度,h0是预设的高度参数,R是底面半径,h0和R的大小在纳米量级。N为对数型非线性因子,且24≤N≤27,N为正整数。
本发明中对数型非线性金属锥探针的制作可采用电化学的方法来实现。其具体步骤如下:
(1)利用氨水的腐蚀性以及可编程的电机控制金属丝的刻蚀出现一个线性锥形结构;
(2)利用高氯酸,将线性的锥进行二次刻蚀,利用可编程的电机控制速度,使不同的位置出现不同程度的刻蚀,从而得到一个非线性的锥。
具体应用实例1
对数型非线性金属锥探针的具体参数以如下为例:
材料为银,入射波长λinc=800nm,此时其相对介电常数εm=-30.1495+0.3932i,选取 h0=600nm,R=300nm,N=25,入射光为径向偏振光。
图2是N=25时对数型非线性金属纳米锥探针产生的纳米聚焦,其电场的最大强度为15527a.u.,其纵向分量|Ez|2为7942a.u.,占51.15%。图2中(a)和(b)分别是电场 E在xz和yz平面的强度分布图,其在探针顶端形成纳米聚焦;(c)是在探针焦点附近所在 xz平面上|E|2的强度分布。
图3是当24≤N≤27时,对数型非线性金属纳米锥的增强因子与N的关系图。

Claims (3)

1.一种能提高空间分辨率和灵敏度以及能产生强纵向偏振电场的对数型非线性金属纳米锥探针,其特征在于该对数型非线性金属纳米锥探针由金属纳米非线性锥形结构构成,该探针在柱状坐标系下的结构方程h(ρ,θ)为:
其中:ρ和θ分别是柱状坐标系下的半径和角度,h0是预设的高度参数,R是底面半径,N为对数型非线性因子,且24≤N≤27,N为正整数,h0和R的大小在纳米量级;
当入射光照射对数型非线性金属纳米锥探针底面时,在金属表面激发表面等离激元,并沿着对数型非线性金属纳米锥的弯曲表面向顶端传播,并不断压缩和聚焦,形成高度局域的纳米聚焦强场。
2.根据权利要求1所述的对数型非线性金属纳米锥探针,其特征在于该探针的对数型非线性结构,表面等离激元沿对数弯曲表面传播,在顶端形成高强度纳米聚焦光场。
3.根据权利要求1或2所述的对数型非线性金属纳米锥探针,其特征在于在金属材料和结构参数确定的条件下,通过改变对数型非线性因子N能够得到不同强度增强的纳米聚焦场,且强度均能达4个数量级。
CN201610881864.8A 2016-08-05 2016-10-10 对数型非线性金属锥探针 Expired - Fee Related CN106483340B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610640944 2016-08-05
CN2016106409444 2016-08-05

Publications (2)

Publication Number Publication Date
CN106483340A CN106483340A (zh) 2017-03-08
CN106483340B true CN106483340B (zh) 2018-11-20

Family

ID=58269279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610881864.8A Expired - Fee Related CN106483340B (zh) 2016-08-05 2016-10-10 对数型非线性金属锥探针

Country Status (1)

Country Link
CN (1) CN106483340B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226575B (zh) * 2017-11-29 2019-09-13 北京大学 一种太赫兹宽带超分辨率探针及其探测方法
CN110333372A (zh) * 2019-07-18 2019-10-15 中国科学院宁波材料技术与工程研究所 一种磁性扫描显微镜探针及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452171B1 (en) * 1999-07-23 2002-09-17 Piezomax Technologies, Inc. Method for sharpening nanotube bundles
JP2006515682A (ja) * 2002-11-06 2006-06-01 ナノプティックス・リミテッド マイクロ及びナノ光学素子に係る統合されたシミュレーション、加工及び特性決定
CN101438355A (zh) * 2006-03-23 2009-05-20 国际商业机器公司 通过纳米线生长形成的单片高纵横比纳米尺寸扫描探针显微镜(spm)尖端
CN103439533A (zh) * 2013-09-05 2013-12-11 南开大学 纳米金属螺旋轴锥探针
US9001324B2 (en) * 2010-07-30 2015-04-07 Hewlett-Packard Development Company, L.P. Optical fiber surface enhanced raman spectroscopy (SERS) probe
CN105807096A (zh) * 2016-03-10 2016-07-27 南开大学 非线性纳米金属螺旋锥探针

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452171B1 (en) * 1999-07-23 2002-09-17 Piezomax Technologies, Inc. Method for sharpening nanotube bundles
JP2006515682A (ja) * 2002-11-06 2006-06-01 ナノプティックス・リミテッド マイクロ及びナノ光学素子に係る統合されたシミュレーション、加工及び特性決定
CN101438355A (zh) * 2006-03-23 2009-05-20 国际商业机器公司 通过纳米线生长形成的单片高纵横比纳米尺寸扫描探针显微镜(spm)尖端
US9001324B2 (en) * 2010-07-30 2015-04-07 Hewlett-Packard Development Company, L.P. Optical fiber surface enhanced raman spectroscopy (SERS) probe
CN103439533A (zh) * 2013-09-05 2013-12-11 南开大学 纳米金属螺旋轴锥探针
CN105807096A (zh) * 2016-03-10 2016-07-27 南开大学 非线性纳米金属螺旋锥探针

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Surface Plasmon Damping Quantified with an Electron Nanoprobe;Michel Bosman等;《Scientific Reports》;20130221;第3卷;第1-7页 *
利用碳纳米管探针进行纳米加工的研究进展;胡小鹏等;《仪器仪表学报》;20030831;第24卷(第增4期);第559-562页 *
纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究;黄茜等;《物理学报》;20090331;第58卷(第3期);第1980-1986页 *

Also Published As

Publication number Publication date
CN106483340A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Mauser et al. Tip-enhanced near-field optical microscopy
Cvitkovic et al. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy
Stupakiewicz et al. Direct imaging of the magnetization reversal in microwires using all-MOKE microscopy
CN103439533B (zh) 纳米金属螺旋轴锥探针
Felts et al. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy
US10274514B2 (en) Metallic device for scanning near-field optical microscopy and spectroscopy and method for manufacturing same
Vasconcelos et al. Optical nanoantennas for tip-enhanced Raman spectroscopy
Renger et al. Resonant light scattering by near-field-induced phonon polaritons
Fleischer et al. Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope
CN108535514A (zh) 一种基于等离激元纳米钉结构的多功能近场光学探针
CN106483340B (zh) 对数型非线性金属锥探针
Eligal et al. Etching gold tips suitable for tip-enhanced near-field optical microscopy
Luan et al. Tip-and plasmon-enhanced infrared nanoscopy for ultrasensitive molecular characterizations
CN105807096B (zh) 非线性纳米金属螺旋锥探针
CN105137127B (zh) 介质微螺旋锥和金属粮仓形纳米锥复合探针
Ye et al. Optical and electrical mappings of surface plasmon cavity modes
Taminiau et al. A monopole antenna at optical frequencies: single-molecule near-field measurements
CN106841688B (zh) e指数型非线性纳米金属锥探针
Merlen et al. A near field optical image of a gold surface: a luminescence study
Ullah et al. A polarization parametric method of sensing the scattering signals from a submicrometer particle
Weber et al. Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles
Beshr et al. Application of scanning probe energy loss spectroscopy to SERS-active metal nanostructures
Zhao et al. Noncoplanar optical bow-tie shaped nanoantenna and array for near-field enhancement
Kuang et al. Hybridly polarized nanofocusing of metallic helical nanocone
Ullah et al. A polarization parametric method of sensing the scattering signals from a submicron particle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181120

Termination date: 20201010