CN106802425A - 一种估算天顶对流层延迟的积分方法 - Google Patents

一种估算天顶对流层延迟的积分方法 Download PDF

Info

Publication number
CN106802425A
CN106802425A CN201710047564.4A CN201710047564A CN106802425A CN 106802425 A CN106802425 A CN 106802425A CN 201710047564 A CN201710047564 A CN 201710047564A CN 106802425 A CN106802425 A CN 106802425A
Authority
CN
China
Prior art keywords
centerdot
tau
hydrostatic
humidity
zenith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710047564.4A
Other languages
English (en)
Other versions
CN106802425B (zh
Inventor
叶世榕
夏朋飞
陈德忠
王剑英
胡广保
谢蓝天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201710047564.4A priority Critical patent/CN106802425B/zh
Publication of CN106802425A publication Critical patent/CN106802425A/zh
Application granted granted Critical
Publication of CN106802425B publication Critical patent/CN106802425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提出一种估算对流层天顶延迟的积分方法,在计算天顶对流层静水延迟和天顶对流层湿度延迟时分别考虑了相邻两高度层上静水折射指数和大气压强的改变量以及湿度折射指数与大气压强的改变量,并分别将静水折射指数和湿度折射指数转为大气压强随高度变换的函数,然后对其进行积分后分别估算出天顶对流层静水延迟和天顶对流层湿度延迟。在空间分布上,当存在水汽压“逆增层”和大气温度“逆温”的情况下,新的积分模型能够更加精确的估算ZTD。

Description

一种估算天顶对流层延迟的积分方法
技术领域
本发明属于全球卫星导航系统气象学技术领域,特别涉及一种估算天顶对流层延迟的积分方法。
背景技术
全球卫星导航系统(后简称为GNSS)卫星信号经过对流层时,对流层对它产生传播速度延迟和传播路径弯曲延迟两部分影响。由此产生的路径延迟被称作对流层延迟。在GNSS数据处理的过程中,通常将信号传播路径的对流层延迟投影到天顶方向,并将其分为天顶对流层静水延迟和天顶对流层湿度延迟两部分。再已知大气静水折射指数Nd h和大气湿度折射指数Nw h后,通常采用线性离散化的方法估算出天顶静水延迟ZHD及天顶湿度延迟ZWD。事实上,大气静水折射指数Nd h和大气湿度折射指数Nw h在垂直方向上呈现指数形式的变换,故线性离散化估算ZHD和ZWD会进入较大的误差。
发明内容
针对上述问题,本发明提出一种新的估算对流层天顶延迟的积分方法,用于解决目前卫星定位系统气象学中,利用探空产品、无线掩星产品、ERA-Interim产品等采用线性离散化的积分模型估算天顶对流层延迟时存在误差较大的问题。
为解决上述技术问题,本发明采用如下技术方案:
一种估算对流层天顶延迟的积分方法,其特征在于包括如下步骤:
首先根据垂直与地平面的高度方向上,大气压强、大气水汽压和大气温度的空间分布信息,分别估算出不同高度层上的大气静水折射指数Nd h和大气湿度折射指数Nw h
然后分别得出大气静水折射指数与大气压强在空间分布中存在的关系、大气湿度折射指数与大气水汽压强在空间分布中存在的关系、以及大气压强与大气水汽压强在空间分布中存在的关系;
之后,在估算天顶对流层静水延迟时,考虑相邻两高度层上大气静水折射指数和大气压强的改变量,并将大气静水折射指数转化为大气压强随高度变换的函数;在估算天顶对流层湿度延迟时,在相邻两高度层上,考虑大气湿度折射指数、大气水汽压强、大气压强和大气水汽压强的改变量,并最终将大气湿度折射指数转换为大气压强随高度变换的函数;
最后,对两个函数分别进行积分后既可以估算出天顶对流层静水延迟和天顶对流层湿度延迟。
进一步的,在垂直与地平面的高度方向上,大气静水折射指数Nd h与大气压强的关系、大气湿度折射指数Nw h与水汽压的关系、以及水汽压强和大气压强的关系表示如下:
其中,Nd h表示大气静水折射指数;Nw h表示大气湿度折射指数;τd为静水延迟混合比指数;τw为湿度延迟混合比指数;e代表为水汽压强;P为大气压强;e0和P0表示地表处的水汽压强和大气压强;γ定义为大气混合比指数;
大气压强随高度的分布通常用指数形式表示:
Pi=P0exp(H·hi) (4)
其中,H为大气层等效高度,且h为高度坐标。
进一步的,选取地表向上不同高度层hi(i=0,1,2,3,…,n)的高度区间[h1,h2],对大气静水折射指数Nd h和大气湿度折射指数Nw h分别积分,估算天顶静水延迟ZHD及天顶湿度延迟ZWD:
由公式(4)可知,在区间[h1,h2]中:
P=P1exp(H1,2·(h-h1)) (6)
再根据公式(6),公式(5)可以变换为:
其中,
之后,在全部的高度层上,通过累积相加所有高度层估算的ZHD来求取
整个大气层的天顶对流层静水延迟ZHD为:
其中,
同理,
根据公式(9),天顶对流层湿度延迟可以表示为:
其中,
最后,得到天顶对流层延迟ZTD为:
本发明针对水汽压存在“逆增层”时、或者温度存在“逆温”的情况下,采用无线探空产品、无线掩星产品或ERA-Interim产品等通过线性的离散化估算天顶对流层延迟会引入较大的误差的问题,提出顾及大气折射指数与大气压强在空间分布上呈现近似指数变换的形式,并对原有估算方法进行重组,在计算天顶对流层静水延迟和天顶对流层湿度延迟时分别考虑了相邻两高度层上静水折射指数和大气压强的改变量以及湿度折射指数与大气压强的改变量,并分别将静水折射指数和湿度折射指数转为大气压强随高度变换的函数,然后对其进行积分后分别估算出天顶对流层静水延迟和天顶对流层湿度延迟。相对于现有的误差估算方式,本发明只需要引入相邻两高度层上静水折射指数和大气压强的改变量以及湿度折射指数与大气压强的改变量,就使得最后的结果更加客观科学,参数易于获取、整个估算方法更加简单便捷。在空间分布上,存在水汽压“逆增层”现象或者温度存在“逆温”的情况下,新的积分估算方法能够提高估算对流层延迟的精度。
附图说明
图1为本发明实施例的流程图。
具体实施方式
以下结合附图和实施例详细说明本发明技术方案。
首先根据无线探空产品、无线掩星产品和ERA-Interim产品提供的高垂直分辨率的大气压强、大气水汽压和大气温度的空间分布信息,分别估算出不同高度层上的静水折射指数和湿度折射指数。并分别得出静水折射指数与大气压强、湿度折射指数与大气水汽压以及大气压强与大气水汽压在空间分布中存在的关系。在估算天顶对流层静水延迟时,顾及了相邻两高度层上静水折射指数和大气压强的改变量,并将静水折射指数转化为大气压强随高度变换的函数。在估算天顶对流层湿度延迟时,在相邻两高度层上,顾及了湿度折射指数与大气水汽压、大气压强和大气水汽压的改变量,并最终将湿度折射指数转换为大气压强随高度变换的函数。
在已知大气静水折射指数Nd h和大气湿度折射指数Nw h后,估算天顶静水延迟ZHD及天顶湿度延迟ZWD的函数模型如公式(1.1)和(2.1)所示:
由公式(1.1)和(2.1)可以看出ZHD和ZWD都是一个积分量,分别与不同高度上的静水折射率Nd h和湿度折射率Nh w相关。实际计算中,可采用高垂直分辨率的探空资料、无线掩星观测资料、ERA-Interim产品等。这些产品提供了从地表向上不同高度层hi(i=0,1,2,3,…,n)的温度Ti与水汽压ei。根据这些气象产品可以事先估算出每个高度层上的静水折射指数和湿度折射指数,然后再分别对公式(1.1)和公式(2.1)中的积分进行线性离散化可以得到:
通常情况下,Nd h和Nw h随高度呈现出近似指数的形式变化,故采用线性的模型对公式(1.1)进行积分会存在较大的误差。为了减弱线性离散化对估算ZHD和ZWD的影响,我们分别对公式(1.1)和(2.1)进行了重新处理。根据无线探空、无线掩星等高垂直分辨率、高精度的气象观测值进行研究发现:Nd h与P,Nw h与e之间的关系可近似表示为:
在垂直方向上,大气水汽压和大气压强之间的关系可以近似的表示为:
其中,e0和P0表示地球表面处的水汽压强和大气压强;γ定义为大气混合比指数,P表示大气压强,e表示水汽压强。
大气压强随高度的分布通常可以用指数形式表示:
Pi=P0exp(H·hi) (4)
P0为地球表面的大气压强;H为大气层等效高度,且h为高度坐标。
根据公式(1),在区间[h1,h2]中,Nd h的积分可以表示为:
再利用公式(3)给出的压强随高度变换的关系式,区间[h1,h2]中,任意高度处的压强可以表示为:
P=P1exp(H1,2·(h-h1)) (6)
再根据公式(6),公式(5)可以变换为:
其中,
公式(10)仅仅给出了其中一个高度层内ZHD的离散化方法。在全部的高度层上,可以通过累积相加所有高度层估算的ZHD来求取整个大气层的ZHD:
其中,
利用公式(8)的模型离散化公式(1.1)来估算ZHD,考虑了不同高度处大气静水折射指数Nd h与大气压强P之间的近似指数变换的关系。并将静水折射指数转化为大气压强随高度变换的函数,然后对其进行积分。
同理,联合公式(2)、(6)和(3),在区间[h1,h2]中,Nw h的积分可以表示为:
其中,
公式(13)仅给出了某一个高度层内估算ZWD的积分算法。在整个大气层内,将所有单个高度层内利用公式(13)估算出来,然后求和即可获得整个大气层的ZWD。
其中,
联合公式(8)和公式(10),估算天顶对流层延迟ZTD如下式如示:
公式(11)提供的积分方法估算ZTD时,顾及了单个高度层内,静水折射指数与大气压强之间的关系及湿度折射指数与大气压强之间的关系,并分别将静水折射指数和湿度折射指数转换为大气压强随高度变化的函数。在空间分布上,当存在水汽压强“逆增层”现象和大气温度存在“逆温”的情况下,新的积分方法可以提高估算ZTD的精度。
以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变换或变型,因此所有等同的技术方案,都落入本发明的保护范围。

Claims (3)

1.一种估算对流层天顶延迟的积分方法,其特征在于包括如下步骤:
首先根据垂直与地平面的高度方向上,大气压强、大气水汽压和大气温度的空间分布信息,分别估算出不同高度层上的大气静水折射指数Nd h和大气湿度折射指数Nw h
然后分别得出大气静水折射指数与大气压强在空间分布中存在的关系、大气湿度折射指数与大气水汽压强在空间分布中存在的关系、以及大气压强与大气水汽压强在空间分布中存在的关系;
之后,在估算天顶对流层静水延迟时,考虑相邻两高度层上大气静水折射指数和大气压强的改变量,并将大气静水折射指数转化为大气压强随高度变换的函数;在估算天顶对流层湿度延迟时,在相邻两高度层上,考虑大气湿度折射指数、大气水汽压强、大气压强和大气水汽压强的改变量,并最终将大气湿度折射指数转换为大气压强随高度变换的函数;
最后,对两个函数分别进行积分后既可以估算出天顶对流层静水延迟和天顶对流层湿度延迟。
2.根据权利要求1所述的估算对流层天顶延迟的积分方法,其特征在于在垂直与地平面的高度方向上,大气静水折射指数Nd h与大气压强的关系、大气湿度折射指数Nw h与水汽压的关系、以及水汽压强和大气压强的关系表示如下:
( N h i d N h i + 1 d ) = ( P i P i + 1 ) τ i , i + 1 d - - - ( 1 )
( N h i W N h i + 1 W ) = ( e i e i + 1 ) τ i , i + 1 W - - - ( 2 )
( e e 0 ) = ( P P 0 ) γ - - - ( 3 )
其中,Nd h表示大气静水折射指数;Nw h表示大气湿度折射指数;τd为静水延迟混合比指数;τw为湿度延迟混合比指数;e代表为水汽压强;P为大气压强;e0和P0表示地表处的水汽压强和大气压强;γ定义为大气混合比指数;
大气压强随高度的分布表示为:
Pi=P0exp(H·hi) (4)
其中,H为大气层等效高度,且h为高度坐标。
3.根据权利要求1所述的估算对流层天顶延迟的积分方法,其特征在于选取地表向上不同高度层hi(i=0,1,2,3,…,n)的高度区间[h1,h2],对大气静水折射指数Nd h和大气湿度折射指数Nw h分别积分,估算天顶静水延迟ZHD及天顶湿度延迟ZWD:
∫ h 1 h 2 N h d d h = N h 2 d P 2 τ 1 , 2 d ∫ h 1 h 2 P τ 1 , 2 d d h - - - ( 5 )
由公式(4)得到公式(6)P=P1exp(H1,2·(h-h1))代入公式(5)后:
∫ h 1 h 2 N h d d h = N h 2 d P 2 τ 1 , 2 d ∫ h 1 h 2 [ P 1 exp ( H 1 , 2 · ( h - h 1 ) ) ] τ 1 , 2 d d h = N h 1 d H 1 , 2 · τ 1 , 2 d [ exp H 1 , 2 · τ 1 , 2 d ( h 2 - h 1 ) - 1 ] - - - ( 7 )
其中,
之后,在全部的高度层上,通过累积相加所有高度层估算的ZHD来求取整个大气层的天顶对流层静水延迟ZHD为:
Z H D = 10 - 6 ∫ h ∞ N h d d h = 10 - 6 · Σ i = 0 i = n - 1 N h i d H i , i + 1 · τ i , i + 1 d [ exp H i , i + 1 · τ i , i + 1 d ( h i + 1 - h i ) - 1 ] - - - ( 8 )
其中,
同理,
∫ h 1 h 2 N h W d h = N h 2 W P 2 γ 1 , 2 · τ 1 , 2 W · ( e h 1 e h 2 ) τ 1 , 2 W ∫ h 1 h 2 [ P 1 exp ( H 1 , 2 · ( h - h 1 ) ) ] γ 1 , 2 · τ 1 , 2 W d h = N h 1 W H 1 , 2 · γ 1 , 2 · τ 1 , 2 W [ exp H 1 , 2 · γ 1 , 2 · τ 1 , 2 W ( h 2 - h 1 ) - 1 ] - - - ( 9 )
根据公式(9),天顶对流层湿度延迟可以表示为:
Z W D = 10 - 6 ∫ h ∞ N h W d h = 10 - 6 · Σ i = 0 i = n - 1 N h i W H i , i + 1 · γ i , i + 1 · τ i , i + 1 W [ exp H i , i + 1 · γ i , i + 1 · τ i , i + 1 W ( h i + 1 - h i ) - 1 ] - - - ( 10 )
其中,
最后,得到天顶对流层延迟ZTD为:
Z T D = Z H D + Z W D = 10 - 6 · Σ i = 0 i = n - 1 N h i d H i , i + 1 · τ i , i + 1 d [ exp H i , i + 1 · τ i , i + 1 d ( h i + 1 - h i ) - 1 ] + 10 - 6 · Σ i = 0 i = n - 1 N h i W H i , i + 1 · γ i , i + 1 · τ i , i + 1 W [ exp H i , i + 1 · γ i , i + 1 · τ i , i + 1 W ( h i + 1 - h i ) - 1 ] - - - ( 11 ) .
CN201710047564.4A 2017-01-22 2017-01-22 一种估算天顶对流层延迟的积分方法 Active CN106802425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710047564.4A CN106802425B (zh) 2017-01-22 2017-01-22 一种估算天顶对流层延迟的积分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710047564.4A CN106802425B (zh) 2017-01-22 2017-01-22 一种估算天顶对流层延迟的积分方法

Publications (2)

Publication Number Publication Date
CN106802425A true CN106802425A (zh) 2017-06-06
CN106802425B CN106802425B (zh) 2019-07-23

Family

ID=58987069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710047564.4A Active CN106802425B (zh) 2017-01-22 2017-01-22 一种估算天顶对流层延迟的积分方法

Country Status (1)

Country Link
CN (1) CN106802425B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008416A (zh) * 2017-12-04 2018-05-08 武汉大学 一种估算斜路经对流层延迟的积分方法
CN108920414A (zh) * 2018-05-18 2018-11-30 中国人民解放军61540部队 一种利用气象资料计算局部天顶对流层湿延迟的新方法
CN111538943A (zh) * 2020-04-24 2020-08-14 桂林理工大学 新的高时空分辨率全球ztd垂直剖面格网模型构建方法
CN111679346A (zh) * 2019-12-27 2020-09-18 广东电网有限责任公司电力科学研究院 一种大气层可降水量预估方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731786A (en) * 1994-12-29 1998-03-24 Trimble Navigation Limited Compaction of SATPS information for subsequent signal processing
CN103558609A (zh) * 2013-11-08 2014-02-05 中国科学院测量与地球物理研究所 全球卫星导航系统对流层天顶延迟修正的方法
CN104965207A (zh) * 2015-05-19 2015-10-07 同济大学 一种区域对流层天顶延迟的获取方法
CN105116468A (zh) * 2015-06-24 2015-12-02 中国人民解放军63655部队 一种边界层大气湍流强度高度分布的检测方法
EP2995972A1 (en) * 2014-09-15 2016-03-16 Fugro N.V. Integer ambiguity-fixed precise point positioning method and system
CN105676239A (zh) * 2014-11-19 2016-06-15 香港理工大学 一种gnss大气折射延迟估值方法和系统
CN105785407A (zh) * 2016-02-23 2016-07-20 东南大学 一种适用于中国地区的无气象参数对流层延迟改正方法
CN106324620A (zh) * 2016-08-02 2017-01-11 中国人民解放军空军工程大学 一种不依赖地表气象数据实时测量的对流层天顶延迟方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731786A (en) * 1994-12-29 1998-03-24 Trimble Navigation Limited Compaction of SATPS information for subsequent signal processing
CN103558609A (zh) * 2013-11-08 2014-02-05 中国科学院测量与地球物理研究所 全球卫星导航系统对流层天顶延迟修正的方法
EP2995972A1 (en) * 2014-09-15 2016-03-16 Fugro N.V. Integer ambiguity-fixed precise point positioning method and system
CN105676239A (zh) * 2014-11-19 2016-06-15 香港理工大学 一种gnss大气折射延迟估值方法和系统
CN104965207A (zh) * 2015-05-19 2015-10-07 同济大学 一种区域对流层天顶延迟的获取方法
CN105116468A (zh) * 2015-06-24 2015-12-02 中国人民解放军63655部队 一种边界层大气湍流强度高度分布的检测方法
CN105785407A (zh) * 2016-02-23 2016-07-20 东南大学 一种适用于中国地区的无气象参数对流层延迟改正方法
CN106324620A (zh) * 2016-08-02 2017-01-11 中国人民解放军空军工程大学 一种不依赖地表气象数据实时测量的对流层天顶延迟方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008416A (zh) * 2017-12-04 2018-05-08 武汉大学 一种估算斜路经对流层延迟的积分方法
CN108920414A (zh) * 2018-05-18 2018-11-30 中国人民解放军61540部队 一种利用气象资料计算局部天顶对流层湿延迟的新方法
CN108920414B (zh) * 2018-05-18 2022-03-29 中国人民解放军61540部队 一种利用气象资料计算局部天顶对流层湿延迟的新方法
CN111679346A (zh) * 2019-12-27 2020-09-18 广东电网有限责任公司电力科学研究院 一种大气层可降水量预估方法及装置
CN111538943A (zh) * 2020-04-24 2020-08-14 桂林理工大学 新的高时空分辨率全球ztd垂直剖面格网模型构建方法

Also Published As

Publication number Publication date
CN106802425B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN106802425B (zh) 一种估算天顶对流层延迟的积分方法
CN106814373B (zh) 大气加权平均温度估算及对流层延迟积分方法
Hamilton et al. Integrating lidar, GIS and hedonic price modeling to measure amenity values in urban beach residential property markets
CN109543353A (zh) 三维水汽反演方法、装置、设备和计算机可读存储介质
CN106021868B (zh) 一种基于多规则算法的遥感数据降尺度方法
Lindsay et al. Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness
CN101634711B (zh) 从modis数据估算近地表空气温度方法
Druilhet et al. Experimental studies of the turbulence structure parameters of the convective boundary layer
Maleki et al. Effect of the accuracy of topographic data on improving digital soil mapping predictions with limited soil data: An application to the Iranian loess plateau
CN104507053A (zh) 差分气压测高辅助 wlan 指纹定位中的楼层判别方法
CN108474867A (zh) 高分辨率降水量资料复原系统及其方法
CN105841847B (zh) 一种估算地表潜热通量的方法
CN105116468A (zh) 一种边界层大气湍流强度高度分布的检测方法
Stephens et al. Assessing the reliability of probabilistic flood inundation model predictions
CN108008416A (zh) 一种估算斜路经对流层延迟的积分方法
CN107292039A (zh) 一种基于小波聚类的uuv巡岸轮廓构建方法
CN105956327A (zh) 地面灌溉地表水流运动过程模拟方法
Dachauer et al. Aerodynamic roughness length of crevassed tidewater glaciers from UAV mapping
Abd Aziz et al. Utilizing repeated GPS surveys from field operations for development of agricultural field DEMs
CN107526910A (zh) 一种核设施事故场外后果评价中的风场诊断方法
Mali et al. Experimental and numerical study of flood in a river-network-floodplain set-up
Lippl et al. Spatial and temporal variability of glacier surface velocities and outlet areas on James Ross Island, Northern Antarctic Peninsula
CN112733906A (zh) 一种全球高分辨率每日地表动量粗糙度长度估算方法
KR102317179B1 (ko) 도시기상예측 모델의 입력 데이터 생성 방법 및 시스템
Knutson et al. Lagrangian Coherent Structure Analysis of Terminal Winds: Three‐Dimensionality, Intramodel Variations, and Flight Analyses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant