CN106830083B - 金属相二硫化钼的制备方法 - Google Patents

金属相二硫化钼的制备方法 Download PDF

Info

Publication number
CN106830083B
CN106830083B CN201710050764.5A CN201710050764A CN106830083B CN 106830083 B CN106830083 B CN 106830083B CN 201710050764 A CN201710050764 A CN 201710050764A CN 106830083 B CN106830083 B CN 106830083B
Authority
CN
China
Prior art keywords
molybdenum disulfide
metal phase
mos
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710050764.5A
Other languages
English (en)
Other versions
CN106830083A (zh
Inventor
崔小强
魏淑婷
祁琨
徐延超
张海燕
张雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710050764.5A priority Critical patent/CN106830083B/zh
Publication of CN106830083A publication Critical patent/CN106830083A/zh
Application granted granted Critical
Publication of CN106830083B publication Critical patent/CN106830083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种金属相二硫化钼的制备方法,属于纳米材料领域。主要解决的问题是,采用了一种离子超声辅助的方法制备了金属相的二硫化钼。其步骤是通过水热法合成半导体相的二硫化钼,然后在铜盐溶液中进行超声处理,使半导体相的二硫化钼原子发生重排,原子面滑移,从而产生了金属相的二硫化钼。本发明的优点:该制备方法具有简单,安全,经济,高效,可大批量合成等优点。

Description

金属相二硫化钼的制备方法
技术领域
本发明涉及一种制备金属相二硫化钼方法,所制备的材料可用于电化学析氢领域,锂离子电池等领域。
背景技术
二维层状的二硫化钼是一种典型的过渡金属硫化物,因其具有特殊的类石墨烯结构以及独特的物理化学性质引起了研究者的广泛关注。目前研究的二硫化钼主要有半导体相、金属相和半金属相,半金属相的二硫化钼仅存在于块体二硫化钼中,半导体相二硫化钼是热力学稳定相,然而金属相是亚稳相,本质上不能稳定存在,但是,金属相的二硫化钼具有很多的活性位点以及良好的导电性,因此,在电催化制氢和超级电容器等领域,金属相的二硫化钼是一种非常有前景的材料。在过去的几十年中,利用Li离子插层的方法可以得到金属相和半导体相共存的二硫化钼,但是这种方法很危险并且耗时。因此,发明一种简单安全的方法得到金属相的二硫化钼对于催化领域是极其重要的。
发明内容
本发明的目的在于针对现有技术的不足,提供一种金属相二硫化钼的制备方法。
本发明的目的是通过以下技术方案实现的:一种金属相二硫化钼的制备方法,步骤如下:
(1)将钼酸铵和硫脲按照摩尔比1:14进行混合,然后置于去离子水中,搅拌均匀,形成均相溶液。其中,钼酸铵的浓度为1mmol/L;
(2)将溶液转移至不锈钢反应釜中,220℃反应18h,之后自然冷却到室温。
(3)将反应液离心分离,将沉淀清洗后,真空干燥,得到MoS2粉末。
(4)将真空干燥后的MoS2粉末分散到饱和的铜盐溶液中,MoS2的浓度为1.14mmol/L;超声处理24h;
(5)将上述溶液离心分离,将沉淀清洗后,真空干燥,得到金属相二硫化钼粉末。
本发明利用离子超声办法合成了金属相的二硫化钼。该方法具有简单,安全,经济,高效,可大批量合成等优点。
附图说明
图1为实施例1制备的金属相二硫化钼的扫面电子显微镜图(SEM)。
图2为实施例1制备的金属相二硫化钼的高分辨透射电子显微镜图(HRTEM)。
图3为实施例1制备的金属相二硫化钼的X射线光电子衍射(XPS)。
图4为实施例1制备的金属相二硫化钼的拉曼图。
图5为实施例1制备的样品在46天之后测试的拉曼图
图6为实施例2制备的金属相二硫化钼的拉曼图。
图7为实施例3制备的样品的拉曼图。
具体实施方式
实施例1
一种金属相二硫化钼的制备方法,步骤如下:
(1)将钼酸铵和硫脲按照摩尔比1:14进行混合,然后去离子水中,搅拌均匀,形成均相溶液。其中,钼酸铵的浓度为1mmol/L;
(2)将溶液转移至不锈钢反应釜中,220℃反应18h,之后自然冷却到室温。
(3)将反应液离心分离,将沉淀清洗后,真空干燥,得到MoS2粉末。
(4)将真空干燥后的MoS2粉末分散到饱和的铜盐溶液中,MoS2的浓度为1.14mmol/L;超声处理24h;
(5)将上述溶液离心分离,将沉淀清洗后,真空干燥,得到金属相二硫化钼粉末。
图1为制备的金属相二硫化钼的扫面电子显微镜图(SEM),从图中可以看出合成的产物为二维片状结构,横向尺寸为100-250nm。图2为制备的金属相二硫化钼的高分辨透射电子显微镜图(HRTEM),从图中可以看出所合成的二硫化钼纳米片由少层组成,其层间距为0.65nm,并且呈现了金属相二硫化钼的晶格。图3为本发明制备的金属相二硫化钼的X射线光电子衍射(XPS),a)和b)分别为S 2p和Mo 3d谱,从图a)中S 2p3/2和S 2p1/2的峰对应的结合能分别是161.55eV和162.75eV;Mo 3d5/2和Mo 3d3/2的峰对应的结合能分别为228.75eV和232eV,这是归于金属相二硫化钼。
图4为合成的金属相二硫化钼的拉曼图,从图中可以看出这是典型的金属相的二硫化钼的振动模式所产生的拉曼图。144cm-1归于金属相中二硫化钼的Mo-Mo之间的弹性振动模式,194,279and 335cm-1是声子振动模式,375cm-1归于二硫化钼的面内振动模式。
图5为这个样品在46天之后测试的拉曼图,与图4相比,基本没有变化。
实施例2
本实施例同实施例1,步骤4中的MoS2浓度为0.11mmol/L,产物的Raman如图6所示。从图中可以看出此浓度下制备的样品已经发生相变,形成金属相的二硫化钼。
实施例3
本实施例同实施例1,步骤4中的MoS2浓度为2.84mmol/L,产物的Raman如图7所示。从图中可以看出此浓度下制备的样品仍为半导体相。
通过以上实施例可以看出,当MoS2的浓度为2.84mmol/L,不能生成金属相的二硫化钼,原因为浓度太大,导致纳米颗粒之间分散不均匀,铜离子与MoS2接触受阻,由铜离子产生的应力作用变小,MoS2中S层滑移受阻,所以导致其没有产生相变;当MoS2浓度为0.11mmol/L,可以生成金属相的二硫化钼,因此当浓度低1.14mmol/L,均可导致金属相二硫化钼的产生。

Claims (1)

1.一种金属相二硫化钼的制备方法,其特征在于,步骤如下:
(1)将钼酸铵和硫脲按照摩尔比1:14进行混合,然后置于去离子水中,搅拌均匀,形成均相溶液;其中,钼酸铵的浓度为1mmol/L;
(2)将溶液转移至不锈钢反应釜中,220℃反应18h,之后自然冷却到室温;
(3)将反应液离心分离,将沉淀清洗后,真空干燥,得到MoS2粉末;
(4)将真空干燥后的MoS2粉末分散到饱和的铜盐溶液中,MoS2的浓度为1.14mmol/L;超声处理24h;
(5)将上述溶液离心分离,将沉淀清洗后,真空干燥,得到金属相二硫化钼粉末。
CN201710050764.5A 2017-01-23 2017-01-23 金属相二硫化钼的制备方法 Active CN106830083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710050764.5A CN106830083B (zh) 2017-01-23 2017-01-23 金属相二硫化钼的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710050764.5A CN106830083B (zh) 2017-01-23 2017-01-23 金属相二硫化钼的制备方法

Publications (2)

Publication Number Publication Date
CN106830083A CN106830083A (zh) 2017-06-13
CN106830083B true CN106830083B (zh) 2018-01-30

Family

ID=59119556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710050764.5A Active CN106830083B (zh) 2017-01-23 2017-01-23 金属相二硫化钼的制备方法

Country Status (1)

Country Link
CN (1) CN106830083B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108557888B (zh) * 2018-03-28 2021-02-26 陕西师范大学 一种金属相二硫化钼纳米结构及其制备方法
CN109742362B (zh) * 2019-01-08 2021-09-28 福建师范大学 一种锡掺杂诱导合成1t-2h混相少层二硫化钼-小球藻衍生碳复合材料的制备和应用
CN111468143A (zh) * 2020-04-24 2020-07-31 吉林大学 一种氧化亚铜/二硫化钼复合材料及其制备方法与应用
CN114392756B (zh) * 2022-01-26 2024-01-19 华中师范大学 一种压电催化材料的制备方法、产品及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523585A (zh) * 2016-02-26 2016-04-27 吉林大学 一种二维MoS2纳米片的制备方法
CN106241878A (zh) * 2016-08-22 2016-12-21 河南师范大学 一种1t相单层二硫化钼纳米片的制备方法
CN106311282A (zh) * 2016-08-09 2017-01-11 河南工程学院 一种多孔单层1T MoS2纳米片的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523585A (zh) * 2016-02-26 2016-04-27 吉林大学 一种二维MoS2纳米片的制备方法
CN106311282A (zh) * 2016-08-09 2017-01-11 河南工程学院 一种多孔单层1T MoS2纳米片的制备方法及其应用
CN106241878A (zh) * 2016-08-22 2016-12-21 河南师范大学 一种1t相单层二硫化钼纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metallic 1T phase MoS2 nanosheets as a highly efficient co-catalyst for the photocatalytic hydrogen evolution of CdS nanorods;Ping Du,et al.;《RSC Advances》;20161231;全文 *
Self-Templated Growth of Vertically Aligned 2H-1T MoS2 for Efficient Electrocatalytic Hydrogen Evolution;Jing Yang,et al.;《ACS Appl. Mater. Interfaces》;20161101;全文 *

Also Published As

Publication number Publication date
CN106830083A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106830083B (zh) 金属相二硫化钼的制备方法
Xiao et al. Recent advances in defect electrocatalysts: Preparation and characterization
Zhao et al. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction
Mousavi-Khoshdel et al. First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes
Shi et al. Alkali metal boosted atom rearrangement in amorphous carbon towards crystalline graphitic belt skeleton for high performance supercapacitors
Abaszade et al. Structural and electrical properties of sulfur-doped graphene oxide/graphite oxide composite
Van Trinh et al. Enhanced thermal conductivity of nanofluid-based ethylene glycol containing Cu nanoparticles decorated on a Gr–MWCNT hybrid material
Xu et al. CoMoO 4· 0.9 H 2 O nanorods grown on reduced graphene oxide as advanced electrochemical pseudocapacitor materials
Yuan et al. Graphene oxide-monohydrated manganese phosphate composites: preparation via modified Hummers method
Meng et al. Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors
Yu et al. Density functional study on the hole doping of single-layer SnS 2 with metal element X (X= Li, Mg, and Al)
Zhu et al. In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance
Xu et al. Electronic, optical, and magnetic properties of Fe-intercalated H 2 Ti 3 O 7 nanotubes: First-principles calculations and experiments
Yang et al. Compressible and flexible PPy@ MoS 2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure
Wang et al. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO 2 (B) nanotube heterojunction
Liu et al. Composites of olive-like manganese oxalate on graphene sheets for supercapacitor electrodes
Aftab et al. An advanced PdNPs@ MoS 2 nanocomposite for efficient oxygen evolution reaction in alkaline media
Hu et al. Dynamic structural transformation induced by defects in nano-rod FeOOH during electrochemical water splitting
Liu et al. Synthesis of hierarchical Bi 2 S 3 nanoflowers via a topotactic transformation from hierarchical Bi 2 WO 6 nanoflowers and their supercapacitor performance
Shao et al. Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature
Bai et al. Enhanced electromagnetic wave absorption properties of MoS 2-graphene hybrid nanosheets prepared by a hydrothermal method
Zhang et al. Self-assembled mesoporous Ni 0.85 Se spheres as high performance counter cells of dye-sensitized solar cells
Deng et al. Cellular-like sericin-derived carbon decorated reduced graphene oxide for tunable microwave absorption
Liu et al. Multi-dimensional CuO nanorods supported CoMoO 4 nanosheets heterostructure as binder free and high stable electrode for supercapacitor
Zhang et al. Structure-catalytic functionality of size-facet-performance in pentlandite nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant