CN106786757A - 基于人工蜂群算法优化孤岛式混合能源系统配置的方法 - Google Patents

基于人工蜂群算法优化孤岛式混合能源系统配置的方法 Download PDF

Info

Publication number
CN106786757A
CN106786757A CN201611260439.3A CN201611260439A CN106786757A CN 106786757 A CN106786757 A CN 106786757A CN 201611260439 A CN201611260439 A CN 201611260439A CN 106786757 A CN106786757 A CN 106786757A
Authority
CN
China
Prior art keywords
energy
diesel engine
formula
batt
isolated island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611260439.3A
Other languages
English (en)
Other versions
CN106786757B (zh
Inventor
王荣杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN201611260439.3A priority Critical patent/CN106786757B/zh
Publication of CN106786757A publication Critical patent/CN106786757A/zh
Application granted granted Critical
Publication of CN106786757B publication Critical patent/CN106786757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种基于人工蜂群算法优化孤岛式混合能源系统配置的方法,所述方法包括首先构建孤岛式混合能源系统的数学模型和优化配置的目标函数,其次通过人工蜂群算法优化所述目标函数来得到全局最优值,从而获得所述孤岛式混合能源系统最佳的设备配置类型和数量。由于人工蜂群算法比差分进化、遗传算法和粒子群算法等群体优化算法具有更好的优化机理和收敛性能,因此对计算机开销要求较低,计算速度更快,进而能够快速有效地得到孤岛式混合能源系统配置最佳的设备数量和类型,具有很好的实用性,适于推广至其它形式混合能源供电系统。

Description

基于人工蜂群算法优化孤岛式混合能源系统配置的方法
技术领域
本发明属于混合能源系统领域,具体地说,涉及一种基于人工蜂群算法优化孤岛式混合能源系统配置的方法。
背景技术
低成本、低排放、高效能地为偏远地区或移动电力平台供电是微电网系统的一个重要概念。在偏远地区或移动电力平台负载需要柴油机发电才能满足其电力功率的需求。柴油机发电机理是由石油产生电能的,这种机理是以消耗昂贵的燃料和增加污染物排放量为代价的。为了尽量改善空气恶化情况,独立于电网的集成多种绿色能源和柴油机的孤岛式混合能源供电系统得到广泛的应用。在混合能源系统中,不同形式的绿色能源如太阳能、风能、电池储能将和柴油机一起为负载供电。由于太阳能和风能的间歇性和负载的波动性,因此混合能源系统不仅应具有在任何时刻满足负载对能源的需求外,还应保证在紧急情况下具有充足的储能。优化的系统配置和能源管理策略可以保证这种特殊的应用。现有技术提出了很多关于孤岛式混合能源系统的优化配置的方法。例如,文献“Belfkira R,ZhangL,Barakat G.Optimal sizing study of hybrid wind/PV/diesel power generationunit[J].Solar Energy,2011,85(1):100-110”采用了一种确定性算法来确定出最小成本代价的最佳光伏、风机和柴油机的数量和类型,但其准确性过分依赖于所谓的关键点(即Dakar位置);文献“Rodolfo D L,Jose L B,Jose M Y.Multi-objective optimizationminimizing cost and life cycle emissions of stand-alone PV-wind-dieselsystems with batteries storage.Applied Energy,2011,88(11):4033-4041”采用多目标进化优化机理来优化含有电池储能的光伏/风机/柴油机混合系统的配置,但其优化过程复杂,计算量大;文献“Akbar M,Alieza A.Optimal sizing of a PV/wind/diesel systemwith battery storage for electrifiation to an off-grid remote region:A casestudy of Rafsanjan[J].Sustainable Energy Technologies and Assessments,2014,7:147-155”提出了一类基于离散优化算法的配置方法,但其稳定性和鲁棒性差。因此,虽诸多此类优化配置方法被提出,但能有效地优化基于柴油机的孤岛式混合能源系统配置却很少。
发明内容
本发明旨在提供一种基于人工蜂群算法优化孤岛式混合能源系统配置的方法,以解决上述现有技术中存在的问题。为此,本发明采用的具体技术方案如下:
本发明提供一种基于人工蜂群算法优化孤岛式混合能源系统配置的方法,其中,所述方法包括以下步骤:
S1、构建孤岛式混合能源系统的数学模型和优化配置的目标函数,所述孤岛式混合能源系统由风机、太阳能板、电池和柴油机组成,将所述孤岛式混合能源系统优化配置的目标函数CT定义为CT=CC+CM+CF,其中,CT为系统的年使用成本,CC、CM和CF分别为年投入费用、年维护费用和年燃料消耗成本,其中,所述年投入费用其中i为设备的年折旧率,nWT、nPV、nBatt和nD别为风机、太阳能板、电池和柴油机的寿命,它们以年为单位,CWT、CPV、CBatt分别为风机、太阳能板、电池的每个单元初始投入成本,CD为柴油机的初始投入成本,NWT、NPV、NBatt分别为风机、太阳能板、电池的单元数,所述年维护费用其中,为每个风机的年维护费用,为太阳能板单元的年维护费用,为柴油机的年维护费用,Pt,D为柴油机在t时刻的输出功率,所述柴油机的年燃料消耗费用其中,为柴油机在t时刻的时燃料消费成本;
S2、通过人工蜂群算法优化所述目标函数CT来得到全局最优值,从而获得所述孤岛式混合能源系统最佳的设备配置类型和数量NWT、NPV和NBatt
进一步地,所述步骤S2的具体过程包括:
S21、初始化,设定最大迭代次数kmax和允许连续没有得到更优解的最大次数klimit,给定蜂群规模NF和待优化解的维数D,并根据取值限制范围利用混沌映射技术产生θ(l,d)的初始值,l=1,2,…,NF,d=1,2,…,D,其中,分别表示电池充放电过程中电能储存量的上下限,取电池的额定最大容量,而DoD为最大放电深度,Et,Batt为电池组在t时刻的电能储存量,Et,Batt为电池组在t时刻的电能储存量;
S22、优化迭代阶段,所述优化迭代阶段包括:
S221、工蜂(EB)优化阶段,首先在[1D]之间随机产生d,然后由公式θEB(l,d)=θ(l,d)+φld[θ(l,d)-θ(r1,d)]更新θEB(l,d),对θEB(l,d)元素逐个进行取离它最近的大整数运算,最后将它们代入所述目标函数CT计算得到θEB(l)的目标函数FEB(l),如果FEB(l)<F(l),则将θEB(l)的元素赋值予θ(l),置kcount(l)为0,否则,将kcount(l)赋值为kcount(l)+1,其中,φld为[-11]之间的随机数,r1为[1NF]之间的随机整数,且r1≠l;
S222、从θ中选取至目前为止最优的可能解θbest,通过公式l=1,2,…,NF计算pl
S223、观察蜂(OB)优化阶段,首先由公式更新θOB(l,d),对θOB(l,d)元素逐个进行取离它最近的大整数运算,然后计算θOB(l)的目标函数FOB(l),如果FOB(l)<F(l),则将θOB(l)的元素赋值予θ(l),置kcount(l)为0,否则,将kcount(l)赋值为kcount(l)+1,其中,r1和r2为在[1NF]之间随机产生与l相邻的整数序号,且r1≠l和r1≠r2≠l,
S224、侦察蜂(SB)阶段,如果kcount(l)≥klimit,则由公式θSB(l,d)=θbest(d)+φld[θ(l,d)-θ(r2,d)]更新θSB(l)后,再对θSB(l,d)元素逐个进行取离它最近的大整数运算,最后计算θSB(l)的目标函数FSB(l),如果FSB(l)<F(l),则将θSB(l)的元素赋值予θ(l),并将kcount(l)置为0;
S225、如果达到预设的收敛条件,则跳至步骤S23,否则更新迭代次数k=k+1,跳至步骤S221;
S23、从θ中选取全局最优的θbest,即它的元素为最优系统配置NWT、NPV和NBatt
进一步地,所述柴油机在t时刻的时燃料消费成本通过公式计算,其中PF为燃料的单价,Ft,D为柴油机的燃料消耗量。
进一步地,所述的柴油机的燃料消耗量Ft,D通过公式Ft,D=BDPN+ADPt,D计算,其中,PN为柴油机的额定输出功率,Pt,D为柴油机在t时刻的输出功率,Ft,D的单位为l/h,AD=0.246(l/kWh),BD=0.0845(l/kWh)。
进一步地,所述的电池组在t时刻的电能储存量Et,Batt根据该时刻的光伏和风能的电能总和与负载需求的大小关系来计算,如果t时刻的光伏系统和风机的输出电能高于负载的需求,则电池组进行充电,此时电池组的储能量由公式计算得到;反之,电池组进行充电,此时电池组的储能量由公式计算得到,其中,Et,Batt和Et-1,Batt分别为电池组在t时刻和t-1时刻的储能量,Et,PV和Et,WT分别为光伏子系统和风机在t时刻的输出电能,Et,L为负载需求量,ηInv和ηBatt分别为逆变器转换率和电池组充电效率。
本发明采用上述技术方案,具有的有益效果是,由于人工蜂群算法比差分进化、遗传算法和粒子群算法等群体优化算法具有更好的优化机理和收敛性能、更优的稳定性和鲁棒性。因此对计算机开销要求较低,计算速度更快,进而能够快速有效地得到孤岛式混合能源系统配置最佳的设备数量和类型,具有很好的实用性,适于推广至其它形式混合能源供电系统。
附图说明
图1示出了孤岛式光伏/风/储能电池/柴油机混合能源系统的示意图;
图2示出了本发明的人工蜂群算法的流程图;
图3示出了根据本发明的一个实例的负载用电量用电量示意图;
图4示出了根据本发明的一个实例的风速的示意图;
图5示出了根据本发明的一个实例的太阳辐射量的示意图;
图6a示出了根据本发明的一个实例的光伏/储能电池/柴油机混合能源系统中的柴油机为负载提供的功率的曲线图;
图6b示出了根据本发明的一个实例的光伏/储能电池/柴油机混合能源系统工作过程中储能电池容量的变化的曲线图;
图7a示出了根据本发明的一个实例的风机/储能电池/柴油机混合能源系统中的柴油机为负载提供的功率的曲线图;
图7b示出了根据本发明的一个实例的风机/储能电池/柴油机混合能源系统工作过程中储能电池容量的变化的曲线图;
图8a示出了根据本发明的一个实例的光伏/风机/储能电池/柴油机混合能源系统中的柴油机为负载提供的功率的曲线图;
图8b示出了根据本发明的一个实例的光伏/风机/储能电池/柴油机混合能源系统工作过程中储能电池容量的变化的曲线图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。参照图1,描述孤岛式光伏/风机/储能电池/柴油机混合能源系统结构,其中AC和DC分别表示交流(alternatingcurrent)和直流(direct current)。系统包含了太阳能和风能可再生能源发电机,它们也是主供电能源;而柴油机为后备能源,电池组用于存储过剩的电能。该混合能源系统工作原理:当主供电能源的功率高于负载需求的功率时,则由光伏和风机共同供电,并且根据情况为电池组充电;当主供电能源的功率低于负载需求的功率时,则启动柴油机辅助供电。下面分别对光伏发电子系统、风机系统、电池组储能系统和柴油机的数学模型进行详细说明。
1.光伏发电子系统
设一个光伏发电单元在时刻t受太阳辐射激励下产生的功率为pt,PV,它可由式(1)计算得到。
pt,PV=It×A×ηPV (1)
式(1)中,It为t时刻的太阳辐射量,A为太阳能板面积,ηPV太阳能板电能转换率。记光伏发电单元数为NPV,则光伏发电系统在t时刻产生的电能功率为Pt,PV=NPV×pt,PV
2.风机系统
对于风机,如果风速高于输入截止速度,它就启动开始产生电能;当风速达到额定速度时,风机将输出一个恒定的功率;当风速高于输出截止速度,出于保护风机的目的,风机将停止工作。一个风机发电单元在t时刻的输出功率pt,WT的计算可由式(2)描述。
式(2)中,vcut_in和vcut_out分别为风机的输入截止速度和输出截止速度;vt为t时刻的风速,vr为风机的额定风速,Pr为风机的额定输出功率。记风机发电单元数为NWT,则风机发电子系统在t时刻产生的电能功率为Pt,WT=NWT×pt,WT
3.电池组储能系统
由于太阳辐射量和风速的间歇性,那么t时刻电池组的充电状态取决于该时刻的光伏和风能的电能总和。t时刻电池组在充放电过程电能储存量计算如下:
如果t时刻的光伏系统和风机的输出电能高于负载的需求时,电池组进行充电,此时电池组的储能量由式(3)计算得到。
式(3)中,Et,Batt和Et-1,Batt分别为电池组在t时刻和t-1时刻的储能量;Et,PV和Et,WT分别为光伏子系统和风机在t时刻的输出电能,而Et,L为负载需求量;ηInv和ηBatt分别为逆变器转换率和电池组充电效率。
如果t时刻的光伏系统和风机的输出电能低于负载的需求时,电池组进行充电,此时电池组的储能量由式(4)计算得到。
4.柴油机
柴油机主要在光伏系统、风机和电池组能量不足时,作为后备能源为负载提供电能,以保证负载供电的可持续性。柴油机的燃料消耗量Ft,D计算表达式为:
Ft,D=BDPN+ADPt,D (5)
式(5)中,PN为柴油机的额定输出功率,Pt,D为柴油机在t时刻的输出功率;Ft,D的单位为l/h,AD=0.246(l/kWh),BD=0.0845(l/kWh)。柴油机每小时的燃料消费成本由式(6)得到。
式(6)中,为柴油机在t时刻的时燃料消费成本,PF为燃料的单价。
参照图2,描述利用人工蜂群算法优化能源系统配置的方法。首先,构建孤岛式混合能源系统的优化配置的目标函数CT,CT定义为式(7)
CT=CC+CM+CF (7)
式(7)中,CT为系统的年使用成本,CC、CM和CF分别为年投入费用、年维护费用和年燃料消耗成本。其中,
式(8)中,i为设备的年折旧率;nWT、nPV、nBatt和nD分别为风机、太阳能板、电池和柴油机的寿命,它们以年为单位;Cl(l=WT,PV,Batt)为设备的每个单元初始投入成本,CD为柴油机的初始投入成本。
式(9)中,为每个风机的年维护费用,为太阳能板单元的年维护费用;为柴油机的年维护费用,
柴油机的年燃料消耗费用CF由式(10)得到。
在混合能源系统,目标函数CT约束条件为式(11)-式(14)。
式(14)中的分别反映了电池充放电过程中电能储存量的上下限。通常,取电池的额定最大容量,而DoD为最大放电深度。
其次,通过人工蜂群算法优化所述目标函数CT来得到全局最优值,从而获得所述孤岛式混合能源系统最佳的设备配置类型和数量NWT、NPV和NBatt.。人工蜂群算法(artificial bee colony,ABC)是由土耳其学者KARABOGA D.于2005年提出模拟蜜蜂寻觅花蜜过程的一种群体智能优化算法。ABC是模拟蜂群分工寻找花蜜的机理来解决多维优化问题的群集智能算法,如果将待优化的参数视为花蜜源的话,那么蜜蜂寻找一次新的花蜜的过程就相当于对于待求解的参数完成一次优化迭代。模拟蜂群寻找花蜜来进行一次参数的优化迭代需要完成三个阶段:工蜂(employ bee,EB)阶段,根据上次优化过程得到的解的邻近中寻找下一个新的解;观察蜂(onlooker bee,OB)阶段,在工蜂阶段产生的解的基础上产生新解,并进行优选;侦察蜂(scout bee,SB)阶段,放弃连续几次迭代过程中没有得到更新的解,并产生一个新解。
如果将人工蜂群算法中待优化的解记为θ,则θ=[NWT,NPV,NBatt],考虑到实际情况下系统能量的裕量,迭代过程中需要对θ的元素逐个进行取离它最近的大整数运算。利用人工蜂群算法优化孤岛式柴油机混合能源系统配置方法的实现步骤如下:
步骤I.初始化
设定最大迭代次数kmax和允许连续没有得到更优解的最大次数klimit;给定蜂群规模NF和待优化解的维数D,并根据式(11)-式(14)的取值限制范围,利用文献“王荣杰,詹宜巨,周海峰.人工蜂群优化算法在复数盲源分离中的应用[J].中国科学:信息科学,2014,44(2):199-220”的混沌映射技术产生θ(l,d)的初始值,l=1,2,…,NF,d=1,2,…,D。
步骤II.优化迭代阶段
II.1EB优化阶段
首先在[1D]之间随机产生d,然后由式(15)更新θEB(l,d),对θEB(l,d)元素逐个进行取离它最近的大整数运算,最后将它们代入式(7)计算得到θEB(l)的目标函数FEB(l)。如果FEB(l)<F(l),则将θEB(l)的元素赋值予θ(l),置kcount(l)为0;否则,将kcount(l)赋值为kcount(l)+1。
θEB(l,d)=θ(l,d)+φld[θ(l,d)-θ(r1,d)] (15)
式(15)中,φld为[-11]之间的随机数,r1为[1NF]之间的随机整数,且r1≠l。
II.2从θ中选取至目前为止最优的可能解θbest;由式(16)计算pl
II.3OB优化阶段
首先由式(17)更新θOB(l,d),对θOB(l,d)元素逐个进行取离它最近的大整数运算,然后计算θOB(l)的目标函数FOB(l)。如果FOB(l)<F(l),则将θOB(l)的元素赋值予θ(l),置kcount(l)为0;否则,将kcount(l)赋值为kcount(l)+1。
式(17)中,r1和r2为在[1NF]之间随机产生与l相邻的整数序号,且r1≠l和r1≠r2≠l;
II.4SB优化阶段
如果kcount(l)≥klimit,则由式(18)更新θSB(l)后,再对θSB(l,d)元素逐个进行取离它最近的大整数运算,最后计算θSB(l)的目标函数FSB(l)。如果FSB(l)<F(l),则将θSB(l)的元素赋值予θ(l),置kcount(l)为0。
θSB(l,d)=θbest(d)+φld[θ(l,d)-θ(r2,d)] (18)
II.5如果达到预设的收敛条件,则跳至步骤III;否则更新迭代次数k=k+1,跳至步骤II.1。
步骤III.从θ中选取全局最优的θbest,即它的元素为最优系统配置NWT,NPV和NBatt
实例验证
为了验证上述孤岛式柴油机混合能源系统优化配置方法的有效性和合理性,本节分别对美国爱达荷州某边沿地区的光伏/储能电池/柴油机、风机/储能电池/柴油机和光伏/风机/储能电池/柴油机三种模式的混合能源系统进行优化配置,这里选择美国爱达荷州是基于数据可获得性的原因,该地区的2014年1月~2014年12月,负载用电量如图3所示,气象站采集到的风速和太阳辐射量分别如图4和图5所示,数据源自文献“PacificNorthwest Cooperative Agricultural Weather Network.AgriMet Historical DayfileData Access,Deer Lodge,MT(DRLM)[OL].http://www.usbr.gov/pn/agrim-et/webaghrread.html”。在仿真实验中,光伏发电系统的相关参数如式(19)所示,风机发电系统的相关参数如式(20)所示,储能电池组相关参数如式(21)所示,柴油机相关参数如式(22)所示。此外,逆变器转换率ηInv为95%,所有设备的年折旧率i=5%。
利用本文的方法对三种模式进行优化配置的结果如表1所示。不同混合模式的能源系统的污染物排放量和治理费用如表2所示,它们的计算依据具体可参考文献“FaisalA,Heikki N.System modelling and online optimal management of MicroGrid usingmesh adaptive direct search[J].International Journal of Electrical Power&Energy Systems,2010,32(5):98-407”。
表1不同模式的混合能源系统优化配置结果比较
说明:表1中的“--”表示无此项
表2不同模式的混合能源系统污染物排放比较
从表1和表2的比较结果可知,利用本文的方法能有效地为不同孤岛式混合能源系统提供优化配置方案,即为混合能源系统配置最佳的设备数量和类型。此外,无论在设备成本费用,还是环境污染物排放量,配置后的混合系统都优于柴油机独立供电的模式。
为了更好地分析不同混合能源模式系统的性能,图6、图7和图8描述了柴油机为负载提供的输出功率和储能电池容量的曲线。这里为了获得更好的显示效果,我们计算了它们相应每天的平均值。在光伏/储能电池/柴油机混合模式的能源系统中,柴油机为负载提供的功率如图6(a)所示,工作过程中储能电池容量的变化如图6(b)所示。在风机/储能电池/柴油机混合模式的能源系统中,柴油机为负载提供的功率如图7(a)所示,工作过程中储能电池容量的变化如图7(b)所示。在光伏/风机/储能电池/柴油机混合模式的能源系统中,柴油机为负载提供的功率如图8(a)所示,工作过程中储能电池容量的变化如图8(b)所示。比较图6、图7和图8可得,风机/储能电池/柴油机混合能源系统和光伏/风机/储能电池/柴油机混合能源系统的工作性能很接近,并且都优于光伏/储能电池/柴油机混合能源系统,其实表1和表2中的比较结果进一步说明这个结论。
通过上述实例验证,可以验证本文方法的有效性,并且由于人工蜂群算法比差分进化、遗传算法和粒子群算法等群体优化算法具有更好的优化机理和收敛性能,因此对计算机开销要求较低,计算速度更快,进而能够快速有效地得到孤岛式混合能源系统配置最佳的设备数量和类型,具有很好的实用性,适于推广至其它形式混合能源供电系统。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (5)

1.基于人工蜂群算法优化孤岛式混合能源系统配置的方法,其特征在于,所述方法包括以下步骤:
S1、构建孤岛式混合能源系统的数学模型和优化配置的目标函数,所述孤岛式混合能源系统由风机、太阳能板、电池和柴油机组成,将所述孤岛式混合能源系统优化配置的目标函数CT定义为CT=CC+CM+CF,其中,CT为系统的年使用成本,CC、CM和CF分别为年投入费用、年维护费用和年燃料消耗成本,其中,所述年投入费用其中i为设备的年折旧率,nWT、nPV、nBatt和nD别为风机、太阳能板、电池和柴油机的寿命,它们以年为单位,CWT、CPV、CBatt分别为风机、太阳能板、电池的每个单元初始投入成本,CD为柴油机的初始投入成本,NWT、NPV、NBatt分别为风机、太阳能板、电池的单元数,所述年维护费用其中,为每个风机的年维护费用,为太阳能板单元的年维护费用,为柴油机的年维护费用,Pt,D为柴油机在t时刻的输出功率,所述柴油机的年燃料消耗费用其中,为柴油机在t时刻的时燃料消费成本;
S2、通过人工蜂群算法优化所述目标函数CT来得到全局最优值,从而获得所述孤岛式混合能源系统最佳的设备配置类型和数量NWT、NPV和NBatt
2.如权利要求1所述的方法,其特征在于,所述步骤S2的具体过程包括:
S21、初始化,设定最大迭代次数kmax和允许连续没有得到更优解的最大次数klimit,给定蜂群规模NF和待优化解的维数D,并根据取值限制范围利用混沌映射技术产生θ(l,d)的初始值,l=1,2,…,NF,d=1,2,…,D,其中,分别表示电池充放电过程中电能储存量的上下限,取电池的额定最大容量,而DoD为最大放电深度,Et,Batt为电池组在t时刻的电能储存量,Et,Batt为电池组在t时刻的电能储存量;
S22、优化迭代阶段,所述优化迭代阶段包括:
S221、工蜂(EB)优化阶段,首先在[1D]之间随机产生d,然后由公式θEB(l,d)=θ(l,d)+φld[θ(l,d)-θ(r1,d)]更新θEB(l,d),对θEB(l,d)元素逐个进行取离它最近的大整数运算,最后将它们代入所述目标函数CT计算得到θEB(l)的目标函数FEB(l),如果FEB(l)<F(l),则将θEB(l)的元素赋值予θ(l),置kcount(l)为0,否则,将kcount(l)赋值为kcount(l)+1,其中,φld为[-11]之间的随机数,r1为[1NF]之间的随机整数,且r1≠l;
S222、从θ中选取至目前为止最优的可能解θbest,通过公式计算pl
S223、观察蜂(OB)优化阶段,首先由公式更新θOB(l,d),对θOB(l,d)元素逐个进行取离它最近的大整数运算,然后计算θOB(l)的目标函数FOB(l),如果FOB(l)<F(l),则将θOB(l)的元素赋值予θ(l),置kcount(l)为0,否则,将kcount(l)赋值为kcount(l)+1,其中,r1和r2为在[1NF]之间随机产生与l相邻的整数序号,且r1≠l和r1≠r2≠l,
S224、侦察蜂(SB)阶段,如果kcount(l)≥klimit,则由公式θSB(l,d)=θbest(d)+φld[θ(l,d)-θ(r2,d)]更新θSB(l)后,再对θSB(l,d)元素逐个进行取离它最近的大整数运算,最后计算θSB(l)的目标函数FSB(l),如果FSB(l)<F(l),则将θSB(l)的元素赋值予θ(l),并将kcount(l)置为0;
S225、如果达到预设的收敛条件,则跳至步骤S23,否则更新迭代次数k=k+1,跳至步骤S221;
S23、从θ中选取全局最优的θbest,即它的元素为最优系统配置NWT、NPV和NBatt
3.如权利要求1所述的方法,其特征在于,所述柴油机在t时刻的时燃料消费成本通过公式计算,其中PF为燃料的单价,Ft,D为柴油机的燃料消耗量。
4.如权利要求3所述的方法,其特征在于,所述的柴油机的燃料消耗量Ft,D通过公式Ft,D=BDPN+ADPt,D计算,其中,PN为柴油机的额定输出功率,Pt,D为柴油机在t时刻的输出功率,Ft,D的单位为l/h,AD=0.246(l/kWh),BD=0.0845(l/kWh)。
5.如权利要求2所述的方法,其特征在于,所述的电池组在t时刻的电能储存量Et,Batt根据该时刻的光伏和风能的电能总和与负载需求的大小关系来计算,如果t时刻的光伏系统和风机的输出电能高于负载的需求,则电池组进行充电,此时电池组的储能量由公式计算得到;反之,电池组进行充电,此时电池组的储能量由公式计算得到,其中,Et,Batt和Et-1,Batt分别为电池组在t时刻和t-1时刻的储能量,Et,PV和Et,WT分别为光伏子系统和风机在t时刻的输出电能,Et,L为负载需求量,ηInv和ηBatt分别为逆变器转换率和电池组充电效率。
CN201611260439.3A 2016-12-30 2016-12-30 基于人工蜂群算法优化孤岛式混合能源系统配置的方法 Active CN106786757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611260439.3A CN106786757B (zh) 2016-12-30 2016-12-30 基于人工蜂群算法优化孤岛式混合能源系统配置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611260439.3A CN106786757B (zh) 2016-12-30 2016-12-30 基于人工蜂群算法优化孤岛式混合能源系统配置的方法

Publications (2)

Publication Number Publication Date
CN106786757A true CN106786757A (zh) 2017-05-31
CN106786757B CN106786757B (zh) 2019-05-31

Family

ID=58953813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611260439.3A Active CN106786757B (zh) 2016-12-30 2016-12-30 基于人工蜂群算法优化孤岛式混合能源系统配置的方法

Country Status (1)

Country Link
CN (1) CN106786757B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565602A (zh) * 2017-10-18 2018-01-09 集美大学 计及成本和可靠性的直流微网光伏‑风能系统配置优化方法
CN108270216A (zh) * 2018-02-08 2018-07-10 东北大学 一种考虑多目标的复杂配电网故障恢复系统及方法
CN108984946A (zh) * 2018-08-03 2018-12-11 安徽大学 一种基于多目标优化算法的电力网络关键节点识别方法
CN109038571A (zh) * 2018-08-30 2018-12-18 集美大学 一种混合能源系统
CN111399370A (zh) * 2020-03-12 2020-07-10 四川长虹电器股份有限公司 离网逆变器的人工蜂群pi控制方法
CN111900759A (zh) * 2020-07-09 2020-11-06 中国能源建设集团广东省电力设计研究院有限公司 一种海上风力发电机与柴油发电机协同控制方法及系统
CN113206501A (zh) * 2021-05-08 2021-08-03 天津理工大学 一种并网型微网优化配置方法
CN115037195A (zh) * 2022-07-21 2022-09-09 中原工学院 基于多目标蜂群算法的无刷电机驱动控制系统优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140277599A1 (en) * 2013-03-13 2014-09-18 Oracle International Corporation Innovative Approach to Distributed Energy Resource Scheduling
US20160033986A1 (en) * 2014-07-30 2016-02-04 Melrok, Llc Systems and methods to manage renewable energy on the electric grid
CN105719081A (zh) * 2016-01-20 2016-06-29 南京邮电大学 一种基于改进人工蜂群算法的电力系统动态经济调度方法
CN105976048A (zh) * 2016-04-28 2016-09-28 苏州泛能电力科技有限公司 一种基于改进人工蜂群算法的输电网扩展规划方法
CN106159938A (zh) * 2015-04-10 2016-11-23 华北电力大学(保定) 一种风光联合发电微电网系统电源优化配置方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140277599A1 (en) * 2013-03-13 2014-09-18 Oracle International Corporation Innovative Approach to Distributed Energy Resource Scheduling
US20160033986A1 (en) * 2014-07-30 2016-02-04 Melrok, Llc Systems and methods to manage renewable energy on the electric grid
CN106159938A (zh) * 2015-04-10 2016-11-23 华北电力大学(保定) 一种风光联合发电微电网系统电源优化配置方法
CN105719081A (zh) * 2016-01-20 2016-06-29 南京邮电大学 一种基于改进人工蜂群算法的电力系统动态经济调度方法
CN105976048A (zh) * 2016-04-28 2016-09-28 苏州泛能电力科技有限公司 一种基于改进人工蜂群算法的输电网扩展规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭曙蓉等: "考虑电动汽车的微网动态经济调度", 《陕西电力》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565602A (zh) * 2017-10-18 2018-01-09 集美大学 计及成本和可靠性的直流微网光伏‑风能系统配置优化方法
CN108270216A (zh) * 2018-02-08 2018-07-10 东北大学 一种考虑多目标的复杂配电网故障恢复系统及方法
CN108270216B (zh) * 2018-02-08 2021-05-28 东北大学 一种考虑多目标的复杂配电网故障恢复系统及方法
CN108984946A (zh) * 2018-08-03 2018-12-11 安徽大学 一种基于多目标优化算法的电力网络关键节点识别方法
CN108984946B (zh) * 2018-08-03 2023-03-10 安徽大学 一种基于多目标优化算法的电力网络关键节点识别方法
CN109038571A (zh) * 2018-08-30 2018-12-18 集美大学 一种混合能源系统
CN111399370A (zh) * 2020-03-12 2020-07-10 四川长虹电器股份有限公司 离网逆变器的人工蜂群pi控制方法
CN111399370B (zh) * 2020-03-12 2022-08-16 四川长虹电器股份有限公司 离网逆变器的人工蜂群pi控制方法
CN111900759A (zh) * 2020-07-09 2020-11-06 中国能源建设集团广东省电力设计研究院有限公司 一种海上风力发电机与柴油发电机协同控制方法及系统
CN113206501A (zh) * 2021-05-08 2021-08-03 天津理工大学 一种并网型微网优化配置方法
CN115037195A (zh) * 2022-07-21 2022-09-09 中原工学院 基于多目标蜂群算法的无刷电机驱动控制系统优化方法

Also Published As

Publication number Publication date
CN106786757B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN106786757B (zh) 基于人工蜂群算法优化孤岛式混合能源系统配置的方法
Lian et al. A review on recent sizing methodologies of hybrid renewable energy systems
Singh et al. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system
Dufo-López et al. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage
Khatib et al. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system
Borhanazad et al. Optimization of micro-grid system using MOPSO
Zhao et al. Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm
Sobu et al. Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand
Boonbumroong et al. Particle swarm optimization for AC-coupling stand alone hybrid power systems
CN108446796A (zh) 考虑电动汽车负荷需求响应的网-源-荷协调规划方法
Abdel-Mawgoud et al. A strategy for PV and BESS allocation considering uncertainty based on a modified Henry gas solubility optimizer
CN105071389B (zh) 计及源网荷互动的交直流混合微电网优化运行方法及装置
Alsharif et al. A rule-based power management strategy for Vehicle-to-Grid system using antlion sizing optimization
Eid et al. Efficient operation of battery energy storage systems, electric-vehicle charging stations and renewable energy sources linked to distribution systems
Gupta et al. Economic analysis and design of stand-alone wind/photovoltaic hybrid energy system using Genetic algorithm
Berbaoui et al. An applied methodology for optimal sizing and placement of hybrid power source in remote area of South Algeria
Wang Multi-objective configuration optimization method for a diesel-based hybrid energy system
Shafiey Dehaj et al. Multi-objective optimization of hybrid solar/wind/diesel/battery system for different climates of Iran
Musau et al. Multi area multi objective dynamic economic dispatch with renewable energy and multi terminal DC tie lines
Suman et al. HOMER based optimal sizing of a PV/diesel/battery hybrid system for a laboratory facility
Medina et al. Optimal model of a hybrid electrical system photovoltaic panel/wind turbine/battery bank, considering the feasibility of implementation in isolated areas
Tukkee et al. Optimal sizing of autonomous hybrid microgrids with economic analysis using grey wolf optimizer technique
CN114741960A (zh) 一种综合能源经济环境调度优化方法及系统
Anand et al. Renewable energy-based hybrid model for rural electrification
Fakih et al. Bi-level and multi-objective optimization of renewable energy sources and storage planning to support existing overloaded electricity grids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant