CN106788671A - 一种可变构形的混轨卫星星座 - Google Patents

一种可变构形的混轨卫星星座 Download PDF

Info

Publication number
CN106788671A
CN106788671A CN201611056020.6A CN201611056020A CN106788671A CN 106788671 A CN106788671 A CN 106788671A CN 201611056020 A CN201611056020 A CN 201611056020A CN 106788671 A CN106788671 A CN 106788671A
Authority
CN
China
Prior art keywords
satellite
constellation
igso
geo
meo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611056020.6A
Other languages
English (en)
Other versions
CN106788671B (zh
Inventor
邹恒光
陈小燕
周钠
杨凌轩
任军强
张磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201611056020.6A priority Critical patent/CN106788671B/zh
Publication of CN106788671A publication Critical patent/CN106788671A/zh
Application granted granted Critical
Publication of CN106788671B publication Critical patent/CN106788671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种可变构形的混轨卫星星座,包括GEO、IGSO和MEO三个子星座。GEO子星座包括n颗GEO卫星,分布在地球同步静止轨道的n个轨位上,相邻卫星之间覆盖区相连接,对中低纬地区完成全经度覆盖。IGSO子星座包括5颗IGSO卫星,其中IGSO1、IGSO2、IGSO3卫星在同一个轨道面内,且相邻卫星间相位差为120°;同时,IGSO3和IGSO4、IGSO5三颗卫星共地面轨迹。MEO子星座包含m×k颗卫星,分布在k个轨道面上,每个轨道面m颗卫星,MEO子星座具备全球覆盖能力。当进行星座构形重构时,IGSO4和IGSO5两颗卫星通过轨道机动进入HEO轨道并运行。本发明星座具有优秀全球覆盖能力、具有自我管理能力且结构灵活可变。

Description

一种可变构形的混轨卫星星座
技术领域
本发明涉及一种卫星星座方案,适用于卫星星座系统方案设计及星座工程建设。
背景技术
人造卫星按照一定的空间分布规律运行于太空之上,形成卫星星座,简称为星座。星座构形是指卫星在星座中的分布规律,包括卫星轨道面分布、轨道内分布以及轨道类型及特征参数。星座构形设计是星座系统设计的一个关键基础部分。
星座设计作为一个学术领域,可追溯至上世纪60年代,星座方案层出不穷,其中最具代表性的是工程实现的Inmarsat、Iridium、Globalstar等通信星座,以及GPS、GLONASS、北斗等导航星座。近十年来,随着载荷技术的发展,星间链路构建成为热点,星座设计也因此进入了一个繁荣的时代。
目前,在国内外发表的学术著作以及工程实践中,星座设计往往是针对具体的需求进行构形设计的,星座方案简单而局限,且其轨道单一、结构不可变、系统性能有限。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供了一种结构灵活可变、具有自我管理能力且具有优秀全球覆盖能力的卫星星座。
本发明的技术解决方案是:一种可变构形的混轨卫星星座,包括GEO、IGSO和MEO三个子星座,其中:
GEO子星座:包括n颗GEO卫星,分布在地球同步静止轨道的n个轨位上,n为正整数且n≥3,相邻卫星之间覆盖区相连接,对中低纬地区完成全经度覆盖;
IGSO子星座:包括5颗IGSO卫星,分别标记为IGSO1~IGSO5,其中IGSO1、IGSO2、IGSO3三颗卫星在同一个轨道面内,且相邻卫星间相位差为120°;同时,IGSO3和IGSO4、IGSO5三颗卫星共地面轨迹;
MEO子星座:包含m×k颗MEO卫星,分布在k个轨道面上,每个轨道面m颗卫星,m和k均为正整数;
当进行星座构形重构时,IGSO4和IGSO5两颗卫星通过轨道机动进入HEO轨道并运行,星座由n颗GEO卫星、5颗IGSO卫星以及m×k颗MEO卫星的混合构形重构为n颗GEO卫星、3颗IGSO卫星、2颗HEO卫星以及m×k颗MEO卫星的构形。
所述的IGSO子星座轨道倾角应使得IGSO子星座对GEO子星座无法覆盖的南北半球高纬地带及极区提供覆盖。
所述的m、k的取值应使得MEO子星座具备全球覆盖能力。
所述的HEO轨道参数根据HEO远地点覆盖区的位置的要求,以及对HEO卫星在该覆盖区的停留时间的要求确定。
本发明与现有技术相比的优点在于:
(1)优势互补的多轨道类型混合构形。本发明星座由n颗GEO、5颗IGSO、m×k颗MEO三个子星座组成,既充分利用了地球静止轨道GEO轨道固定覆盖区、单颗卫星覆盖能力强大的特殊优势,又利用了倾斜同步轨道IGSO轨道固定“8”字地面轨迹及其对高纬、极区的覆盖能力,同时,又引入了中轨星座扩大系统容量,提高系统自管理能力。GEO卫星能够为南北中低纬地区提供连续的全天候的稳定覆盖;5颗IGSO卫星弥补了GEO卫星对南北半球高纬地区及极区的覆盖空白,同时又对特定区域提供了增强覆盖;MEO卫星能够极好地提高该星座的全球覆盖重数,增加系统容量,同时,还可以充当GEO、IGSO卫星与地面之间的信使,并有能力对整个星座系统进行自主管理。
(2)同轨道面与共地面轨迹相结合的优异覆盖性。本发明中IGSO子星座由5颗IGSO卫星组成,其中IGSO1、IGSO2和IGSO3三颗卫星同轨道面,且均分轨道面内相位。选择适当的轨道倾角,这三颗IGSO卫星能够覆盖所有纬度,因此正好弥补了GEO子星座对高纬及两极地区覆盖能力的不足,从而使得星座具备全球覆盖能力。与此同时,IGSO3、IGSO4和IGSO5三颗卫星共地面轨迹,且地面覆盖区落在主任务区域,因此,为星座增加了区域增强覆盖能力。
(3)星座可重构的构形灵活性。本发明IGSO子星座中IGSO4、IGSO5两颗卫星具备变轨能力,可以在星座寿命期间根据用户需求进行变轨进入HEO轨道,对用户指定的特定区域进行加强覆盖。IGSO4和IGSO5实现变轨之后,星座的重点覆盖区域实现迁移,因此能够更好地利用星座的覆盖能力,提高星座的价值。
附图说明
图1为本发明星座构形三维示意图;
图2为本发明星座重构后的构形三维示意图。
具体实施方式
本发明提出一种可变构形的混轨卫星星座设计方案。该星座包括地球同步静止轨道(GEO)、地球同步倾斜轨道(IGSO)和中高度轨道(MEO)三种轨道类型,因此简称为混合轨道。由于星座构形可变,因此为可变构形星座。
根据轨道类型,该星座可分为GEO、IGSO和MEO三个子星座,如图1所示,其中:
GEO子星座包括n(n≥3)颗GEO卫星,分布在地球同步静止轨道的n个轨位上,相邻卫星之间覆盖区相连接,从而能够对南北半球中低纬地区提供一重以上稳定、连续的覆盖。
IGSO子星座包括5颗IGSO卫星,分别标记为IGSO1~IGSO5卫星,其中IGSO1、IGSO2、IGSO3卫星在同一个轨道面内,且相邻卫星间相位差为120°,提供全球均匀的覆盖能力。另外,IGSO3和IGSO4、IGSO5三颗卫星共地面轨迹,地面轨迹为“8”字形轨迹,关于赤道面对称,对南北半球有同等覆盖能力。共地面轨迹的三颗IGSO卫星即重复同一个地面“8”字轨迹,用这三颗共地面轨迹的卫星对特定区域,即“8”所在地区,进行增强覆盖。IGSO子星座轨道倾角应使得IGSO子星座对GEO子星座无法覆盖的南北半球高纬地带及极区提供覆盖。
MEO子星座包含m×k颗MEO卫星,分布在k个轨道面上,每个轨道面m颗卫星。MEO子星座具备全球覆盖能力,以全球覆盖为要求,选取MEO轨道倾角和轨道高度之后,即可按照星座设计方法确定m和k。m、k的取值跟星座覆盖要求相关,在覆盖要求一定的情况下,轨道倾角、轨道高度、m、k是四个设计参数,设计过程类似优化算法,即各给一个初始值,然后计算优化目标(即覆盖性),然后反复迭代得到最终的计算结果。星座设计方法可参考《Mission Geometry:Orbit and Constellation Design and Management》(JamesR.Wertz)。
本发明星座具备星座重构能力,在其寿命期间,可根据用户的需求,将IGSO4和IGSO5两颗卫星通过轨道机动送入大椭圆轨道(HEO),使之运行在HEO轨道上。从而星座由原来的n颗GEO卫星、5颗IGSO卫星以及m×k颗MEO卫星的混合构形重构为n颗GEO卫星、3颗IGSO卫星、2颗HEO卫星以及m×k颗MEO卫星的新构形,如图2所示。
HEO轨道参数可按用户需求进行设计。这里的用户需求主要包括对HEO远地点覆盖区的位置的要求,以及对HEO卫星在该覆盖区的停留时间的要求,以及对两颗HEO卫星远地点覆盖区的位置关系的要求。
在星座具体设计中,该卫星星座方案的具体参数可采用下述方法进行设计:
(1)配置GEO子星座的构形、轨道参数。
GEO子星座包括n颗GEO卫星,由于地球同步静止轨道的特殊性,因此GEO卫星的配置参数仅需要其轨位信息。确定每一颗GEO卫星的轨位,即确定了该卫星升交点的当地地理经度,也就确定了该GEO卫星的轨道;n取大于3的数。理论上,轨位可任意选择情况下,间隔120°的3颗GEO卫星即能够完成整个纬度圈的覆盖;实际上,GEO卫星的轨位资源有限,因此,按实际可利用轨道资源,以全纬度覆盖为基本要求,综合用户实际要求,决定n的取值。
(2)配置IGSO子星座的构形、轨道参数。
IGSO子星座包括5颗IGSO卫星,其中IGSO1、IGSO2、IGSO3共轨道面,IGSO3和IGSO4、IGSO5三颗卫星共地面轨迹,因此首先根据用户需求的重点覆盖区域确定共地面轨迹三颗卫星的地面“8”字轨迹所在位置,并利用共地面轨迹设计法确定三颗IGSO卫星的轨道。
其次,在IGSO3的轨道面里,以120°相位差放置IGSO1和IGSO2,从而确定IGSO1和IGSO2的轨道参数。
最后,将IGSO子星座的轨道倾角作为设计变量,通过计算GEO子星座和IGSO子星座的综合覆盖能力,以全球覆盖为优化目标,对IGSO子星座轨道倾角进行优化设计,最终确定IGSO子星座的轨道倾角。
(3)配置MEO子星座的构形、轨道参数。
MEO子星座共m×k颗卫星,分布在k个轨道面内,具体星座构形参数可以按照常规的星座构形设计方法选取适当的相位因子进行配置。MEO子星座以全球覆盖为设计基本约束,综合用户实际要求,选取MEO轨道高度、倾角和m、k的取值。星座设计方法、相位因子选择可参考《Mission Geometry:Orbit and Constellation Design and Management》(JamesR.Wertz)。
(4)配置星座重构后HEO轨道参数。
将IGSO4、IGSO5两颗卫星进行变轨,使其轨道变为HEO轨道,根据用户要求的重点覆盖区域配置HEO轨道参数,根据任务需求设计远地点位置、远地点区域停留时间以及两颗卫星远地点覆盖区的位置关系。最后分析重构后星座的全球覆盖性能,具体可在STK软件中仿真实现。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (4)

1.一种可变构形的混轨卫星星座,其特征在于:包括GEO、IGSO和MEO三个子星座,其中:
GEO子星座:包括n颗GEO卫星,分布在地球同步静止轨道的n个轨位上,n为正整数且n≥3,相邻卫星之间覆盖区相连接,对中低纬地区完成全经度覆盖;
IGSO子星座:包括5颗IGSO卫星,分别标记为IGSO1~IGSO5,其中IGSO1、IGSO2、IGSO3三颗卫星在同一个轨道面内,且相邻卫星间相位差为120°;同时,IGSO3和IGSO4、IGSO5三颗卫星共地面轨迹;
MEO子星座:包含m×k颗MEO卫星,分布在k个轨道面上,每个轨道面m颗卫星,m和k均为正整数;
当进行星座构形重构时,IGSO4和IGSO5两颗卫星通过轨道机动进入HEO轨道并运行,星座由n颗GEO卫星、5颗IGSO卫星以及m×k颗MEO卫星的混合构形重构为n颗GEO卫星、3颗IGSO卫星、2颗HEO卫星以及m×k颗MEO卫星的构形。
2.根据权利要求1所述的一种可变构形的混轨卫星星座,其特征在于:所述的IGSO子星座轨道倾角应使得IGSO子星座对GEO子星座无法覆盖的南北半球高纬地带及极区提供覆盖。
3.根据权利要求1所述的一种可变构形的混轨卫星星座,其特征在于:所述的m、k的取值应使得MEO子星座具备全球覆盖能力。
4.根据权利要求1所述的一种可变构形的混轨卫星星座,其特征在于:所述的HEO轨道参数根据HEO远地点覆盖区所在位置的要求、HEO卫星在该覆盖区的停留时间要求、两颗HEO卫星远地点覆盖区的位置关系要求确定。
CN201611056020.6A 2016-11-23 2016-11-23 一种可变构形的混轨卫星星座系统 Active CN106788671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611056020.6A CN106788671B (zh) 2016-11-23 2016-11-23 一种可变构形的混轨卫星星座系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611056020.6A CN106788671B (zh) 2016-11-23 2016-11-23 一种可变构形的混轨卫星星座系统

Publications (2)

Publication Number Publication Date
CN106788671A true CN106788671A (zh) 2017-05-31
CN106788671B CN106788671B (zh) 2019-07-12

Family

ID=58910900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611056020.6A Active CN106788671B (zh) 2016-11-23 2016-11-23 一种可变构形的混轨卫星星座系统

Country Status (1)

Country Link
CN (1) CN106788671B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329146A (zh) * 2017-07-05 2017-11-07 中国人民解放军装备学院 一种导航卫星低轨监测星座的优化设计方法
US10361773B2 (en) * 2017-04-24 2019-07-23 Blue Digs LLC Satellite constellation having multiple orbital inclinations
CN112596119A (zh) * 2020-11-20 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种电离层探测小卫星网络规划方法
CN113067621A (zh) * 2021-02-24 2021-07-02 中国人民解放军战略支援部队航天工程大学 一种仅靠国内站信息落地且全球无缝覆盖的混合星座
CN113271136A (zh) * 2021-04-07 2021-08-17 中国电子科技集团公司电子科学研究院 基于高中低轨混合星座构型的星间网络拓扑结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230136642A (ko) 2021-02-03 2023-09-26 만가타 네트웍스 인크. 메시 네트워크 에지 데이터 센터를 갖는 비정지 위성 통신 네트워크 아키텍처

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056740A (en) * 1989-09-22 1991-10-15 The Johns Hopkins University Over-the-horizon targeting system and method
US20030207684A1 (en) * 1997-06-02 2003-11-06 Hughes Electronics Corporation Broadband communication system for mobile users in a satellite-based network
CN102025459A (zh) * 2010-12-09 2011-04-20 南京大学 基于非参量估计ica的mimo-ofdm系统盲去卷积方法
CN102891713A (zh) * 2012-09-27 2013-01-23 哈尔滨工程大学 适用于中高纬度区域覆盖的低轨道微小卫星编队系统
CN103532611A (zh) * 2013-10-17 2014-01-22 中国人民解放军理工大学 一种区域覆盖兼顾全球的混合轨道igso星座
CN103916177A (zh) * 2014-01-23 2014-07-09 北京邮电大学 基于geo-igso/meo双层卫星网络的通信方案与层间星际链路的建立方法
US9042734B2 (en) * 2013-04-02 2015-05-26 Raytheon Company Laser relay for free space optical communications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056740A (en) * 1989-09-22 1991-10-15 The Johns Hopkins University Over-the-horizon targeting system and method
US20030207684A1 (en) * 1997-06-02 2003-11-06 Hughes Electronics Corporation Broadband communication system for mobile users in a satellite-based network
CN102025459A (zh) * 2010-12-09 2011-04-20 南京大学 基于非参量估计ica的mimo-ofdm系统盲去卷积方法
CN102891713A (zh) * 2012-09-27 2013-01-23 哈尔滨工程大学 适用于中高纬度区域覆盖的低轨道微小卫星编队系统
US9042734B2 (en) * 2013-04-02 2015-05-26 Raytheon Company Laser relay for free space optical communications
CN103532611A (zh) * 2013-10-17 2014-01-22 中国人民解放军理工大学 一种区域覆盖兼顾全球的混合轨道igso星座
CN103916177A (zh) * 2014-01-23 2014-07-09 北京邮电大学 基于geo-igso/meo双层卫星网络的通信方案与层间星际链路的建立方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361773B2 (en) * 2017-04-24 2019-07-23 Blue Digs LLC Satellite constellation having multiple orbital inclinations
US10707953B2 (en) * 2017-04-24 2020-07-07 Blue Digs LLC Satellite constellation having multiple orbital inclinations
US11063660B2 (en) * 2017-04-24 2021-07-13 Blue Digs LLC Satellite constellation having multiple orbital inclinations
US20220094429A1 (en) * 2017-04-24 2022-03-24 Blue Digs LLC Satellite Constellation Having Multiple Orbital Inclinations
US11799542B2 (en) * 2017-04-24 2023-10-24 Blue Digs LLC Satellite constellation having multiple orbital inclinations
CN107329146A (zh) * 2017-07-05 2017-11-07 中国人民解放军装备学院 一种导航卫星低轨监测星座的优化设计方法
CN107329146B (zh) * 2017-07-05 2021-06-15 中国人民解放军战略支援部队航天工程大学 一种导航卫星低轨监测星座的优化设计方法
CN112596119A (zh) * 2020-11-20 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种电离层探测小卫星网络规划方法
CN113067621A (zh) * 2021-02-24 2021-07-02 中国人民解放军战略支援部队航天工程大学 一种仅靠国内站信息落地且全球无缝覆盖的混合星座
CN113271136A (zh) * 2021-04-07 2021-08-17 中国电子科技集团公司电子科学研究院 基于高中低轨混合星座构型的星间网络拓扑结构
CN113271136B (zh) * 2021-04-07 2022-12-16 中国电子科技集团公司电子科学研究院 基于高中低轨混合星座构型的星间网络拓扑结构

Also Published As

Publication number Publication date
CN106788671B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN106788671B (zh) 一种可变构形的混轨卫星星座系统
CN106249253A (zh) 低轨通信和导航增强混合星座的优化设计方法
CN109146157B (zh) 一种基于太阳同步回归轨道的共轨迹应急侦察星座优化设计方法
CN107329146A (zh) 一种导航卫星低轨监测星座的优化设计方法
EP0886392A2 (en) Coordinatable system of inclined geosynchronous satellite orbits
Mortari et al. Design of flower constellations for telecommunication services
CN104038272B (zh) 一种光照约束下的中轨全球覆盖星座
Zhang et al. Restricted constellation design for regional navigation augmentation
Dessanti et al. A US-India power exchange towards a space power grid
Schonfeldt et al. A system study about a lunar navigation satellite transmitter system
Zong et al. Design of LEO constellations with inter-satellite connects based on the performance evaluation of the three constellations SpaceX, OneWeb and Telesat
CN108430875A (zh) 用于全球覆盖的卫星系统和方法
Yan et al. Constellation multi-objective optimization design based on QoS and network stability in LEO satellite broadband networks
Matsumoto et al. A simulation study for anticipated accuracy of lunar gravity field model by SELENE tracking data
Kelly et al. Constellation design for mars navigation using small satellites
CN1233889A (zh) 中轨赤道卫星星座方案
Thompson et al. Design and analysis of lunar communication and navigation satellite constellation architectures
CN114545462A (zh) 一种基于低中高轨的复杂异构导航星座实现方法
CN113067621A (zh) 一种仅靠国内站信息落地且全球无缝覆盖的混合星座
Rinehart et al. Characteristics of the service provided by communications satellites in uncontrolled orbits
Solov’ev et al. Priority scientific and technical problems in the field of exploration and efficient use of outer space
Fong et al. Application of FORMOSAT-3/COSMIC mission to global Earth monitoring
Terziev et al. The Impact of Innovation in the Satellite Industry on the Telecommunications Services Market
Mo et al. Comparative study of basic constellation models for regional satellite constellation design
Kogure et al. GPS augmentation and complement using Quasi-Zenith Satellite System (QZSS)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant