CN106786938B - 一种巡检机器人定位方法及自动充电方法 - Google Patents

一种巡检机器人定位方法及自动充电方法 Download PDF

Info

Publication number
CN106786938B
CN106786938B CN201611260909.6A CN201611260909A CN106786938B CN 106786938 B CN106786938 B CN 106786938B CN 201611260909 A CN201611260909 A CN 201611260909A CN 106786938 B CN106786938 B CN 106786938B
Authority
CN
China
Prior art keywords
charging
laser data
point
straight line
data set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611260909.6A
Other languages
English (en)
Other versions
CN106786938A (zh
Inventor
林欢
王�锋
程敏
许春山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yijiahe Technology Co Ltd
Original Assignee
Yijiahe Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yijiahe Technology Co Ltd filed Critical Yijiahe Technology Co Ltd
Priority to CN201611260909.6A priority Critical patent/CN106786938B/zh
Publication of CN106786938A publication Critical patent/CN106786938A/zh
Application granted granted Critical
Publication of CN106786938B publication Critical patent/CN106786938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供一种巡检机器人定位方法及自动充电方法,通过两次线性分割重构出充电房模型,然后利用重构充电房模型的关键点,实现机器人的精准定位,本发明首先通过快速高效的二次点集分割算法对连续的激光数据集进行分割,获取鲁棒性较高的三个边缘特征,然后对充电房模型进行重构,利用重构充电房模型对应的关键点对机器人进行定位,在保证定位准确性的同时,不直接依赖于充电房墙角拐点,对充电房建造工艺依赖较低。

Description

一种巡检机器人定位方法及自动充电方法
技术领域
本发明涉及一种巡检机器人定位方法及自动充电方法。
背景技术
市场上现有的自动充电方式主要有两种:(1)扫地机器人的自动充电是通过充电基座不断发出信号,然后机器人顶部的接收器接收到信号,最终找到“回家”的路,但是在某些情况下会出现无法导航,无法回到基座而搁浅在“半路上”的情况发生。(2)自动接触式充电技术,连接触点位于机器人本体上方,当机器人到达充电座时,与地面连接触点自动完成对接,充电完毕后自动脱离。这种方法脱离定位,对对接误差要求较高。
发明内容
为解决现有技术存在的问题,本发明提供一种巡检机器人定位方法,实现巡检机器人在充电房中的精确定位,提高与充电桩对接的成功率,方便巡检机器人在充电房内充电。
本发明提供的巡检机器人定位方法,包括以下步骤:
(1)利用激光传感器采集巡检机器人在充电房中的正前方和两侧墙壁的激光数据;
(2)对激光数据进行二次点集分割及二次直线拟合;其中,第一次点集分割得到对应充电房左边墙面的左激光数据集、对应充电房门和充电房门左、右角落的中间激光数据集、对应充电房右边墙面的右激光数据集;第一次直线拟合采用最小二乘法对左激光数据集和右激光数据集进行拟合,得到充电房左边墙面对应直线L3和右边墙面对应直线L2;第二次点集分割从中间激光数据集中剔除左、右角落对应的激光数据,得到充电房门直线L1对应激光数据集;第二次直线拟合通过最小二乘法对充电房门直线L1对应的激光数据集进行拟合,得到充电房门对应直线L1
(3)将直线L1,L2,L3按照充电房特征进行匹配,即判断直线L1是否同时垂直于直线L2和直线L3,如果同时垂直则匹配成功,否则返回步骤(1);
(4)获取充电房边缘特征,即,将步骤(3)中匹配成功的直线L1,L2,L3作为充电房的边缘特征;
(5)通过步骤(4)得到的充电房边缘特征L1,L2,L3,通过直线相交获取充电房的两个关键点,即左边墙面对应直线L3与充电房左角落、右边墙面对应直线L2与充电房右角落形成的拐点;
(6)利用步骤(5)获得两个关键点与机器人之间的相对位置,确定机器人位置。
第一次点集分割具体包括:选取连续的2m+1个激光数据,将前m个激光数据坐标取平均值得到前参考点A的坐标,第m+1个激光点坐标作为当前点B的坐标,后m个激光数据坐标取平均值得到后参考点C的坐标,然后计算后参考点C、前参考点A和当前点B三个点形成的角度∠CAB,∠CAB大小记为θ,如果
Figure BDA0001199782750000021
则判定当前点A已经接近充电房右角落,将当前点作为右分割点Pr,其中,m为自然数,
Figure BDA0001199782750000022
为设定阈值;以同样方法得到左分割点Pl;利用左、右分割点对连续的激光数据进行第一次分割,得到对应充电房左边墙面的左激光数据集、对应充电房门和充电房门左、右角落的中间激光数据集、对应充电房右边墙面的右激光数据集。m的取值范围为[30,80],
Figure BDA0001199782750000023
的取值范围为
Figure BDA0001199782750000024
第二次点集分割具体包括:从右分割点Pr开始遍历中间激光数据集,当中间激光数据集中的点到右边墙面对应直线L2的距离大于或等于设定阈值threshold时,则认为当前激光数据点位于充电房门对应直线L1,并将当前激光数据点作为充电房门直线L1对应激光数据集的右端点Pre;以同样的方法,得到充电房门直线L1对应激光数据集的左端点Ple,利用左、右端点对中间激光数据集进行第二次分割,得到充电房门直线L1对应激光数据集。
在获取右端点Pre、左端点Ple时,设定阈值threshold分别略大于充电房右角落的宽度、充电房左角落的宽度。
为降低计算复杂度,同时提高算法的精确性,在步骤(2)之前,先对激光数据进行去噪声处理,去除噪声数据。
本发明还提供一种巡检机器人自动充电方法,巡检机器人通过定位导航自动驶入充电房;利用本发明提供的巡检机器人定位方法对巡检机器人进行定位;根据定位调整巡检机器人位置和朝向,直到巡检机器人定位在充电桩正前方处;巡检机器人充电部件与充电桩接触进行充电。
如果充电过程出现充电状态中断,判断巡检机器人位姿是否发生变化,若是,退出充电桩并调整位姿后重新与充电桩接触充电,否则直接进行充电。
本发明为了实现巡检机器人安全准确、快速高效地自动充电,通过激光设备和充电房的几何特性进行机器人局部定位。为了实现定位的精确性,使用二次点集分割算法对连续激光数据进行分割,通过最小二乘法对分割数据集进行拟合,利用拟合得到的边缘特征对充电房模型进行重构,最后通过重构得到的充电房模型关键点对机器人进行定位。
本发明通过激光设备进行局部定位,精度高,可以达到±0.5cm的误差范围内。利用高精度的定位,进行充电桩对接成功率大大提高,经测试,成功率达到99.8%。通过本发明可实现巡检机器人在变电站长期值守、完全自治,在无人干预情况下,安全准确、快速高效地自动充电,能实现与充电桩的成功对接,对外界干扰具有较好的鲁棒性。
附图说明
图1为巡检机器人充电房局部定位算法流程图;
图2为二次点集分割算法原理图;
图3为第一次点集分割程序流程图;
图4为第二次点集分割程序流程图;
图5为机器人定位原理图。
图中:1-充电房,2-机器人,3-激光,4-充电房右角落,5-充电房左角落,6-充电房门对应直线L1,7-前参考点A,8-当前点B,9-后参考点C,10-∠CAB,大小为θ,11-右分割点Pr(表示第r个激光数据点),12-充电房门直线L1对应激光数据集的右端点Pre,13-右边墙面对应直线L2,14-左边墙面对应直线L3,15-前参考点D,16-当前点E,17-后参考点F,18-∠FDE,大小为α,19-左分割点Pl(表示第1个激光数据点),20-充电房门直线L1对应激光数据集的左端点Ple
具体实施方式
如图1所示,本发明提供的巡检机器人定位方法主要步骤有:
1、噪声剔除:对激光传感器采集巡检机器人2在充电房1中的正前方和两侧墙壁的激光数据进行去噪处理,去除噪声数据,降低计算复杂度的同时,提高精确性;
2、二次点集分割:将激光采集数据按连续性分割成多个连续区域。二次点集分割算法的原理如图2所示。
①第一次点集分割:通过平滑拟合,将累计误差平摊,提高分割的准确性。
第一次点集分割的程序流程图如图3所示,N表示激光数据的数目,选取连续的2m+1个激光数据(对应第i个到第2m+i个激光数据,m取值范围为[30,80],m值过小会导致遍历次数增加,影响算法实时性,m值过大,会影响分割准确性),将前m个激光数据坐标取平均值得到前参考点A7的坐标,第m+1个激光点坐标作为当前点B 8的坐标,后m个激光数据坐标取平均值得到后参考点C 9的坐标,然后计算后参考点C、前参考点A和当前点B三个点形成的角度∠CAB 10(记为θ),如果
Figure BDA0001199782750000041
(
Figure BDA0001199782750000042
的取值范围为
Figure BDA0001199782750000043
适当的取值可以保证分割的准确性),则判定当前点B已经接近充电房右角落4,将当前点B作为右分割点Pr 11。
同样的方法,可以得到左分割点Pl
选取连续的2m+1个激光数据(对应第i个到第2m+i个激光数据,m取值范围为[30,80]),将前m个激光数据坐标取平均值得到前参考点D 15的坐标,第m+1个激光点坐标作为当前点E 16的坐标,后m个激光数据坐标取平均值得到后参考点F 17的坐标,然后计算后参考点F、前参考点D和当前点E三个点形成的角度∠FDE 18(记为α),如果
Figure BDA0001199782750000051
(
Figure BDA0001199782750000052
的取值范围为
Figure BDA0001199782750000053
),则判定当前点E已经接近充电房左角落5,将当前点E作为左分割点Pl 19。
利用左右分割点对连续的激光数据进行第一次分割,即可得到三个激光数据:左激光数据集(对应充电房左边墙面)、中间激光数据集(对应充电房门和两个角落)和右激光数据集(对应充电房右边墙面)。
②第一次直线拟合:采用最小二乘法对左激光数据集和右激光数据集进行拟合,得到充电房左边墙面对应直线L3(14)和右边墙面对应直线L2(13),对应直线表达式分别为:
L2:a2x'+b2y'+c2=0
L3:a3x'+b3y'+c3=0
其中,a2、b2、c2为对应L2的参数,通过对右激光数据集进行最小二乘直线拟合得到,a3、b3、c3为对应L3的参数,通过对左激光数据集进行拟合得到;L2、L3对应的直线表达式位于机器人坐标系X’O’Y’中。
③第二次点集分割:利用充电房几何特征,从中间激光数据集中剔除两个角落对应的激光数据。
第二次点集分割的程序流程图如图4所示,从右分割点Pr 11开始遍历中间激光数据集,利用中间激光数据集中的点到右边墙面对应直线L2的距离
Figure BDA0001199782750000054
当d≥threshold(threshold为设置的距离阈值,大小略大于充电房右角落4的宽度,该宽度即充电房右角落在充电房门直线方向上的长度)时,认为当前激光数据点位于充电房门对应直线L1,并将当前激光数据点作为充电房门直线L1对应激光数据集的右端点Pre12;同样的方法,可以得到充电房门直线L1对应激光数据集的左端点Ple 20,即,从左分割点Pl 19开始遍历中间激光数据集,利用中间激光数据集中的点到左边墙面对应直线L3的距离
Figure BDA0001199782750000061
当d≥threshold(threshold为设置的距离阈值,大小略大于充电房左角落5的宽度,该宽度即充电房左角落在充电房门直线方向上的长度)时,认为当前激光数据点位于充电房门对应直线L1,并将当前激光数据点作为充电房门直线L1对应激光数据集的左端点Ple20。
利用左、右端点对中间激光数据集进行第二次分割,即可得到充电房门直线对应的激光数据集。
④第二次直线拟合:通过最小二乘法对充电房门直线对应的激光数据集进行拟合,得到充电房门对应直线L1 6,对应直线表达式为:
L1:a1x'+b1y'+c1=0,
其中,,a1、b1、c1为对应L1的参数,通过对充电房门直线对应的激光数据集进行拟合得到;L1对应的直线表达式位于机器人坐标系X’O’Y’中。
这样,通过二次点集分割,实现对激光数据的分割。
3、线特征匹配:将分割后的直线L1,L2,L3按照充电房特征进行匹配,即判断直线L1是否同时垂直于直线L2和直线L3,验证提取直线特征的准确性,如果同时垂直则匹配成功,如果匹配不成功,则重新获取激光数据,重新执行步骤1、2。
4、边缘特征获取:获取充电房边缘特征,即将步骤3中匹配成功的直线L1,L2,L3作为充电房的边缘特征。
5、关键点获取:利用直线L2、L3以及同时垂直于直线L2和直线L3的直线L1重构充电房模型,即通过步骤4得到的充电房边缘特征L1,L2,L3,通过直线相交获取重构充电房模型的两个关键点(拐点,即,左边墙面对应直线L3与充电房左角落的交点、右边墙面对应直线L2与充电房右角落的交点)。
6、机器人定位:利用步骤5重构充电房模型的两个关键点与机器人之间相对位置,确定机器人位置。
机器人定位原理图如图5所示,坐标系XOY为充电房模型对应的全局坐标系,坐标系X’O’Y’为机器人坐标系,其中O’对应机器人位置,M、N对应步骤5获得的关键点,坐标系XOY中M、N的坐标分别为
Figure BDA0001199782750000071
其中w,h对应重构充电房模型的宽和高,坐标系X’O’Y’中M、N的坐标分别为M(xm,ym),N(xn,yn),过O’做直线MN的垂线,垂足为P,过M做Y’轴的垂线,垂足为Q,MN与Y’轴交点为R,确定机器人位置即求|MP|、|O′P|。
由M点坐标为(xm,ym)有,|MQ|=-xm,|O′Q|=ym,由直线L1的斜率角可得∠QMN=θ1,|MR|=-xm/cosθ1,|QR|=-xm tanθ1
Figure BDA0001199782750000072
所以|MP|=|MR|+|PR|=ym sinθ1-xm cosθ1
|O′P|=|O′R|cosθ1=(|O′Q|-|QR|)cosθ1=ym cosθ1+xm sinθ1
所以机器人位置为:
Figure BDA0001199782750000073
偏转角度为θ1,机器人需要转动角度θ1进行位置调整,通常单次转动角度为θ1的六分之一,通过多次调整来完成对偏差角度θ1的校正。
这样,通过两次线性分割重构出充电房模型。然后利用重构充电房模型的关键点,实现机器人的精准定位。该方法首先通过快速高效的二次点集分割算法对连续的激光数据集进行分割,获取鲁棒性较高的三个边缘特征,然后对充电房模型进行重构,利用重构充电房模型对应的关键点对机器人进行定位,在保证定位准确性的同时,不直接依赖于充电房墙角拐点,对充电房建造工艺依赖较低。
同时,在保证机器人自主返回充电高成功率的基础上,添加机器人充电过程中干扰自动恢复的功能。通过对机器人充电状态进行监测,对于外界环境造成的充电中断进行自动恢复,提高机器人充电过程的效率和抗干扰能力。
自动充电方法的具体方案描述如下:
1.当机器人需要补充电力时,通过定位导航技术自动驶向充电房,通过发送指令打开房门,机器人进入充电房中;
2.进入充电房后,利用激光设备采集的激光数据,进行充电房内几何特征的检测和提取,进行直线拟合、分割以及关键点的提取,根据提取的直线和关键点,通过几何运算进行机器人局部定位,必要时结合视觉信息;
3.持续根据定位调整机器人位置和朝向,直到机器人定位在充电桩正前方处;
4.确定机器人位于正确位置后,伸出充电臂,插入到充电桩中;
5.检查机器人是否处于充电状态,若是自动充电完成,收回充电臂,否则,重新进行调整并检测;通过对机器人充电状态进行监测,对于外界环境造成的充电中断进行自动恢复,若充电过程中出现充电状态打断,判断机器人位姿是否发生变化,若是,退出充电桩进行重新调整,否则再次进行充电桩和机器人端的上电操作,有效提高机器人充电过程的效率和抗干扰能力。
6.充电完成后机器人自动退出充电桩,继续进行工作。

Claims (6)

1.一种巡检机器人定位方法,其特征在于,包括以下步骤:
(1)利用激光传感器采集巡检机器人在充电房中的正前方和两侧墙壁的激光数据;
(2)对激光数据进行二次点集分割及二次直线拟合;其中,第一次点集分割得到对应充电房左边墙面的左激光数据集、对应充电房门和充电房门左、右角落的中间激光数据集、对应充电房右边墙面的右激光数据集;第一次直线拟合采用最小二乘法对左激光数据集和右激光数据集进行拟合,得到充电房左边墙面对应直线L3和右边墙面对应直线L2;第二次点集分割从中间激光数据集中剔除左、右角落对应的激光数据,得到充电房门直线L1对应激光数据集;第二次直线拟合通过最小二乘法对充电房门直线L1对应的激光数据集进行拟合,得到充电房门对应直线L1
第一次点集分割具体包括:选取连续的2m+1个激光数据,将前m个激光数据坐标取平均值得到前参考点A的坐标,第m+1个激光点坐标作为当前点B的坐标,后m个激光数据坐标取平均值得到后参考点C的坐标,然后计算后参考点C、前参考点A和当前点B三个点形成的角度∠CAB,∠CAB大小记为θ,如果
Figure FDA0002182412810000011
则判定当前点A已经接近充电房右角落,将当前点作为右分割点Pr,其中,m为自然数,
Figure FDA0002182412810000012
为设定阈值;以同样方法得到左分割点Pl;利用左、右分割点对连续的激光数据进行第一次分割,得到对应充电房左边墙面的左激光数据集、对应充电房门和充电房门左、右角落的中间激光数据集、对应充电房右边墙面的右激光数据集;第二次点集分割具体包括:从右分割点Pr开始遍历中间激光数据集,当中间激光数据集中的点到右边墙面对应直线L2的距离大于或等于设定阈值threshold时,则认为当前激光数据点位于充电房门对应直线L1,并将当前激光数据点作为充电房门直线L1对应激光数据集的右端点Pre;以同样的方法,得到充电房门直线L1对应激光数据集的左端点Ple,利用左、右端点对中间激光数据集进行第二次分割,得到充电房门直线L1对应激光数据集;
(3)将直线L1,L2,L3按照充电房特征进行匹配,即判断直线L1是否同时垂直于直线L2和直线L3,如果同时垂直则匹配成功,否则返回步骤(1);
(4)获取充电房边缘特征,即,将步骤(3)中匹配成功的直线L1,L2,L3作为充电房的边缘特征;
(5)通过步骤(4)得到的充电房边缘特征L1,L2,L3,通过直线相交获取充电房的两个关键点,即左边墙面对应直线L3与充电房左角落、右边墙面对应直线L2与充电房右角落形成的拐点;
(6)利用步骤(5)获得两个关键点与机器人之间的相对位置,确定机器人位置。
2.如权利要求1所述的巡检机器人定位方法,其特征在于:m的取值范围为[30,80],
Figure FDA0002182412810000021
的取值范围为
Figure FDA0002182412810000022
3.如权利要求1所述的巡检机器人定位方法,其特征在于,在获取右端点Pre、左端点Ple时,设定阈值threshold分别略大于充电房右角落的宽度、充电房左角落的宽度。
4.如权利要求1所述的巡检机器人定位方法,其特征在于,在步骤(2)之前,先对激光数据进行去噪声处理。
5.一种巡检机器人自动充电方法,其特征在于,巡检机器人通过定位导航自动驶入充电房;利用权利要求1-4任一权利要求所述的巡检机器人定位方法对巡检机器人进行定位;根据定位调整巡检机器人位置和朝向,直到巡检机器人定位在充电桩正前方处;巡检机器人充电部件与充电桩接触进行充电。
6.如权利要求5所述的巡检机器人自动充电方法,其特征在于,如果充电过程出现充电状态中断,判断巡检机器人位姿是否发生变化,若是,退出充电桩并调整位姿后重新与充电桩接触充电,否则直接进行充电。
CN201611260909.6A 2016-12-30 2016-12-30 一种巡检机器人定位方法及自动充电方法 Active CN106786938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611260909.6A CN106786938B (zh) 2016-12-30 2016-12-30 一种巡检机器人定位方法及自动充电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611260909.6A CN106786938B (zh) 2016-12-30 2016-12-30 一种巡检机器人定位方法及自动充电方法

Publications (2)

Publication Number Publication Date
CN106786938A CN106786938A (zh) 2017-05-31
CN106786938B true CN106786938B (zh) 2020-03-20

Family

ID=58954753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611260909.6A Active CN106786938B (zh) 2016-12-30 2016-12-30 一种巡检机器人定位方法及自动充电方法

Country Status (1)

Country Link
CN (1) CN106786938B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508359A (zh) * 2017-09-25 2017-12-22 上海木爷机器人技术有限公司 一种机器人的自动充电系统及方法
CN109116851B (zh) * 2018-09-05 2021-09-10 南京理工大学 一种基于地图切换的巡检机器人进出库算法
CN109141402B (zh) * 2018-09-26 2021-02-02 亿嘉和科技股份有限公司 一种基于激光栅格的定位方法以及机器人自主充电方法
CN109828280A (zh) * 2018-11-29 2019-05-31 亿嘉和科技股份有限公司 一种基于三维激光栅格的定位方法以及机器人自主充电方法
CN109460032A (zh) * 2018-11-29 2019-03-12 亿嘉和科技股份有限公司 一种基于激光对射的定位方法以及机器人自主充电方法
CN110011396B (zh) * 2019-04-19 2022-07-08 国电南瑞科技股份有限公司 一种输电线路巡检机器人及其充电方法
CN110597249B (zh) * 2019-08-23 2022-08-05 深圳市优必选科技股份有限公司 一种机器人及其回充定位方法和装置
CN110647148B (zh) * 2019-09-19 2022-11-11 北京小狗吸尘器集团股份有限公司 一种墙体位置确定方法、装置、计算机设备和存储介质
CN111552290B (zh) * 2020-04-30 2023-09-05 珠海一微半导体股份有限公司 一种机器人沿墙找直线的方法及清扫方法
CN112666564B (zh) * 2021-03-16 2021-07-06 瓴道(上海)机器人科技有限公司 充电桩的定位方法、装置及设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062587A (zh) * 2010-12-13 2011-05-18 上海大学 基于激光传感器的多移动机器人位姿测定方法
CN103777192A (zh) * 2012-10-24 2014-05-07 中国人民解放军第二炮兵工程学院 一种基于激光传感器的直线特征提取方法
CN104635730A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 一种机器人自主充电方法
CN106020188A (zh) * 2016-05-17 2016-10-12 杭州申昊科技股份有限公司 一种基于激光导航的变电站巡检机器人自主充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062587A (zh) * 2010-12-13 2011-05-18 上海大学 基于激光传感器的多移动机器人位姿测定方法
CN103777192A (zh) * 2012-10-24 2014-05-07 中国人民解放军第二炮兵工程学院 一种基于激光传感器的直线特征提取方法
CN104635730A (zh) * 2013-11-13 2015-05-20 沈阳新松机器人自动化股份有限公司 一种机器人自主充电方法
CN106020188A (zh) * 2016-05-17 2016-10-12 杭州申昊科技股份有限公司 一种基于激光导航的变电站巡检机器人自主充电方法

Also Published As

Publication number Publication date
CN106786938A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106786938B (zh) 一种巡检机器人定位方法及自动充电方法
WO2021114508A1 (zh) 一种巡线机器人视觉导航巡检和避障方法
Usamentiaga et al. Fast and robust laser stripe extraction for 3D reconstruction in industrial environments
CN109344687B (zh) 基于视觉的障碍物检测方法、装置、移动设备
CN109448087B (zh) 一种盾构隧道表面点云数据分段方法
WO2020042426A1 (zh) 机器人检测直边的方法和清洁机器人筛选参考墙边的方法
CN111368607A (zh) 一种机器人、障碍物的检测方法及检测装置
CN111938519A (zh) 一种扫拖一体机器人清洁路径规划方法
CN103557788A (zh) 一种高铁接触网接几何参数检测非接触式补偿及卡尔曼滤波修正方法
CN108564575A (zh) 一种基于三维点云数据的非接触式接触网参数检测方法
CN104866099A (zh) 基于运动传感器提高智能设备手势识别精度的误差补偿方法
CN111047704B (zh) 一种改进区域生长算法的多波束测深数据粗差自动清除方法
CN103500321A (zh) 基于双动态窗的视觉引导焊接机器人焊缝快速识别技术
CN112099494B (zh) 一种面向全地形车及其自动检测楼梯与攀爬方法
CN103984344A (zh) 用于核电站蒸汽发生器二次侧的爬壁机器人路径规划方法
CN110849882A (zh) 一种用于识别、定位、检测管道焊缝的设备及方法
CN109141402B (zh) 一种基于激光栅格的定位方法以及机器人自主充电方法
CN108917621B (zh) 一种受电弓滑板上边缘单像素跟踪检测方法
CN114325760A (zh) 基于多线激光雷达的公路隧道质检避障方法及系统
CN113380068A (zh) 一种基于描述障碍物轮廓的泊车车位生成方法
CN112964195A (zh) 基于激光三角法的供电轨几何参数综合检测方法及系统
CN106780529B (zh) 基于外接矩形的会议视频马赛克检测方法
WO2024066269A1 (zh) 道岔状态检测方法、存储介质及控制器
Huang et al. Weld line detection using realsense depth camera based on depth map
CN109093625A (zh) 一种用于机器人巡航的直线路径视觉识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant