CN106834316B - Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof - Google Patents

Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof Download PDF

Info

Publication number
CN106834316B
CN106834316B CN201710211433.5A CN201710211433A CN106834316B CN 106834316 B CN106834316 B CN 106834316B CN 201710211433 A CN201710211433 A CN 201710211433A CN 106834316 B CN106834316 B CN 106834316B
Authority
CN
China
Prior art keywords
pollen
gene
osaom
rice
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710211433.5A
Other languages
Chinese (zh)
Other versions
CN106834316A (en
Inventor
张毅
吕俊
杨昆
黄远新
管玉圣
武丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201710211433.5A priority Critical patent/CN106834316B/en
Publication of CN106834316A publication Critical patent/CN106834316A/en
Application granted granted Critical
Publication of CN106834316B publication Critical patent/CN106834316B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)

Abstract

The invention relates to a rice pollen germination hole development and pollen fertility gene OsAOM, a mutant gene, a recombinant expression vector and application thereof, wherein the protein coded by the gene is an amino acid sequence shown in SEQ ID No.1, or a protein which is substituted, deleted or added with at least one amino acid and has the same function as the OsAOM; the OsAOM gene disclosed by the invention codes a GDSL lipase, has the functions of regulating and controlling pollen germination hole growth, microspore cell membrane expansion and pollen inner wall and cytoplasm development, is an essential gene for developing fertile pollen by microspores, and can cause germination hole structural disorder, microspore cell membrane and cytoplasm degradation and pollen inner wall incapability to form so as to generate rice male sterility.

Description

Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a rice pollen germination hole development and pollen fertility gene OsAOM, a mutant gene of the rice pollen germination hole development and pollen fertility gene OsAOM, and application of the rice pollen germination hole development and pollen fertility gene OsAOM in regulation and control of pollen fertility.
Background
Rice (Oryza sativa) is one of the major food crops, and rice is the staple food for about half of the world population. The successful application of heterosis plays an important role in the improvement of rice varieties in China. The rice is self-bred and fruitful crop, and the utilization of the heterosis depends on the breeding of sterile line.
At present, people mainly realize the heterosis of rice by a cytoplasmic-nuclear interaction sterile line (three-line method) and a temperature-sensitive sterile line (two-line method). However, due to the reasons that the cytoplasmic-nuclear interaction sterile line is not freely matched, the available parents are limited, the seed production is more complicated than that of a two-line method, the fertility of the thermo-photo sensitive sterile line is influenced by natural thermo-photo conditions, the risk of large-area seed production is high and the like, the heterosis of the rice cannot be fully reflected by the two sterile lines. The common recessive nuclear sterile line has fertility which is not influenced by environmental factors such as temperature and light, the fertility is stable, the fertility can be recovered by all normally fertile materials, and the hybrid rice can be freely matched. The study on the sterility mechanism and regulation of the sterile line is vigorous, and the method has important significance for the full utilization of the rice heterosis.
The pollen germination hole is a specialized structure of the outer wall of pollen, and has an important function for the pollen to be rapidly absorbed and germinate on stigma and finish insemination. The development of the germinating pores is regulated by complex and elaborate genetic mechanisms. Any gene related to pollen hole development approach can generate common nuclear sterile material when mutation occurs. The development and research of sterile mutants related to the development of germination pores, the cloning, verification and regulation of related genes, the cultivation of novel sterile lines and the establishment of a foundation for the full utilization of heterosis.
Disclosure of Invention
In view of the above, one of the objectives of the present invention is to provide a rice pollen germination pore development and pollen fertility gene OsAOM, which encodes GDSL lipase, has the functions of regulating and controlling the normal development of germination pore structure, microspore cell membrane, cytoplasm and inner wall, and is an essential gene for microspore development into fertile pollen, and the functional deletion of the gene can cause male sterility, thereby producing a new rice male sterile line, which can be used for hybrid seed production, and the technical scheme is as follows:
the rice pollen germination hole development and pollen fertility gene OsAOM has an amino acid sequence shown as SEQ ID No. 1; or the amino acid sequence shown in SEQ ID NO.1 is substituted, deleted or added with at least one amino acid and has the amino acid sequence with the same function as the OsAOM protein.
Further, the nucleotide sequence of the rice pollen germination hole development and pollen fertility gene OsAOM is shown in SEQ ID NO. 2; or the sequence shown in SEQ ID NO.2 is substituted, deleted or added with at least one nucleotide and has the nucleotide sequence with the same functions as the rice pollen germination hole development and pollen fertility gene OsAOM.
Further, the genome sequence of the gene OsAOM for encoding the rice pollen germination hole development and pollen fertility is shown as SEQ ID NO. 3; or the nucleotide sequence of the gene OsAOM with the functions of encoding the development of the rice pollen germination holes and the pollen fertility gene through replacing, deleting or adding at least one nucleotide in the sequence shown in SEQ ID NO. 3.
The second purpose of the invention is to provide a recombinant expression vector of a rice pollen germination hole development and pollen fertility gene OsAOM, and the technical scheme is as follows:
the recombinant expression vector contains the rice pollen germination hole development and pollen fertility gene OsAOM.
Furthermore, the recombinant expression vector is formed by connecting a sequence shown in SEQ ID NO.25 into the KpnI and SbfI enzyme cutting sites of the pCAMBIA1301 vector.
The invention also aims to provide application of the rice pollen germination hole development and pollen fertility gene OsAOM in restoring mutant pollen sterility traits, and the technical scheme is as follows:
the rice pollen germination hole development and the application of the pollen fertility gene OsAOM in restoring the pollen fertility of the mutant are pollen sterile mutants generated by OsAOM gene variation.
The fourth purpose of the invention is to provide a mutant gene of a rice pollen germination hole development and pollen fertility gene OsAOM, and the technical scheme is as follows:
the nucleotide sequence of the mutant gene is shown as SEQ ID NO.4, 775 of the nucleotide sequence shown as SEQ ID NO.2 is mutated from T to C, or 5084 of the nucleotide sequence shown as SEQ ID NO.3 is mutated from T to C, and male sterility is caused by mutation.
The fifth purpose of the invention is to provide the application of the mutant gene OsAOM of the rice pollen germination hole development and pollen fertility gene in the rice breeding preparation, and the technical scheme is as follows:
the application of the mutant gene of the rice pollen germination hole development and pollen fertility gene OsAOM in rice breeding.
Further, the application of the mutant gene of the rice pollen germination hole development and pollen fertility gene OsAOM in the preparation of a rice male sterile line.
The invention has the beneficial effects that: the invention discloses a rice pollen germination hole development and pollen fertility gene OsAOM, which mainly influences the development of a pollen hole, a cell membrane, cytoplasm and an inner wall of pollen in rice pollen development, and further influences aspects such as pollen fertility and the like. After the OsAOM gene loses functions by mutation, knockout or inhibition expression and the like, pollen germination hole structure disorder, pollen cytoplasm and cell membrane degradation are caused, and the inner wall of pollen cannot be formed, so that a new rice male sterile line is obtained, and a material with a normal OsAOM gene is used for pollinating the sterile line to restore the first generation fertility of a hybrid, so that the rice male sterile line can be used for producing hybrid seeds and has very important application in agricultural production; the invention also discloses a recombinant expression vector of the OsAOM gene, which can restore the rice male sterile line into a fertile line and has wide application prospect.
Drawings
In order to make the object, technical scheme and beneficial effect of the invention more clear, the invention provides the following drawings for explanation:
FIG. l is a morphological observation picture of Minghui 63 with normal OsAOM gene and its mutant plant, anther and pollen (A: Minghui 63 ear of rice; B: OsAOM mutant ear of rice; C: Minghui 63 anther; D: OsAOM mutant anther; E: Minghui 63 pollen iodine staining result; F: OsAOM mutant pollen iodine staining result; G: Minghui 63 pollen scanning electron microscope picture; H: OsAOM mutant pollen scanning electron microscope picture).
FIG. 2 is a schematic view showing OsAOM gene localization and mutation site of the present invention (A: OsAOM gene localization; B: OsAOM gene mutation site).
FIG. 3 shows anther morphology and pollen iodine staining pattern of OsAOM complementary plant of the present invention (A: Minghui 63 anther morphology B: OsAOM mutant anther morphology; C: OsAOM complementary plant anther morphology; D: Minghui 63 pollen iodine staining result; E: OsAOM mutant pollen iodine staining result; F: OsAOM complementary plant pollen iodine staining result).
Detailed Description
The invention will be further illustrated with reference to the following specific examples. These examples are intended to illustrate the invention and are not intended to limit the scope of the invention. The experimental procedures, for which specific conditions are not indicated in the following examples, are generally carried out according to conventional conditions, for example as described in the handbook of molecular cloning laboratories (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the conditions recommended by the manufacturer.
The term "pollen germination hole development and pollen fertility gene" refers to a nucleic acid sequence encoding GDSL lipase protein which can regulate normal development of pollen germination holes, cell membranes, cytoplasm and pollen inner walls and finally enable pollen fertility to be normal, a nucleotide sequence with a base sequence shown as 1-1200 th in SEQID NO.2 and a degenerate sequence thereof. Degenerate sequences are sequences which are the result of one or more codons having been replaced by degenerate codons which code for the same amino acid in the nucleotides 1 to 1200 of the coding frame of the sequence of SEQ ID No. 2. Due to the degeneracy of the codons, degenerate sequences with homology as low as about 70% to the nucleotide sequence 1-1200 of SEQ ID NO.2 can also encode the sequence depicted in SEQ ID NO. 1. The term also includes nucleotide sequences that hybridize under moderate stringency conditions, and more preferably, under high stringency conditions, to the nucleotide sequence of SEQ ID No.2 from nucleotides 1-1200. The term also includes nucleotide sequences having at least 70%, preferably at least 80%, more preferably at least 90%, most preferably at least 95% homology to the nucleotide sequence from nucleotides 1 to 1200 of SEQ ID NO. 2. The term also includes variants of the open reading frame sequence of SEQ ID NO.2 which encode proteins having the same function as the native regulatory pollen pore, cell membrane, cytoplasm and pollen wall. These variants include (but are not limited to): deletion, insertion and/or substitution of several (usually 1 to 90, preferably 1 to 60, more preferably 1 to 20, most preferably 1 to 10) nucleotides, and addition of several (usually less than 60, preferably less than 30, more preferably less than 10, most preferably less than 5) nucleotides at the 5 'and/or 3' end.
In the examples, various vectors known in the art, such as commercially available vectors including plasmids, cosmids, and the like, may be used. When the GDSL lipase for regulating and controlling the development of rice pollen germination holes is produced, the coding sequence of the protein can be operably connected with an expression regulating and controlling sequence, so that an expression vector for regulating and controlling the development of rice pollen germination holes, pollen cytoplasm, cell membranes and pollen inner walls is formed.
The full-length sequence of related nucleotides or fragments thereof can be obtained by PCR amplification, recombination or artificial synthesis. For the PCR amplification method, primers can be designed based on the nucleotide sequences disclosed in this example, and the sequences can be amplified using a commercially available cDNA library or a cDNA library prepared by a conventional method known to those skilled in the art, or genomic DNA as a template. When the sequence is long, two or more PCR amplifications are often required, and then the amplified fragments are spliced together in the correct order. Once the sequence of interest has been obtained, it can be obtained in large quantities by recombinant methods. This is usually done by cloning it into a vector, transferring it into a cell, and isolating the relevant sequence from the propagated host cell by conventional methods.
Example 1 acquisition and morphological Observation of osaom mutant plants
The osaom mutant is derived from mutation of indica rice Minghui 63, normal Minghui 63 is used as a male parent to be hybridized with the osaom mutant, the mutant gene is stored in a heterozygote, the heterozygote is subjected to self-reproduction when the mutant is needed, and the mutant osaom can be separated from the offspring. Hybridization of osaom mutant with Minghui 63, FlAll generations are fertile and selfed F2Segregation occurs in generations, wherein the normal plant is 293, the mutant is 120, and the proportion is in accordance with
Figure BDA0001260555330000041
Indicating that the male sterile mutant phenotype is caused by a nuclear gene mutation. Morphological observations on osaom mutant plants: the Minghui 63 rice spike droops after fructification (figure 1, A), while the osaom mutant spikelet is not fructified and stands vertically (figure 1, B); the Minghui 63 anthers were robust and plump (FIG. 1, C), the osaom mutant anthers were finer (FIG. 1, D); minghui 63 pollen stained black by iodine (FIG. 1, E), osaom mutant pollen stained light by iodine, and pollen small and abnormal (FIG. 1, F); minghui 63 pollen under scanning electron microscope had a plug-like hole cover at the pollen hole (FIG. 1, G), while the hole cover of mutant osaom was missing, allowing a void to form at the germinating hole (FIG. 1, H).
Example 2 mapping and cloning of OsAOM Gene
Positioning group
Hybridizing the OsAOM mutant with japonica rice Nipponbare, and selfing to obtain F2And selecting male sterile plants as a positioning population.
Second, extracting the DNA of the rice
The parent is extracted by adopting an improved CTAB method, and the method comprises the following steps: taking 0.1-0.2 g (about half piece) of leaf, putting into a small mortar, adding a proper amount of liquid nitrogen, immediately grinding into powder, putting into a 2m1 centrifuge tube, adding 700 mu L of 1.5 × CTAB solution preheated at 100 ℃ into the centrifuge tube, carefully and uniformly mixing, putting into a 65 ℃ water bath, taking out the centrifuge tube after 20 minutes, adding equal volume of chloroform/isoamylol,mixing strongly, centrifuging at 13000rpm for 10 min, collecting supernatant, adding 900 μ L anhydrous ethanol, mixing well, and standing at-20 deg.C for more than half an hour. The precipitated DNA was centrifuged at 14000rpm for 10 minutes. The supernatant was removed, and the precipitate was washed once with 1mL volume fraction of 70% ethanol, dried by centrifugation, dissolved in 200. mu.L of TE solution and stored in a refrigerator at 4 ℃. The individual plant DNA of the positioning population is extracted by adopting an improved alkaline cooking method, and the method comprises the following steps: cutting tender leaf into pieces of 1-2cm2The mixture was put into a 0.5M1 centrifuge tube, 100. mu.L of 0.125M NaOH solution was added, and the mixture was boiled in a water bath for 30 seconds, then 50. mu.L of 1.0M Tris-HCl (pH8.0) was added, and finally 100. mu.L of 0.125M HCl was added, and the mixture was kept in a refrigerator at 4 ℃ after 2 minutes in a boiling water bath for further use.
Third, group separation analysis initial positioning
137 pairs of polymorphic markers were designed, including 42 SSR primers and 95 InDel molecular marker primers. Wherein SSR primers are synthesized according to published sequences (see in particularhttp://www.gramene.org.microsat/ ssr.html) In other InDel molecular marker designs, primers are designed for different parts according to published nucleic acid sequences of japonica rice Nipponbare and indica rice 9311 lines, and polymorphism between 2 parent japonica rice Nipponbare and indica rice OsAOM mutants is verified. And (3) amplifying the parent and the gene pool simultaneously by using the designed 137 pair InDel primers, wherein the PCR amplification program comprises the following steps: mu.L of template, mu.L of 10 pmol/. mu.L of upstream primer, mu.L of 10 pmol/. mu.L of downstream primer, and mu.L of 10 XBuffer (Mg) in a 10. mu.L system2 Ten) mu.L of 2mM dNTP, 0. mu.L of Taq, and 3.9. mu.L of water; and detecting the PCR product by PAGE gel electrophoresis with the mass volume fraction of 10% and a silver staining method. As a result, it was found that the primer R02004 on chromosome 2 exhibited polymorphism between the parent and the gene pool at the same time, single strain verification showed that the primer was linked to the OsAOM gene, and in order to localize the gene between the two primer sites, SSR or InDel primer 12 pairs were co-synthesized in the vicinity of the primer R02004 at 10.0Mb, and screening was performed with the parent OsAOM and Nipponbare, and as a result, the primer R02001, SSR primers RM452, RM300, and RM8254 exhibited polymorphism between the parents, and single strain verification showed that the R02001 consensus recombinant 18 strain had a genetic distance of 4.66cM, RM8524 consensus recombinant 49 strain having a genetic distance of 12.69cM, and the two crossover strains exhibited polymorphism with each otherAre not included, indicating that the target gene is between the two. Preliminary mapping work finally mapped the OsAOM gene between R02004 and RM300, with 3 and 18 recombinants, respectively, and a genetic distance of 0.78cM and 4.66cM, respectively (FIG. 2, A). The primary targeting primer sequences are shown in Table 1.
Four, fine positioning
To further narrow the scope of candidate gene screening, we subsequently refined the mapping to construct F of mutant osaom XJH 122688 sterile single plants are obtained in the generation group. Between the primer R02004 and RM300, 34 pairs of primers are designed and synthesized, and sterile parent, fertile parent and F are utilized1Screening differential primers, and co-selecting 5 pairs of primers R02004, RM1106, RM13010, RM13013 and R02013 which have obvious difference and are linked with the gene, wherein the genotype analysis result of recessive individuals shows that R02004 shares a single cross-over strain 187 with an inheritance distance of 3.48cM, RM13013 shares a single cross-over strain 100 with an inheritance distance of 1.86cM, and the single cross-over strains of the two do not contain each other, RM1106 shares a single cross-over strain 1 with an inheritance distance of 0.02cM, RM13010 shares a single cross-over strain 11 with an inheritance distance of 0.20cM, R02013 has a single cross-over strain 2 with an inheritance distance of 0.04cM, wherein the cross-over strain of RM1106 is contained in the cross-over strain of R02004, the single cross-over strain of RM02013 is contained in the cross-over strain of RM13010, the cross-over strain of RM13010 is contained in the cross-over strain of RM13013, and the cross-over strain of R02004 and the RM13013 contains each other cross-over strain and AOA (FIG. shows that the two AOA markers are contained in the Os02013). In thathttp://www.gramene.org/On the 2 nd chromosome of the rice Nipponbare of the website, the physical positions of the two markers are 10997625 and 11045788 (version number: Oryza _ sativa. IRGSP-1.0.21), the distance between the two markers is about 48Kb, and only seven gene loci are predicted in the range. The analysis of BAR (http:// BAR. utonto. ca/efprice/cgi-bin/efpWeb. cgi) found that Loc _ Os02g18870 was expressed in the middle and late inflorescences, and was most likely to be a candidate gene OsAOM among seven genes. The sequence alignment of Loc _ Os02g18870 gene in minghui 63 and mutant osaom revealed that: a T → C base mutation in the fourth exon of the Loc _ Os02g18870 gene in the osaom mutant resulted in the encodedThe amino acid changes from cysteine (Cys) to arginine (Arg). Therefore, it was preliminarily determined that Loc _ Os02g18870 is the target gene OsAOM (fig. 2, B). The gene codes GDSL lipase protein, the amino acid sequence of the coded protein is shown as SEQ ID NO.1, the nucleotide sequence is shown as SEQ ID NO.2, the corresponding genome sequence of the OsAOM gene is shown as SEQ ID NO.3, and the mutant gene of the OsAOM gene is shown as SEQ ID NO. 4.
TABLE 1 Gene mapping and functional verification primer sequences
Figure BDA0001260555330000061
Example 3 functional analysis of OsAOM Gene
In order to further confirm that the OsAOM gene is the gene causing the phenotype of the male sterile mutant, the OsAOM gene and an expression regulation region (comprising 5603bp exon and intron, 1254bp upstream promoter and 1589bp downstream terminator) are amplified from a rice BAC (bacterial artificial chromosome) OSJNBb0062H16r containing the OsAOM gene, and the nucleotide sequence is shown as SEQ ID NO. 25. The specific operation is segmented amplification and ligation of pCAMBIA1301 vector: utilizing a single enzyme cutting site XbaI existing in the middle of a coding region, adding an enzyme cutting site KpnI at the tail end of a first half upstream primer CF1, a first half downstream primer CR1 is positioned behind the XbaI site, a second half upstream primer CF2 is positioned in front of the XbaI site, and a second half downstream primer CR2 is added with an enzyme cutting site SbfI at the tail end, wherein the sequences of cloning primers are shown in a table 1; firstly, using KpnI and XbaI to expand the first half segment and then connecting the first half segment with pCAMBIA1301 to obtain an intermediate vector, then using XbaI and SbfI to expand the second half segment and then connecting the second half segment with the intermediate vector, sequencing to ensure the correct sequence, finally obtaining a complementary vector pCAMBIA1301-OsAOM of the OsAOM gene, and transforming the obtained recombinant expression vector into agrobacterium tumefaciens 440LBA 4 by adopting a freeze-thaw method to obtain agrobacterium tumefaciens LBA4404 containing the recombinant expression vector pCAMBIA1301-OsAOM, which is named as LBA 4404-OsAOM.
The obtained LBA4404-OsAOM is transformed into rice OsAOM mutant to observe whether the pollen fertility is restored. The results are shown in FIG. 3, and the results show T0Generation to obtain complementary plant, T0Generation-complementary plant pollen fertility restoration and antherContains mature pollen and turns into normal yellow, and iodine stains pollen into black. Therefore, the cloned OsAOM gene can restore pollen fertility of the mutant and is the target gene of the invention, and the mutation of the target gene generates a male sterile phenotype. The combination of the previous comparison of pollen fertility between the mutant and the wild Minghui 63 shows that the OsAOM gene is a gene for regulating the development of rice pollen and has a regulating effect on the development of pollen germination pore structures, pollen cell membranes, cytoplasm and pollen inner walls.
Finally, it is noted that the above-mentioned preferred embodiments illustrate rather than limit the invention, and that, although the invention has been described in detail with reference to the above-mentioned preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the invention as defined by the appended claims.
<110> university of southwest;
<120> rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof
<160>29
<210>1
<211>399
<212>PTR
<213> Rice (Oryza sativa)
<220>
<223> pollen germination hole development and pollen fertility gene OsAOM amino acid sequence
<400>1
Met Ala Leu Pro Phe Leu Leu Leu Leu Ala Phe Ala Leu Leu Phe
1 5 10 15
Pro Leu Ser Ala Pro Pro Arg Cys Cys Ser Ala Ala Pro Ala Ser
20 25 30
Ser Pro Pro Pro Ser Pro Pro Pro Ser Pro Ala Ala Ala Ala Ala
35 40 45
Ala Pro Arg Arg Thr Pro Leu Val Pro Ala Leu Phe Val Ile Gly
50 55 60
Asp Ser Thr Ala Asp Val Gly Thr Asn Asn Tyr Leu Gly Thr Leu
65 70 75
Ala Arg Ala Asp Arg Glu Pro Tyr Gly Arg Asp Phe Asp Thr Arg
80 85 90
Arg Pro Thr Gly Arg Phe Ser Asn Gly Arg Ile Pro Val Asp Tyr
95 100 105
Ile Ala Glu Lys Leu Gly Leu Pro Phe Val Pro Pro Tyr Leu Glu
110 115 120
Gln Asn Met Arg Met Gly Val Gly Ser Val Asp Leu Ser Asn Ile
125 130 135
Asp Gly Met Ile Gln Gly Val Asn Tyr Ala Ser Ala Ala Ala Gly
140 145 150
Ile Leu Ser Ser Ser Gly Ser Glu Leu Gly Met His Val Ser Leu
155 160 165
Ser Gln Gln Val Gln Gln Val Glu Asp Thr Tyr Glu Gln Leu Ser
170 175 180
Leu Ala Leu Gly Glu Ala Ala Thr Thr Asp Leu Phe Arg Lys Ser
185 190 195
Val Phe Phe Phe Ser Ile Gly Ser Asn Asp Phe Ile His Tyr Tyr
200 205 210
Leu Arg Asn Val Ser Gly Val Gln Met Arg Tyr Leu Pro Trp Glu
215 220 225
Phe Asn Gln Leu Leu Val Asn Ala Met Arg Gln Glu Ile Lys Asn
230 235 240
Leu Tyr Asn Ile Asn Val Arg Lys Val Val Met Met Gly Leu Pro
245 250 255
Pro Val Gly Cys Ala Pro His Phe Leu Trp Glu Tyr Gly Ser Gln
260 265 270
Asp Gly Glu Cys Ile Asp Tyr Ile Asn Asn Val Val Ile Gln Phe
275 280 285
Asn Tyr Ala Leu Arg Tyr Met Ser Ser Glu Phe Ile Arg Gln His
290 295 300
Pro Gly Ser Met Ile Ser Tyr Cys Asp Thr Phe Glu Gly Ser Val
305 310 315
Asp Ile Leu Lys Asn Arg Asp Arg Tyr Gly Phe Leu Thr Thr Thr
320 325 330
Asp Ala Cys Cys Gly Leu Gly Lys Tyr Gly Gly Leu Phe Met Cys
335 340 345
Val Leu Pro Gln Met Ala Cys Ser Asp Ala Ser Ser His Val Trp
350 355 360
Trp Asp Glu Phe His Pro Thr Asp Ala Val Asn Arg Ile Leu Ala
365 370 375
Asp Asn Val Trp Ser Gly Glu His Thr Lys Met Cys Tyr Pro Val
380 385 390
Asp Leu Gln Gln Met Val Lys Leu Lys
395 399
<210>2
<211>1200
<212>DNA
<213> Rice (Oryza sativa)
<220>
<223> pollen germination hole development and pollen fertility gene OsAOM sequence
<400>2
atggcgctcc ccttcctcct cctcctcgcc ttcgccctgc tcttcccgct ctccgctccc 60
ccgcgctgct gctccgcggc ccccgcctcc tcgccgcccc cgtccccgcc cccttcccct 120
gcggcggcgg cggcggcccc gcgccgcacg ccgctcgtcc cggcgctctt cgtgatcggc 180
gactccacgg cggacgtcgg caccaacaac tacctcggca cgctcgcccg cgccgaccgc 240
gagccgtacg gccgcgactt cgacacccgc cgccccacgg ggcgcttctc caacggccgc 300
atccccgtcg actacatcgc agagaagctg gggcttcctt ttgtgcctcc ataccttgaa 360
cagaacatgc gcatgggtgt cggcagtgtc gacctcagca acattgatgg gatgatacaa 420
ggtgtcaact atgcatccgc ggcagctggc attctctcca gcagtggttc tgagctggga 480
atgcatgtgt cgctgagcca gcaggtgcag caggttgagg acacatatga gcagctctct 540
ctggctctcg gggaggcagc aacaactgac cttttcagaa agtccgtgtt ctttttctca 600
atcgggagca acgacttcat ccactattac ctgcgcaatg tgtctggcgt ccagatgcgt 660
tacctcccat gggagttcaa ccagcttctt gtcaatgcaa tgaggcagga aatcaagaat 720
ttgtacaata tcaatgttcg gaaggtcgtc atgatgggcc tccctcctgt tggctgcgca 780
cctcactttc tctgggagta cggcagtcaa gacggggaat gcatcgacta catcaataac 840
gtcgtgattc agttcaacta tgccctgaga tacatgtcta gtgaattcat ccgccagcac 900
ccaggctcta tgatcagtta ctgtgatact tttgaggggt ctgtggacat actgaagaat 960
cgtgaccgct acggttttct gaccaccact gatgcctgct gtgggctggg gaagtatggg 1021
ggcctgttca tgtgtgttct tccacagatg gcgtgcagcg acgcgtcgag ccatgtctgg 1081
tgggacgagt tccaccccac ggatgctgtg aaccgaatcc tggctgataa tgtgtggtct 1141
ggtgagcata ccaagatgtg ctatcctgtg gatttgcagc agatggtaaa actcaagtag 1200
<210>3
<211>5603
<212>DNA
<213> Rice (Oryza sativa)
<220>
<223> pollen germination hole development and pollen fertility gene OsAOM genome sequence
<400>3
atggcgctcc ccttcctcct cctcctcgcc ttcgccctgc tcttcccgct ctccgctccc 60
ccgcgctgct gctccgcggc ccccgcctcc tcgccgcccc cgtccccgcc cccttcccct 120
gcggcggcgg cggcggcccc gcgccgcacg ccgctcgtcc cggcgctctt cgtgatcggc 180
gactccacgg cggacgtcgg caccaacaac tacctcggca cgctcgcccg cgccgaccgc 240
gagccgtacg gccgcgactt cgacacccgc cgccccacgg ggcgcttctc caacggccgc 300
atccccgtcg actacatcgg tacgcgcccc ccaccttctc gatcggcggc gccatggctg 360
tggccccttt gctctctcgt gaatcctccc ccccccgctt caaaggttgc aggtggttct 420
ggaatcgtcg atccgatgct gctttgcctc tcgtacgcct atggatgcag catgttgtgg 480
gtttagtgta atctgggttt tgggtttctg gtatacgaag gttttgctta gttgttggtt 540
cctatgaatt tggggcatct gatctcatac atcgggggta tgtggatttt tgcccaacaa 600
ttgctgaagc tgaagagtaa tcagttcata gcactctcct acacagctga ccacctggat 660
ctcacataca tagactcctg cggcttcctc tccttgatct cacatagcaa tgttgtgggt 720
ttagtgtaat ctgggtattt gggtttctcg catgcgaggg gcttgctcag ttgttggttc 780
gtctgtgggt ttctgccgaa caattgctga agctgaagag taaccagttt tgcagcacaa 840
ccaccacagt ctgggcatca tttgatcctg ctgttcttag cactcctgca gagctgacca 900
cctggatctc acgtatctat atagaatcct gcggcttcct ctccaaatca gtatccagta 960
tccaccaccg ttatcagccg ttgaggcaat gcattggcag aatgccagaa cattaagaag 1020
tgccatcata atgtacacca ttagtccatg catccagaaa acattgccag aatcctgcaa 1080
tgtatccatt tgatagtcct gagtcccgac cagttgtcta catgctccag tctctttgcc 1140
accacacact gttaaatctc tcttgtccaa tgtccaccac attctggaca gtttcaaggt 1200
cctcacagga agcacagctg cacaaccttt gttaatgttg ctttaagaaa gtcatatcta 1260
ctcattagtt tctttgggag agtaaggagg gaaaaggcat aggaaagaaa catttaacta 1320
gggctactgg ctcactatgt gaaagatgtt tcccttcaat ttcatttagc tggtgttctt 1380
tatctctttt gcccgtctct gtcagtactt atgtttttca tgaatcaata gtatcttgtt 1440
ctttcttctg tttttaaatt attttttccg tgatttctta atcttagact tttttgtgca 1500
tttgcagcag agaagctggg gcttcctttt gtgcctccat accttgaaca gaacatgcgc 1560
atgggtgtcg gcagtgtcga cctcagcaac attgatggga tgatacaagg tgtcaactat 1620
gcatccgcgg cagctggcat tctctccagc agtggttctg agctggtttg tcctcctaac 1680
ttcccaacaa ctctatttca cgcttataat ctagcaggaa tgtctttgtg agacccttct 1740
ctagaggacg aatcagaagg agggtgtttc aacaacagac tagaagcaat gactcttctc 1800
atagtgtcta catcctctct agttaggaag aatacttgct caaccatttg aactaatgct 1860
gaaagattct cctgttcggc tgctcccttc cttccatgtg ttccaactag tgtggattat 1920
cagggcatca aattcccttc ttagttccta ggaattcatg acttatatat gcttcctacc 1980
agatgtgaga ttgtctacac gagacgattg atatgctggt gctgatgggg ggtttattta 2040
tgctgctggc cttgtccaag tttgcttgtg aagctacagt gctataagtt gtatggttgt 2100
tttattttcc tgcacgcata aagcaaaagg agatatatgt agccatctac tcaaagctaa 2160
tttatcataa tttttttatt gtctgaaact aaaaaactgc atttgttcta tactatggct 2220
tttgggatga tcaaggagtt agtaagaatc actgatccgg caccaatgtg atgaaattga 2280
tgtatatcat cctgaacatt ccattttcat atcaatcttt attcctgctt atgttgttga 2340
atctccaatc tttgtgccca aaacaacaaa aacttgtgga gctgcaaatg ctaattttgt 2400
catttcaata aaacatcatg gtggtgtcta aagaggagaa atgtttacgt atgaacattg 2460
ctgcaaagtt ttcctttatg tggctatatg ttttaacttt ctataaagga ttggagcctc 2520
ttggttagag tcaagcttgt tgatttgcat accttttcat tattcttaaa tgtacttgaa 2580
actaaatcga catgatcatt aactatataa caccagtcta aagaacacca atctaaagaa 2640
cacacttaat gcttctctat gaaggtttct cttttggtat gtaatacttg ctcatcggat 2700
gtatcctttt ttgttactat tttgtctcgt gaactataca tttgaagatt attttgtggt 2760
ggtattcttt actactgcgg cattccagca gctgtaaaag tatgtgcaat tatactgtta 2820
aaaaatctcc aacattggca gtcccctagc ttggaatctg tcgatatttt ctgtgtttat 2880
gttatgattt cttgcaaaca tattttagat tcttaaattt taatggcgtg gttgttctag 2940
cttaaatatg tttagaacaa gggatgtgac acctttactt tgtgcagaat aaaccttcat 3000
gctgatctct tgtgtatcaa gccttcaggc taggggtgta agtggctaac ccgcgaaacc 3060
cacttatagg ctaaaataag ccgcgaaccc gtttattttg acctataagt gggttcgcgg 3120
ctgacccact tacagcccta cttcaggcac atgaggatca atcatttcat agtgtgacta 3180
tttgtagtta tctgtatggc cgtaaataat ggcctctata ttgttctgta ttggagtatc 3240
tctctactat ttttttctct gaagaagagc attcttttac ctatttttgg ttttcataat 3300
tcaatgtgat gcataatttg attctgttct tttttagata aaggaggcta atttgattct 3360
gttcttgcaa ttgtggatgc actgcaggga atgcatgtgt cgctgagcca gcaggtgcag 3420
caggttgagg acacatatga gcagctctct ctggctctcg gggaggcagc aacaactgac 3480
cttttcagaa agtccgtgtt ctttttctca atcgggagcaacgacttcat ccactattac 3540
ctgcgcaatg tgtctggcgt ccagatgcgt tacctcccat gggagttcaa ccagcttctt 3600
gtcaatgcaa tgaggcagga aatcaaggtg tggttattgt tctccagttt attctctctg 3660
tgcaacattt cttgcctcct tatgattcca gttttagttt tttgatcagt gtgttgcata 3720
ttgcccaaag gctgtagtat cgtgcttagc agtggccaat gttgtgagta tgaatttgat 3780
ccgtaattta cggcccgtaa atattctgtg cttgaaaggt atctgctctc agttccacca 3840
cccagatgtg aatagttctt tgtactcctg gttaggaata tgtttgagaa aaggaggagt 3900
gtggacctct ggggactgca gatacatgaa ttatggaaaa ctagctatga acattaattt 3960
ttatgtttca agggctagaa aattttcaaa tgtttataga gaaacctgat atagtacact 4020
ttttctgtag gttaaagttt tcaaatggtg gatgagttta aaaccgtgta cagttttgga 4080
ctgaagcttc tttgagttac tgaaatcctc aggctgtaca gtttttctgt agttatgaat 4140
taggttaaaa ggataggagg gtatttcatc tgtacatttg taatatggga aagttaactg 4200
ataaatacat ggaattgatt aactcaatgg atatttatat cgttggctgt tagcagttct 4260
gtggtgttat gtactttaca ttctccgtct accgtacctt agtttcagat ttgaggtagt 4320
acgttgcaac gttgctcaac aaggacatac ttgtttttta tatgttcatt ttgaattctt 4380
aacattttga tcagataagg cggccccaaa tctgataggg actgatgtaa agtcgatact 4440
gaatattgtc ttggactgaa tactgtgttt gagtccctta gttcttggtc tgcgcatact 4500
tccagagtgg attgtacttt gtactgcctc ccatttggaa gtgcaagcta aatgcgtgtt 4560
acttttgctc aacttgtagg acaccatgca cactaccaat atgcccatga tcttaccatg 4620
atacaaacat aattctcaca tcatgcataa atgcataatg cacaatttga ttttctccct 4680
aatttatccc ctttcctttt ttgaacggat aattttaatt tgcaaaagaa ttggtaaaaa 4740
tggccccaaa tttctattca gtaaatcttt ggcagagcat gcgatgcaca ttgattgagg 4800
ctgcatgcgc catgagttta tttgtactgt ccaacatttg agagcagaaa tttctgttac 4860
cattgtactc atccaagttg acttgagatg ttgctttctt gtttcttaac cttagtaaat 4920
cagttacaat gatgcatttt tttattattt agccatatgc agttcttgtc agattagatt 4980
attaagctat ttatatctat atataagagt tctgtacttc ctgcagaatt tgtacaatat 5040
caatgttcgg aaggtcgtca tgatgggcct ccctcctgtt ggctgcgcac ctcactttct 5100
ctgggagtac ggcagtcaag acggggaatg catcgactac atcaataacg tcgtgattca 5160
gttcaactat gccctgagat acatgtctag tgaattcatc cgccagcacc caggctctat 5220
gatcagttac tgtgatactt ttgaggggtc tgtggacata ctgaagaatc gtgaccgcta 5280
cggtgagcag atgtatcatt gttactactg tcagattgcc tttctgtcct tagggaagaa 5340
ctcacattac gatggaatca cattgtgcag gttttctgac caccactgat gcctgctgtg 5400
ggctggggaa gtatgggggc ctgttcatgt gtgttcttcc acagatggcg tgcagcgacg 5460
cgtcgagcca tgtctggtgg gacgagttcc accccacgga tgctgtgaac cgaatcctgg 5520
ctgataatgt gtggtctggt gagcatacca agatgtgcta tcctgtggat ttgcagcaga 5580
tggtaaaact caagtagaac tga 5603
<210>4
<211>1200
<212>DNA
<213> Rice (Oryza sativa)
<220>
<223> mutant gene sequence of pollen germination hole development and pollen fertility gene OsAOM
<400>4
atggcgctcc ccttcctcct cctcctcgcc ttcgccctgc tcttcccgct ctccgctccc 60
ccgcgctgct gctccgcggc ccccgcctcc tcgccgcccc cgtccccgcc cccttcccct 120
gcggcggcgg cggcggcccc gcgccgcacg ccgctcgtcc cggcgctctt cgtgatcggc 180
gactccacgg cggacgtcgg caccaacaac tacctcggca cgctcgcccg cgccgaccgc 240
gagccgtacg gccgcgactt cgacacccgc cgccccacgg ggcgcttctc caacggccgc 300
atccccgtcg actacatcgc agagaagctg gggcttcctt ttgtgcctcc ataccttgaa 360
cagaacatgc gcatgggtgt cggcagtgtc gacctcagca acattgatgg gatgatacaa 420
ggtgtcaact atgcatccgc ggcagctggc attctctcca gcagtggttc tgagctggga 480
atgcatgtgt cgctgagcca gcaggtgcag caggttgagg acacatatga gcagctctct 540
ctggctctcg gggaggcagc aacaactgac cttttcagaa agtccgtgtt ctttttctca 600
atcgggagca acgacttcat ccactattac ctgcgcaatg tgtctggcgt ccagatgcgt 660
tacctcccat gggagttcaa ccagcttctt gtcaatgcaa tgaggcagga aatcaagaat 720
ttgtacaata tcaatgttcg gaaggtcgtc atgatgggcc tccctcctgt tggccgcgca 780
cctcactttc tctgggagta cggcagtcaa gacggggaat gcatcgacta catcaataac 840
gtcgtgattc agttcaacta tgccctgaga tacatgtcta gtgaattcat ccgccagcac 900
ccaggctcta tgatcagtta ctgtgatact tttgaggggt ctgtggacat actgaagaat 960
cgtgaccgct acggttttct gaccaccact gatgcctgct gtgggctggg gaagtatggg 1021
ggcctgttca tgtgtgttct tccacagatg gcgtgcagcg acgcgtcgag ccatgtctgg 1081
tgggacgagt tccaccccac ggatgctgtg aaccgaatcc tggctgataa tgtgtggtct 1141
ggtgagcata ccaagatgtg ctatcctgtg gatttgcagc agatggtaaa actcaagtag 1200
<210>5
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> R02001 upstream primer
<400>5
cgataggcaa ctaaaacatt 20
<210>6
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> R02001 downstream primer
<400>6
cttgtcctcc tgctctgta 19
<210>7
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> R02004 upstream primer
<400>7
gcaatttaac ccttattcct g 21
<210>8
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> R02004 downstream primer
<400>8
gggaagaaga aagccattag 20
<210>9
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> RM1106 upstream primer
<400>9
cggaaagtga atcggagaac 20
<210>10
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> RM1106 downstream primer
<400>10
gcaccacgct aagctaaacc 20
<210>11
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> R02013 upstream primer
<400>11
tgcctataat ctcaac 16
<210>12
<211>16
<212>DNA
<213> Artificial sequence
<220>
<223> R02013 downstream primer
<400>12
ttctacactg cctgtg 16
<210>13
<211>23
<212>DNA
<213> Artificial sequence
<220>
<223> RM13010 upstream primer
<400>13
cagtatggtc acaggaaaca acc 23
<210>14
<211>24
<212>DNA
<213> Artificial sequence
<220>
<223> RM13010 downstream primer
<400>14
ctttgtgatc ctctaatggt ctgc 24
<210>15
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> RM13013 upstream primer
<400>15
ccgttaggag cctttcact 19
<210>16
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> RM13013 downstream primer
<400>16
ctgagatgtt tatgcctttc c 21
<210>17
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> RM300 upstream primer
<400>17
gcttaaggac ttctgcgaac c 21
<210>18
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> RM300 downstream primer
<400>18
caacagcgat ccacatcatc 20
<210>19
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> RM8254 upstream primer
<400>19
aaagggaccc acttgtcagc 20
<210>20
<211>19
<212>DNA
<213> Artificial sequence
<220>
<223> RM8254 downstream primer
<400>20
gtcgaggatg gatcgatgg 19
<210>21
<211>31
<212>DNA
<213> Artificial sequence
<220>
<223> upstream primer of CF1
<400>21
accggtaccg ctctcgcacc aatcttgatc a 31
<210>22
<211>21
<212>DNA
<213> Artificial sequence
<220>
<223> CR1 downstream primer
<400>22
gccagcagca taaataaacc c 21
<210>23
<211>18
<212>DNA
<213> Artificial sequence
<220>
<223> upstream primer of CF2
<400>23
tgatgggatg atacaagg 18
<210>24
<211>33
<212>DNA
<213> Artificial sequence
<220>
<223> CR2 downstream primer
<400>24
cagcctgcag gtccatgcat agctagcctt cag 33
<210>25
<211>8441
<212>DNA
<213> Rice (Oryza sativa)
<220>
<223> OsAOM gene and expression regulatory region
<400>25
gctctcgcac caatcttgat caagacaaca tcatgaccgc atattatgga gagttgttga 60
aaactgatcg ccaggtgttt gagactcaac ttgaagaatt gcttcaaaag atggcttcgt 120
actaccgtaa gacgaggcaa ggcatcatca agcaacaaaa attcatgtta cccatccatg 180
caaaatcaaa ggtaacaacg attctagcag tgcctattct aacatatgaa gttgtgatgg 240
tgatgttatt tctagtttaa ataatcggtt tacttctttg aatactacct ttgagaaaac 300
ctttagtact accttggaaa gccctagatg atcacatgag tgagttagag aatcgactaa 360
atagccggtt ccttggtggt gcatgtattt catgcaacaa cgagcatatg catggtattc 420
cttcatattt tcatatacca aaattttctg tacaacaaga ttggccgatg aaaaataccc 480
acaattccct cgatacaata gatcctagat tcactcctac gatactgtat gctggtccga 540
ccgatgtgtt attgctggtc agaccggacg catcgatcgg accgacgggt gtaataccac 600
cagtccgact agaggcagca gccgatccga ttggagggac atcaccggtc agactacgct 660
cggcatgttt cgtagaatca gctcatgtct ggtgctcctc taaaagacat tgacatgtgg 720
ggtccacggg ctgactcaac aagattggat aaactgcctc ctaaaccgtt caaggagtca 780
atttgtaatg gttttgtgag ttggaggata ggttataggg atgcgattca accatgggca 840
tgagttgagg gaagcaaagt agacttaggg cctgttcact ttgatgaaaa aaaaaacctt 900
accaaatttt ggtaggcaac ttgccaaaat tttggcagga tttcttatat agttatcaaa 960
atttggcagc aaattaaata tagtcacttt tttggcaaat ttactaaaat ttggtaaggt 1020
tgaaaatgac atcaaagtaa acaggccctt attacccacg ggaatggtgt ggggtgggct 1080
ggtaatataa gcccagaaac caatccatcc agcccagcaa ctgcgaggtc ggctgctagt 1140
ctaacgtgca cccaagccat caccccacac gtgaaaaatc cccgctccac ccgcgccgcg 1200
ccgcgcccag gtagttcagc cgcgcgccaa cccaagctcg ctcgccggcc ggaaatggcg 1260
ctccccttcc tcctcctcct cgccttcgcc ctgctcttcc cgctctccgc tcccccgcgc 1320
tgctgctccg cggcccccgc ctcctcgccg cccccgtccc cgcccccttc ccctgcggcg 1380
gcggcggcgg ccccgcgccg cacgccgctc gtcccggcgc tcttcgtgat cggcgactcc 1440
acggcggacg tcggcaccaa caactacctc ggcacgctcg cccgcgccga ccgcgagccg 1500
tacggccgcg acttcgacac ccgccgcccc acggggcgct tctccaacgg ccgcatcccc 1560
gtcgactaca tcggtacgcg ccccccacct tctcgatcgg cggcgccatg gctgtggccc 1620
ctttgctctc tcgtgaatcc tccccccccc cgcttcaaag gttgcaggtg gttctggaat 1680
cgtcgatccg atgctgcttt gcctctcgta cgcctatgga tgcagcatgt tgtgggttta 1740
gtgtaatctg ggttttgggt ttctggtata cgaaggtttt gcttagttgt tggttcctat 1800
gaatttgggg catctgatct catacatcgg gggtatgtgg atttttgccc aacaattgct 1860
gaagctgaag agtaatcagt tcatagcact ctcctacaca gctgaccacc tggatctcac 1920
atacatagac tcctgcggct tcctctcctt gatctcacat agcaatgttg tgggtttagt 1980
gtaatctggg tatttgggtt tctcgcatgc gaggggcttg ctcagttgtt ggttcgtctg 2040
tgggtttctg ccgaacaatt gctgaagctg aagagtaacc agttttgcag cacaaccacc 2100
acagtctggg catcatttga tcctgctgtt cttagcactc ctgcagagct gaccacctgg 2160
atctcacgta tctatataga atcctgcggc ttcctctcca aatcagtatc cagtatccac 2220
caccgttatc agccgttgag gcaatgcatt ggcagaatgc cagaacatta agaagtgcca 2280
tcataatgta caccattagt ccatgcatcc agaaaacatt gccagaatcc tgcaatgtat 2340
ccatttgata gtcctgagtc ccgaccagtt gtctacatgc tccagtctct ttgccaccac 2400
acactgttaa atctctcttg tccaatgtcc accacattct ggacagtttc aaggtcctca 2460
caggaagcac agctgcacaa cctttgttaa tgttgcttta agaaagtcat atctactcat 2520
tagtttcttt gggagagtaa ggagggaaaa ggcataggaa agaaacattt aactagggct 2580
actggctcac tatgtgaaag atgtttccct tcaatttcat ttagctggtg ttctttatct 2640
cttttgcccg tctctgtcag tacttatgtt tttcatgaat caatagtatc ttgttctttc 2700
ttctgttttt aaattatttt ttccgtgatt tcttaatctt agactttttt gtgcatttgc 2760
agcagagaag ctggggcttc cttttgtgcc tccatacctt gaacagaaca tgcgcatggg 2820
tgtcggcagt gtcgacctca gcaacattga tgggatgata caaggtgtca actatgcatc 2880
cgcggcagct ggcattctct ccagcagtgg ttctgagctg gtttgtcctc ctaacttccc 2940
aacaactcta tttcacgctt ataatctagc aggaatgtct ttgtgagacc cttctctaga 3000
ggacgaatca gaaggagggt gtttcaacaa cagactagaa gcaatgactc ttctcatagt 3060
gtctacatcc tctctagtta ggaagaatac ttgctcaacc atttgaacta atgctgaaag 3120
attctcctgt tcggctgctc ccttccttcc atgtgttcca actagtgtgg attatcaggg 3180
catcaaattc ccttcttagt tcctaggaat tcatgactta tatatgcttc ctaccagatg 3240
tgagattgtc tacacgagac gattgatatg ctggtgctga tggggggttt atttatgctg 3300
ctggccttgt ccaagtttgc ttgtgaagct acagtgctat aagttgtatg gttgttttat 3360
tttcctgcac gcataaagca aaaggagata tatgtagcca tctactcaaa gctaatttat 3420
cataattttt ttattgtctg aaactaaaaa actgcatttg ttctatacta tggcttttgg 3480
gatgatcaag gagttagtaa gaatcactga tccggcacca atgtgatgaa attgatgtat 3540
atcatcctga acattccatt ttcatatcaa tctttattcc tgcttatgtt gttgaatctc 3600
caatctttgt gcccaaaaca acaaaaactt gtggagctgc aaatgctaat tttgtcattt 3660
caataaaaca tcatggtggt gtctaaagag gagaaatgtt tacgtatgaa cattgctgca 3720
aagttttcct ttatgtggct atatgtttta actttctata aaggattgga gcctcttggt 3780
tagagtcaag cttgttgatt tgcatacctt ttcattattc ttaaatgtac ttgaaactaa 3840
atcgacatga tcattaacta tataacacca gtctaaagaa caccaatcta aagaacacac 3900
ttaatgcttc tctatgaagg tttctctttt ggtatgtaat acttgctcat cggatgtatc 3960
cttttttgtt actattttgt ctcgtgaact atacatttga agattatttt gtggtggtat 4020
tctttactac tgcggcattc cagcagctgt aaaagtatgt gcaattatac tgttaaaaaa 4080
tctccaacat tggcagtccc ctagcttgga atctgtcgat attttctgtg tttatgttat 4140
gatttcttgc aaacatattt tagattctta aattttaatg gcgtggttgt tctagcttaa 4200
atatgtttag aacaagggat gtgacacctt tactttgtgc agaataaacc ttcatgctga 4260
tctcttgtgt atcaagcctt caggctaggg gtgtaagtgg ctaacccgcg aaacccactt 4320
ataggctaaa ataagccgcg aacccgttta ttttgaccta taagtgggtt cgcggctgac 4380
ccacttacag ccctacttca ggcacatgag gatcaatcat ttcatagtgt gactatttgt 4440
agttatctgt atggccgtaa ataatggcct ctatattgtt ctgtattgga gtatctctct 4500
actatttttt tctctgaaga agagcattct tttacctatt tttggttttc ataatttaat 4560
gtgatgcata atttgattct gttctttttt agataaagga ggctaatttg attctgttct 4620
tgcaattgtg gatgcactgc agggaatgca tgtgtcgctg agccagcagg tgcagcaggt 4680
tgaggacaca tatgagcagc tctctctggc tctcggggag gcagcaacaa ctgacctttt 4740
cagaaagtcc gtgttctttt tctcaatcgg gagcaacgac ttcatccact attacctgcg 4800
caatgtgtct ggcgtccaga tgcgttacct cccatgggag ttcaaccagc ttcttgtcaa 4860
tgcaatgagg caggaaatca aggtgtggtt attgttctcc agtttattct ctctgtgcaa 4920
catttcttgc ctccttatga ttccagtttt agttttttga tcagtgtgtt gcatattgcc 4980
caaaggctgt agtatcgtgc ttagcagtgg ccaatgttgt gagtatgaat ttgatccgta 5040
atttacggcc cgtaaatatt ctgtgcttga aaggtatctg ctctcagttc caccacccag 5100
atgtgaatag ttctttgtac tcctggttag gaatatgttt gagaaaagga ggagtgtgga 5160
cctctgggga ctgcagatac atgaattatg gaaaactagc tatgaacatt aatttttatg 5220
tttcaagggc tagaaaattt tcaaatgttt atagagaaac ctgatatagt acactttttc 5280
tgtaggttaa agttttcaaa tggtggatga gtttaaaacc gtgtacagtt ttggactgaa 5340
gcttctttga gttactgaaa tcctcaggct gtacagtttt tctgtagtta tgaattaggt 5400
taaaaggata ggagggtatt tcatctgtac atttgtaata tgggaaagtt aactgataaa 5460
tacatggaat tgattaactc aatggatatt tatatcgttg gctgttagca gttctgtggt 5520
gttatgtact ttacattctc cgtctaccgt accttagttt cagatttgag gtagtacgtt 5580
gcaacgttgc tcaacaagga catacttgtt ttttatatgt tcattttgaa ttcttaacat 5640
tttgatcaga taaggcggcc ccaaatctga tagggactga tgtaaagtcg atactgaata 5700
ttgtcttgga ctgaatactg tgtttgagtc ccttagttct tggtctgcgc atacttccag 5760
agtggattgt actttgtact gcctcccatt tggaagtgca agctaaatgc gtgttacttt 5820
tgctcaactt gtaggacacc atgcacacta ccaatatgcc catgatctta ccatgataca 5880
aacataattc tcacatcatg cataaatgca taatgcacaa tttgattttc tccctaattt 5940
atcccctttc cttttttgaa cggataattt taatttgcaa aagaattggt aaaaatggcc 6000
ccaaatttct attcagtaaa tctttggcag agcatgcgat gcacattgat tgaggctgca 6060
tgcgccatga gtttatttgt actgtccaac atttgagagc agaaatttct gttaccattg 6120
tactcatcca agttgacttg agatgttgct ttcttgtttc ttaaccttag taaatcagtt 6180
acaatgatgc atttttttat tatttagcca tatgcagttc ttgtcagattagattattaa 6240
gctatttata tctatatata agagttctgt acttcctgca gaatttgtac aatatcaatg 6300
ttcggaaggt cgtcatgatg ggcctccctc ctgttggctg cgcacctcac tttctctggg 6360
agtacggcag tcaagacggg gaatgcatcg actacatcaa taacgtcgtg attcagttca 6420
actatgccct gagatacatg tctagtgaat tcatccgcca gcacccaggc tctatgatca 6480
gttactgtga tacttttgag gggtctgtgg acatactgaa gaatcgtgac cgctacggtg 6540
agcagatgta tcattgttac tactgtcaga ttgcctttct gtccttaggg aagaactcac 6600
attacgatgg aatcacattg tgcaggtttt ctgaccacca ctgatgcctg ctgtgggctg 6660
gggaagtatg ggggcctgtt catgtgtgtt cttccacaga tggcgtgcag cgacgcgtcg 6720
agccatgtct ggtgggacga gttccacccc acggatgctg tgaaccgaat cctggctgat 6780
aatgtgtggt ctggtgagca taccaagatg tgctatcctg tggatttgca gcagatggta 6840
aaactcaagt agaactgaac caacccttaa actccattgt agttacttgc tcagcttttg 6900
tgattttctg accaaaaaat gaaaaactta acaaggcggc acggagaagt gtatatcttg 6960
agagctagta aaattttttc gtagatacag atttgtgtag aaataccatg ttcatatgtg 7020
ggcactgcac tgtaaaggat ctgtatggcc aaactgcatg aggtgcttgg taggtgaaca 7080
taaaacattg ctgagaactc acctggtgtg cttaactccc caattctcac atgttttgtt 7140
taacttctga tacggttata gatttatggt gaaatgttat tatgtgttgc agttttctgc 7200
ttttctggtg aatccatatg ggcaacatca aaggtatttc caagaacaca agttttatgg 7260
tactctggta ctagctatgt tctgttatca actgatttat cctcttatag atcaaaacac 7320
tgcttccact gcctcctact gcactaatca acaagcagta acatcttgtc ctgctttaca 7380
cggtcagttt acaaaataca gccttgccca taacagagag acaaattaca acctccatat 7440
caacatgccc cttaattaca atcaactcct cagctgacca ccttgtagct tgtttagatt 7500
ctgatttgca atcctatcct tccaagtgct gacagctgga gctctctctg ttgctgcaac 7560
tagagaaact ctgaattcca aagctctgta tctgaagtcc tgatgcttta gcaagctgag 7620
ctatctctct tcccatggtt tggccatact cataagagaa aaatataagg aagagcatgg 7680
agagtagctg agtagccatg gatgctacaa ctcttcatca tcaactccag agttgagaac 7740
aaaactgggg aatgccattg ttatgtccct gaacacgaaa atcgacaagg caatacatca 7800
gaatttcatt tatagttgaa agcaatgtaa aaggtaacta cggtgaagag aaacctgaaa 7860
aattgtagat ggtacttact tcaggtatgg gagggtcatg ttcttcagca aagcagggtt 7920
tttacttgcg aacgccttcc attcatccgg gtcgatcttc ccgtcgctgt ttaagtctgc 7980
ttgcttgaac gtctgtcaaa aagtagcata aattcaaact tcagttatat ggggaagaaa 8040
taaattgaga ctagtattac atcttcatgt gctttacctg atccacaatc tgctcaacag 8100
cgtcatcaga aaggagcaga tctgattcat tcagaatggc gagcaccatt tcgtacaact 8160
gcttgattca taagggaaaa aaaaagaggt ttcagtaact ttaggatttt ctctgtcaaa 8220
atgaaaatgc agtacaaata ttgttccgaa acaatacttt gtatctccag ttttccacgc 8280
tcagcctctg gatgttttag gatttaaaca agtctttaac agggttcaat acatatattc 8340
ttcaccattt atacaaccat tatttatgca tgttttcttt gatatcgcca agaaaactgg 8400
tgtaccatcg ccatcagtac tgaaggctag ctatgcatgg a 8441

Claims (3)

1. Rice pollen germination hole development and pollen fertility geneOsAOMThe mutant gene of (1), characterized in that: the nucleotide sequence of the mutant gene is shown as SEQ ID NO. 4.
2. The rice pollen germination hole development and pollen fertility gene of claim 1OsAOMThe mutant gene of (2) is applied to rice breeding.
3. Use according to claim 2, characterized in that: the rice pollen germination hole development and pollen fertility geneOsAOMThe mutant gene of (2) is applied to the preparation of a rice male sterile line.
CN201710211433.5A 2017-03-31 2017-03-31 Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof Expired - Fee Related CN106834316B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710211433.5A CN106834316B (en) 2017-03-31 2017-03-31 Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710211433.5A CN106834316B (en) 2017-03-31 2017-03-31 Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof

Publications (2)

Publication Number Publication Date
CN106834316A CN106834316A (en) 2017-06-13
CN106834316B true CN106834316B (en) 2020-06-09

Family

ID=59141330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710211433.5A Expired - Fee Related CN106834316B (en) 2017-03-31 2017-03-31 Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof

Country Status (1)

Country Link
CN (1) CN106834316B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511929B (en) * 2018-07-27 2021-03-02 海南波莲水稻基因科技有限公司 Promoter GMS1P specifically expressed in rice stem nodes and ears and application thereof
CN110511945B (en) * 2018-08-30 2021-07-27 海南波莲水稻基因科技有限公司 Rice fertility regulation gene, mutant and application thereof
CN111876431B (en) * 2020-07-28 2022-03-15 武汉大学 Rice OsSDY1 gene, biological material, method, expression vector transformation host and application thereof in stress resistance and stable yield
CN112239762B (en) * 2020-08-27 2022-12-16 云南大学 Plant pollen tube growth gene and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104946660A (en) * 2014-11-30 2015-09-30 北京首佳利华科技有限公司 DNA subsequence of maize pollen postmeiotic development control gene Ms30 and protein encoded by same
CN105695501A (en) * 2014-11-28 2016-06-22 上海师范大学 Method for creating photo-thermo-sensitive sterile line and application thereof in plant breeding
CN106011167A (en) * 2016-05-27 2016-10-12 上海交通大学 Application of male sterility gene OsDPW2 and rice sterility recovery method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263858A1 (en) * 2009-12-21 2012-10-18 Bakan Benedicte Isolated plant gdsl lipase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695501A (en) * 2014-11-28 2016-06-22 上海师范大学 Method for creating photo-thermo-sensitive sterile line and application thereof in plant breeding
CN104946660A (en) * 2014-11-30 2015-09-30 北京首佳利华科技有限公司 DNA subsequence of maize pollen postmeiotic development control gene Ms30 and protein encoded by same
CN106011167A (en) * 2016-05-27 2016-10-12 上海交通大学 Application of male sterility gene OsDPW2 and rice sterility recovery method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis";Xiangshu Dong et al .,;《Mol Genet Genomics》;20150930;第291卷;第531-542页 *
"Identification of a GDSL-motif carboxylester hydrolase from rice bran (Oryza sativa L.)";Shigeki Hamada et al.,;《Journal of Cereal Science》;20121231;第55卷;第100-105页 *
"PREDICTED: Oryza sativa Japonica Group GDSL esterase/lipase 7 (LOC9271527),transcript variant X1,mRNA,Accession No: XM_015767684.1";GenBank;《GenBank》;20160301;第1-2页 *
"植物GDSL脂酶家族基因的研究进展";李志兰等;《农业生物技术学报》;20141231;第22卷(第7期);第916-924页 *
GenBank."PREDICTED: Oryza sativa Japonica Group GDSL esterase/lipase 7 (LOC9271527),transcript variant X1,mRNA,Accession No: XM_015767684.1".《GenBank》.2016,第1-2页. *

Also Published As

Publication number Publication date
CN106834316A (en) 2017-06-13

Similar Documents

Publication Publication Date Title
CN110205327B (en) Rice temperature-sensitive genic male sterility gene tms3 mutant and molecular marker and application thereof
CN106834316B (en) Rice pollen germination hole development and pollen fertility gene OsAOM, mutant gene, recombinant expression vector and application thereof
CN101704881B (en) Plant male fertility-associated protein, coding gene and application thereof
CN111153974A (en) Corn disease-resistant gene and molecular marker and application thereof
CN109988231B (en) Application of rice gene OsGRF4 in improving cold resistance of plants
CN107667853A (en) The method for creating of the common line with genic sterile of rice and application
CN102559685B (en) Anther tapetum specific expression promoter POsABCG15, recombinant expression vector thereof and application thereof
CN114480419B (en) Plant temperature-sensitive sterile mutant tms15 and application thereof
CN109721649B (en) Rice plant type regulation related gene, protein and application
CN106834294B (en) Rice anther and seed efficient promoter POsAOM, recombinant expression vector and application thereof
CN110484555B (en) Construction method of transgenic rice with multi-seed cluster character
CN114230648B (en) Application of rice gene PANDA in improving plant yield
CN112143735B (en) Male sterile gene, protein, carrier, engineering bacterium of brassica napus and application thereof
CN113943356B (en) Protein phd11, coding gene thereof and application thereof in breeding of male sterile line of corn
CN107058351B (en) Mutant gene of rice nuclease gene OsGEN-L and application thereof
CN109912706B (en) Gene, protein and molecular marker related to rice weakness and premature senility and application
CN111304219B (en) GL1 gene separated from rice WZ1 and application thereof in increasing rice grain length
CN101186919B (en) Protein coded sequence for regulating and controlling temperature and light sensitive nuclear sterility
CN115369120A (en) Rice temperature-sensitive dual-purpose sterile line fertility transformation starting point temperature regulation gene and application thereof
CN112080481B (en) Spike-type related gene OsFRS5 and application and phenotype recovery method thereof
CN114644692B (en) Method for creating drought-sensitive corn germplasm by site-directed mutagenesis and application thereof
CN108315336B (en) Application of gene PIS1 for controlling development of rice spikelets
CN114480418B (en) Temperature-sensitive male sterile gene HSP60-3B, application thereof and fertility restoration method
CN111087455B (en) Rice fertility-related protein OsSMARCAL1 and coding gene and application thereof
CN113754747B (en) Rice male fertility regulation gene mutant, molecular marker and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200609

Termination date: 20210331

CF01 Termination of patent right due to non-payment of annual fee