CN106801217B - 一种超导强场磁控溅射阴极的绝缘绝热和密封结构 - Google Patents
一种超导强场磁控溅射阴极的绝缘绝热和密封结构 Download PDFInfo
- Publication number
- CN106801217B CN106801217B CN201710073591.9A CN201710073591A CN106801217B CN 106801217 B CN106801217 B CN 106801217B CN 201710073591 A CN201710073591 A CN 201710073591A CN 106801217 B CN106801217 B CN 106801217B
- Authority
- CN
- China
- Prior art keywords
- washer
- dewar
- yoke
- tetrafluoro
- pedestal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004544 sputter deposition Methods 0.000 title claims abstract description 33
- 238000009413 insulation Methods 0.000 title claims abstract description 30
- 238000007789 sealing Methods 0.000 title claims abstract description 25
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 30
- 239000010935 stainless steel Substances 0.000 claims abstract description 30
- 239000011152 fibreglass Substances 0.000 claims abstract description 13
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 12
- 239000011521 glass Substances 0.000 claims abstract description 12
- 239000010959 steel Substances 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 4
- 239000006261 foam material Substances 0.000 claims abstract description 4
- 239000003365 glass fiber Substances 0.000 claims abstract description 4
- 239000011229 interlayer Substances 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 230000002964 excitative effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
一种超导强场磁控溅射阴极的绝缘绝热和密封结构,包括超导线圈(1)、磁轭、玻璃钢垫片(5、6)、杜瓦、玻璃钢套管(10)、大四氟垫圈(11)、不锈钢垫圈(12)、小四氟垫圈(13)及阴极托架(14);超导线圈(1)与杜瓦端盖(7)和底磁轭(4)之间用玻璃钢垫片(5、6)支撑和绝缘,杜瓦底座(8)采用真空夹层结构或填充发泡材料以降低热损耗;杜瓦底座(8)和不锈钢垫圈(12)之间采用大四氟垫圈(11)配合密封圈密封和绝缘,大四氟垫圈(11)、不锈钢垫圈(12)、小四氟垫圈(13)和杜瓦底座(8)之间采用玻璃钢螺栓或带玻璃钢绝缘套管的金属螺栓紧固;不锈钢垫圈(12)和阴极托架(14)之间采用密封圈密封并用普通金属螺栓紧固。
Description
技术领域
本发明涉及一种磁控溅射阴极,特别涉及一种超导强场磁控溅射阴极的绝缘绝热和密封结构。
背景技术
磁控溅射广泛应用于材料镀膜领域,为了探索最优镀膜工艺,在过去30年里,开发了各种各样的磁控溅射装置。强磁场磁控溅射装置在高质量透明导电薄膜和亚微米级集成电路的制造工艺中相比常规磁控溅射装置具有明显的优势。
Ishibashi于1990年首先研究了永磁强磁场磁控溅射装置,该装置可以在较低的阴极电压下放电,从而得到低电阻率氧化铟锡(ITO)薄膜。强磁场下薄膜电阻率降低的原因被认为是强磁场可以抑制负离子对沉积薄膜的高能轰击。2003年,日本名古屋大学的Mizutani首先提出了利用超导块材激磁的强磁场磁控溅射装置,在低气压、高电压和长靶基板间距的情况下,实现了磁控放电。2004年,Hazama用超导块激磁的磁控溅射设备研究了200nm级别的Cu薄膜制备工艺,发现在低的气压、长的靶基间距等离子体热辐射对基片的影响很小,有利于制备高质量的薄膜。2007年,Yamaguchi用超导块激的磁控溅射装置制备了反射率达70%的光学镜片。2008年,Ikuta采用超导磁控溅射装置在无基板加热的情况下制备了Ga掺杂ZnO透明电极薄膜,薄膜电阻率为4.7×10-4Ωcm,接近了可实际应用的电阻率水平。2009年,中国专利200910093159.1公开了一种基于圆形及跑道形超导线圈激磁的强磁场平面磁控溅射装置,2014年,中国专利201410766299.1公开了超导强磁场磁控溅射阴极的低温冷却系统。上述专利提出了超导强场磁控溅射阴极的总体设计和低温冷却系统,尽管如此,由于超导磁控溅射阴极的特殊性,其低温绝缘、绝热和低温下的密封问题,相对常规永磁和电磁式的磁控溅射阴极更为复杂。由于低温杜瓦直接连接阴极电源,其电压通常为负几百到负上千伏,但阴极托架需要接地,其电压为零,超导磁体需要接磁体电源,其电压为0-10V,超导磁体、电流引线与低温杜瓦之间需要进行低温电气绝缘和密封,同时低温杜瓦与阴极托架之间也需进行低温绝缘和密封,同时实现低温绝缘和低温密封是一个非常复杂的问题。另外,由于低温杜瓦温度很低,而阴极托架安装在真空腔上,其温度为室温,为了减小漏热损耗,也需要解决低温杜瓦和阴极托架的绝热问题。
发明内容
本发明的目的是解决超导强场磁控溅射阴极的超导磁体、低温杜瓦和阴极托架之间的绝缘、绝热和密封问题,提出了一种超导磁控溅射阴极的绝缘、绝热和密封结构。本发明可以用于圆形平面和矩形平面的超导强磁场磁控溅射装置。
本发明采用的技术方案如下:
一种超导强场磁控溅射阴极的绝缘绝热和密封结构,由超导线圈、内磁轭、外磁轭、底磁轭、玻璃钢垫片、杜瓦端盖、杜瓦底座、通电导体、玻璃钢套管、大四氟垫圈、不锈钢垫圈、小四氟垫圈、阴极托架构成。外磁轭位于内磁轭的外部,底磁轭位于内外磁轭的底部,超导线圈安装在内磁轭、外磁轭和底磁轭之间;杜瓦底座位于杜瓦端盖的下方,超导线圈、内磁轭、外磁轭和底磁轭安装在杜瓦端盖和杜瓦底座包围的空间中;大四氟垫圈位于杜瓦底座的下方,不锈钢垫圈位于大四氟垫圈的下方,小四氟垫圈安装在不锈钢垫圈的下方,阴极托架安装在不锈钢垫圈的下方、小四氟垫圈的外部,用于支撑磁控溅射阴极。
由于杜瓦端盖为负的高电位,超导线圈为低电位,因此超导线圈与杜瓦端盖之间、以及超导线圈和底磁轭之间分别采用玻璃钢垫片支撑和绝缘,通电导体由杜瓦底座引出,玻璃钢套管套装在通电导体外部,通电导体与杜瓦底座之间采用玻璃钢套管进行绝缘。杜瓦底座采用真空夹层结构或填充发泡材料的结构以降低热损耗,以便于采用常温密封结构进行真空密封。由于杜瓦底座为负的高电位,不锈钢垫圈为零电位,将大四氟垫圈安装于杜瓦底座和不锈钢垫圈之间,大四氟垫圈上下两面开有密封槽,配合密封圈进行密封和绝缘,大四氟垫圈、不锈钢垫圈、小四氟垫圈层层叠放,并开有螺孔,大四氟垫圈、不锈钢垫圈、小四氟垫圈和杜瓦底座之间采用玻璃钢螺栓或带玻璃钢绝缘套管的金属螺栓进行紧固。由于不锈钢垫圈与阴极托架同电位,不锈钢垫圈和阴极托架之间采用密封圈进行密封和普通金属螺栓紧固。
本发明设计的超导强场磁控溅射阴极的绝缘绝热和密封结构,可以有效解决超导磁体、低温杜瓦和阴极托架之间的低温绝缘、绝热和低温下的密封问题,为解决超导强场磁控溅射阴极与真空腔体的装配提供了关键技术支撑。
附图说明
图1为超导强场磁控溅射阴极的示意图;
图2为超导强场磁控溅射阴极与阴极托架之间的连接结构示意图。
具体实施方式
以下结合附图和具体实施方式,对本发明作进一步说明。
图1为本发明超导强场磁控溅射阴极示意图。如图1所示,超导强场磁控溅射阴极由超导线圈1、内磁轭2、外磁轭3、底磁轭4、第一玻璃钢垫片5,第二玻璃钢垫片6、杜瓦端盖7、杜瓦底座8、通电导体9、玻璃钢套管10、大四氟垫圈11、不锈钢垫圈12、小四氟垫圈13和阴极托架14构成。外磁轭3位于内磁轭2的外部,底磁轭4位于内磁轭2和外磁轭3的底部,超导线圈1安装在内磁轭2、外磁轭3和底磁轭4之间;所述的超导线圈1、内磁轭2、外磁轭3和底磁轭4安装在杜瓦端盖7和杜瓦底座8包围的空间中。
图2为超导强场磁控溅射阴极与阴极托架之间的连接结构示意图。如图2所示,大四氟垫圈11位于杜瓦底座8的下方,不锈钢垫圈12位于大四氟垫圈11的下方,小四氟垫圈13安装在不锈钢垫圈12的下方,阴极托架14安装在不锈钢垫圈12的下方、小四氟垫圈13的外部,用于支撑磁控溅射阴极。
由于杜瓦端盖7为负的高电位,超导线圈1为低电位,因此超导线圈1与杜瓦端盖7之间采用第一玻璃钢垫片5支撑和绝缘,超导线圈1和底磁轭4之间采用第二玻璃钢垫片6支撑和绝缘。通电导体9由杜瓦底座8引出,玻璃钢套管10套装在通电导体9的外部,通电导体9与杜瓦底座8之间采用玻璃钢套管10进行绝缘。杜瓦底座8采用真空夹层结构或填充发泡材料的结构以降低热损耗,以便采用常温密封结构进行真空密封。由于杜瓦底座8为负的高电位,不锈钢垫圈12为零电位,将大四氟垫圈11安装在杜瓦底座8和不锈钢垫圈12之间,大四氟垫圈11上下两面开有密封槽,配合密封圈进行密封和绝缘。大四氟垫圈11、不锈钢垫圈12、小四氟垫圈13层层叠放,并开有螺孔,大四氟垫圈11、不锈钢垫圈12、小四氟垫圈13和杜瓦底座8之间采用玻璃钢螺栓或带玻璃钢绝缘套管的金属螺栓进行紧固。由于不锈钢垫圈12与阴极托架14同电位,不锈钢垫圈12和阴极托架14之间采用密封圈进行密封以及采用普通金属螺栓紧固。
本发明超导强场磁控溅射阴极的绝缘绝热和密封结构适合于圆形平面磁控溅射阴极和矩形平面磁控溅射阴极。
Claims (2)
1.一种超导强场磁控溅射阴极的绝缘绝热和密封结构,其特征在于:所述的超导强场磁控溅射阴极的绝缘绝热和密封结构由超导线圈(1)、内磁轭(2)、外磁轭(3)、底磁轭(4)、第一玻璃钢垫片(5)、第二玻璃钢垫片(6)、杜瓦端盖(7)、杜瓦底座(8)、通电导体(9)、玻璃钢套管(10)、大四氟垫圈(11)、不锈钢垫圈(12)、小四氟垫圈(13),以及阴极托架(14)构成;外磁轭(3)位于内磁轭(2)的外部,底磁轭(4)位于内磁轭(2)和外磁轭(3)的底部,超导线圈(1)安装在内磁轭(2)、外磁轭(3)和底磁轭(4)之间;所述的超导线圈(1)、内磁轭(2)、外磁轭(3)和底磁轭(4)安装在杜瓦端盖(7)和杜瓦底座(8)包围的空间中;大四氟垫圈(11)位于杜瓦底座(8)的下方,不锈钢垫圈(12)位于大四氟垫圈(11)的下方,小四氟垫圈(13)安装在杜瓦底座(8)的下方;阴极托架(14)安装在不锈钢垫圈(12)的下方、小四氟垫圈(13)的外部,用于支撑磁控溅射阴极;超导线圈(1)与杜瓦端盖(7)之间采用第一玻璃钢垫片(5)支撑和绝缘,超导线圈(1)与和底磁轭(4)之间采用第二玻璃钢垫片(6)支撑和绝缘,通电导体(9)与杜瓦底座(8)之间采用玻璃钢套管(10)进行绝缘;杜瓦底座(8)采用真空夹层结构或填充发泡材料,以降低热损耗,便于采用常温密封结构进行真空密封。
2.如权利要求1所述的超导强场磁控溅射阴极的绝缘绝热和密封结构,其特征在于:所述的杜瓦底座(8)和不锈钢垫圈(12)之间采用大四氟垫圈(11)配合密封圈进行密封和绝缘,大四氟垫圈(11)、不锈钢垫圈(12)、小四氟垫圈(13)和杜瓦底座(8)之间采用玻璃钢螺栓或带玻璃钢绝缘套管的金属螺栓进行紧固;不锈钢垫圈(12)和阴极托架(14)之间采用密封圈进行密封并采用普通金属螺栓紧固。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710073591.9A CN106801217B (zh) | 2017-02-10 | 2017-02-10 | 一种超导强场磁控溅射阴极的绝缘绝热和密封结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710073591.9A CN106801217B (zh) | 2017-02-10 | 2017-02-10 | 一种超导强场磁控溅射阴极的绝缘绝热和密封结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106801217A CN106801217A (zh) | 2017-06-06 |
CN106801217B true CN106801217B (zh) | 2018-11-13 |
Family
ID=58987707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710073591.9A Expired - Fee Related CN106801217B (zh) | 2017-02-10 | 2017-02-10 | 一种超导强场磁控溅射阴极的绝缘绝热和密封结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106801217B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108149209B (zh) * | 2017-12-26 | 2019-12-20 | 中国科学院电工研究所 | 一种复合式磁控溅射阴极 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1184880A (en) * | 1982-11-18 | 1985-04-02 | Kovilvila Ramachandran | Sputtering apparatus and method |
JPH04143269A (ja) * | 1990-10-04 | 1992-05-18 | Fujitsu Ltd | ターゲット |
CN1245534C (zh) * | 2002-04-16 | 2006-03-15 | 北京科技大学 | 无磁屏蔽型铁磁性靶材溅射阴极及其溅射方法 |
CN101719457B (zh) * | 2009-09-25 | 2012-05-30 | 中国科学院电工研究所 | 一种基于超导线圈的强磁场磁控溅射阴极 |
CN102420091B (zh) * | 2011-11-24 | 2014-07-30 | 中国科学院电工研究所 | 一种复合式磁控溅射阴极 |
-
2017
- 2017-02-10 CN CN201710073591.9A patent/CN106801217B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106801217A (zh) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5687548B2 (ja) | 超伝導ケーブルを備える装置 | |
CN100564582C (zh) | 用于10-8Pa超高真空圆形平面磁控溅射靶的密封装置 | |
CN203741407U (zh) | 磁控溅射旋转靶 | |
CN107058964B (zh) | 拓扑绝缘体Bi2Se3/FeSe2异质结构薄膜的制备方法 | |
CN105821378A (zh) | 一种铌掺杂二氧化锡透明导电膜及其制备方法 | |
CN106801217B (zh) | 一种超导强场磁控溅射阴极的绝缘绝热和密封结构 | |
CN101775588B (zh) | 一种高靶材利用率的矩形靶 | |
CN106401891A (zh) | 一种离子推力器环形磁钢安装结构 | |
US20140110245A1 (en) | Non-bonded rotatable targets and their methods of sputtering | |
Irby et al. | Alcator C-Mod design, engineering, and disruption research | |
CN2566580Y (zh) | 一种大功率空气等离子体发生器 | |
CN100543176C (zh) | 用于超高真空系统的磁控溅射阴极靶 | |
CN105506568A (zh) | 一种新型孪生外置旋转阴极 | |
CN115910516A (zh) | 基于多极线圈的开梯度低温超导磁体系统及磁分离装置 | |
CN102496554B (zh) | 一种射频功率信号源真空引入电极 | |
JP3695010B2 (ja) | 超電導マグネトロンスパッタ装置 | |
Ohtsu et al. | Plasma characteristics and target erosion profile of racetrack-shaped RF magnetron plasma with weak rubber magnets for full circular target utilization | |
US3328200A (en) | Method of forming superconducting metallic films | |
CN110668392B (zh) | 增强散热Cu-Cu2O核壳纳米线阵列自保护电极及制备方法 | |
CN208562507U (zh) | 一种磁控溅射平面阴极 | |
CN209388780U (zh) | 一种直流双极超导电缆通电导体 | |
CN217324268U (zh) | 一种二极溅射靶枪 | |
CN219218135U (zh) | 磁控溅射镀膜设备的阴极装置及磁控溅射镀膜设备 | |
CN100540729C (zh) | 平面式磁控溅射便携插件式增磁装置 | |
Conrad et al. | Upgrade of a UHV Furnace for 1700 C Heat Treatment and Processing of Niobium Samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181113 |