CN106785824A - 一种高效率全固态铥激光封装模块 - Google Patents

一种高效率全固态铥激光封装模块 Download PDF

Info

Publication number
CN106785824A
CN106785824A CN201611167571.XA CN201611167571A CN106785824A CN 106785824 A CN106785824 A CN 106785824A CN 201611167571 A CN201611167571 A CN 201611167571A CN 106785824 A CN106785824 A CN 106785824A
Authority
CN
China
Prior art keywords
heat
laser
heat sink
crystal
solid state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611167571.XA
Other languages
English (en)
Other versions
CN106785824B (zh
Inventor
姚育成
罗才智
刘丹琳
黄楚云
陈本源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Leijian Technology Co ltd
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201611167571.XA priority Critical patent/CN106785824B/zh
Publication of CN106785824A publication Critical patent/CN106785824A/zh
Application granted granted Critical
Publication of CN106785824B publication Critical patent/CN106785824B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开一种高效率全固态铥激光封装模块,包括冷却热沉、辅热热沉、条状Tm:YAG键合晶体、TEC制冷模块、隔热材料。利用TEC冷却模块工作时制冷面吸热、散热面放热的特点,设计冷却和辅热热沉实现对Tm:YAG晶体增益区域的低温冷却和端部辅热,模拟分析表明应用此激光模块的端泵固体激光器,不仅可以解决低温工作光学断面水汽凝结问题,同时还可以大幅度降低晶体热应力,有利于提高激光器抽运极限和改善光束质量,显著提高铥激光器脉冲输出能量和输出效率。

Description

一种高效率全固态铥激光封装模块
技术领域
本发明涉及一种高效率全固态铥激光封装模块,具体为一种用于提高全固态Tm:YAG激光器输出效率和可靠性的激光封装模块,属激光器件技术领域。
背景技术
2μm波长的铥激光在激光雷达、测距及医疗等领域具有良好的应用前景。全固态铥激光器可以利用很长的激光上能级寿命,通过调制实现大脉冲能量输出,在某些探测领域具有明显优势。铥激光器以准三能级方式运转,低温冷却可使激光效率极大提高。因此,良好的冷却条件是Tm:YAG激光器实现高效率激光输出的必要条件。但是,当激光晶体被冷却至较低温度时(特别在激光震荡间隙),激光晶体端面容易产生水汽凝结,这些凝结的水汽可强力吸收2.01μm波长的振荡激光,从而导致激光晶体光学端面突然损坏。公知的防护凝结水汽的措施是密封或充氮气隔绝法隔绝水汽,如中国实用新型专利《一种高功率2μm波长医用铥激光器》(申请号:200720096813.0)公开的铥激光器,是将整个激光光路置于充有氮气的干燥箱内,其不足之处是要求很高的密封条件且时间稍长便容易失效,造成激光器损坏;中国发明专利《大功率铥激光器》(申请号:200710093817.8)是通过LD侧面泵浦Tm:YAG实现2.01μm波长激光输出,即存在水汽凝结现象,限制了激光效率提升。
综上所述,现有铥激光器及上述两个专利所公开的高效Tm:YAG激光器,不足之处是:低温条件会造成工作物质光学端面结露而损坏光学面,依靠密封等解决端面结露的方法结构复杂,可靠性差。本发名人曾提出端部加热套筒避免光学端面结露,实现水冷高功率铥激光输出(一种高功率2μm波长医用铥激光器,专利号:201210245510.6),结构较复杂,仅适合侧面抽运高功率铥激光器应用。
发明内容
本发明所要解决的技术问题是提供一种高效率全固态铥激光封装模块。应用此激光模块可以方便组装出高效率端泵Tm:YAG固体激光器,可以实现铥激光器低温条件下工作,同时解决光学断面水汽凝结问题,还可以大幅度降低晶体热应力和一定程度减小热透镜效应,从而有利于提高激光器抽运极限和改善光束质量,显著提高铥激光器脉冲输出能量和系统性能。
本发明的技术方案是:
一种高效率全固态铥激光封装模块,包括冷却热沉、辅热热沉、条状Tm:YAG晶体、TEC制冷模块、隔热材料,所述条状Tm:YAG晶体是Tm:YAG和YAG键合晶体,晶体两端是无掺杂部分、中间是掺杂部分,晶体掺杂部分周围通过铟箔与冷却热沉结合,端部无掺杂部分则与辅热热沉结合;TEC冷却模块的制冷面与冷却热沉结合,散热面则与辅热热沉结合,在冷却热沉和辅热热沉之间设置隔热材料,整体结构实现一体化封装。
所述的条状Tm:YAG晶体的无掺杂部分长度≤2.5mm。
本发明高效率全固态铥激光封装模块的工作原理是:TEC(半导体制冷器)冷却模块工作时,制冷面从冷却热沉吸热,冷却热沉实现对Tm:YAG晶体掺杂部分低温冷却;TEC散热面通过辅热热沉对晶体端部加热,使激光晶体端面温度略高于环境温度,解决了因低温冷却激光晶体杂部分而使其光学端面水汽凝结的问题,避免光学端面的突然损坏;785nm波长或781nm波长的LD激光束通过晶体光学端面抽运晶体,在激光晶体掺杂区域产生激光增益输出,因TEC模块对激光增益区域低温冷却,更容易实现粒子数翻转,显著提高激光器输出效率。激光器工作过程中,激光晶体增益部分低温冷却和端部辅热组合,通过对其热效应模拟分析显示:高低温组合不但可以降低增益区域温度,同时减小晶体的最大应力,提高抽运能量极限,提高端泵激光器输出能力。
所述的Tm:YAG是掺铥钇铝石榴石,YAG是钇铝石榴石 (也就是没有掺杂的)。
本发明高效率全固态铥激光封装模块的有益效果是:
将TEC模块的散热面与辅热热沉结合对键合晶体端部辅热,使激光晶体端面温度略高于环境温度,解决了晶体光学端面水汽凝结的问题,使Tm:YAG晶体增益区域低温冷却成为可能,显著提高铥激光器输出效率;
运利用TEC制冷模块一面吸热,另一面放热的特性,巧妙设计了低温冷却与辅热组合封装结构,结构简单可靠,有利于此种新型封装结构铥激光器的工程化应用;
通过对激光晶体热效应模拟分析可知,此种高低温组合不但可以降低增益区域温度,提高激光器效率,同时减小晶体的最大应力,提高抽运能量极限,提高端泵激光器输出能力。
本发明所公开的技术方案可使此种新型结构的端泵全固态Tm:YAG激光器在不影响可靠性的基础上显著提高激光输出效率和输出能力。
附图说明
图1是本发明高效率全固态铥激光封装模块的结构示意图; 图中标记:1—辅热热沉,2—TEC制冷模块,3—冷却热沉,4—隔热材料,5—条状Tm:YAG晶体。
图2是本发明高效率全固态铥激光封装模块工作中晶体热应力分析结果。a.辅热情况,最大应力129MPa;b.无辅热情况,最大应力234MPa。
具体实施方式
下面结合附图对技术方案的实施作进一步的详细描述:
如图1所示,本发明高效率全固态铥激光封装模块包括辅热热沉1,两组TEC制冷模块21和22,冷却热沉3,两组隔热材料41和42,条状Tm:YAG晶体5。激光晶体5采用规格为4×4×10mm的条状Tm:YAG和YAG键合晶体,其中两端B和C无掺杂部分各长2.5mm,中间A掺杂部分长5mm,键合晶体避免了Tm:YAG激光因准三能级运转而具有较高浓度的激光下能级粒子对震荡激光的吸收,提高激光效率,晶体A区域周围通过铟箔与冷却热沉紧密结合,端部B和C区域则与辅热热沉紧密结合;TEC冷却模块的制冷面与冷却热沉紧密结合,散热面则与辅热热沉紧密结合,在冷却热沉和辅热热沉之间设置聚氨酯泡沫塑料隔热,整体结构实现一体化封装。TEC冷却模块工作时,制冷面从冷却热沉吸热,冷却热沉实现对Tm:YAG晶体掺杂部分低温冷却;TEC散热面通过辅热热沉对晶体端部加热,使激光晶体端面温度略高于环境温度,解决了因低温冷却激光晶体杂部分而使其光学端面水汽凝结的问题,避免光学端面的突然损坏;785nm波长或781nm波长的LD激光束通过晶体光学端面抽运晶体,在激光晶体掺杂区域产生激光增益输出,因TEC模块对激光增益区域低温冷却,更容易实现粒子数翻转,显著提高激光器输出效率。激光器工作过程中,对功率40W、光斑直径1mm的785nm波长LD抽运时晶体热效应模拟分析显示晶体的最大应力减小105MPa,接近减小一半,可大大提高激光器抽运能量极限,提高激光器输出能力。
根据图1所示的结构,取晶体尺寸为4×4×10mm,其中掺杂部分长5mm,未掺杂部分长2.5mm,绝热层厚1mm。工作时设TEC制冷控制温度为-13℃,辅热控制温度为42℃,抽运功率设置为30W,采用有限差分法对晶体温度场进行模拟计算,同时计算常温冷却情况下模型(冷却温度为27℃)作对比分析。图2为晶体中心剖面正应力大小分布图,a、b分别为端部辅热和无辅热情况,模拟结果显示两种冷却状态下应力分布有明显的不同,端部辅热最高值为148MPa,无辅热情况下晶体应力集中在抽运中心区域,应力高达234MPa,因此采用端部辅热低温冷却不但可以极大减小工作区域温度,同时减小应力集中度,极大减小了激光器工作中晶体的最大应力,减小晶体热致炸裂破坏的可能,可大大提高抽运能量极限,提高端泵激光器激光输出能力。

Claims (3)

1.一种高效率全固态铥激光封装模块,包括冷却热沉、辅热热沉、条状Tm:YAG晶体、TEC制冷模块、隔热材料,所述条状Tm:YAG晶体是Tm:YAG和YAG键合晶体,晶体两端是无掺杂部分、中间是掺杂部分,晶体掺杂部分周围通过铟箔与冷却热沉结合,端部无掺杂部分则与辅热热沉结合;TEC冷却模块的制冷面与冷却热沉结合,散热面则与辅热热沉结合,在冷却热沉和辅热热沉之间设置隔热材料,整体结构实现一体化封装。
2.根据权利要求1所述的高效率全固态铥激光封装模块,其特征在于,所述的条状Tm:YAG晶体的无掺杂部分长度≤2.5mm。
3.根据权利要求1所述的高效率全固态铥激光封装模块,其特征在于,所述的隔热材料是聚氨酯泡沫塑料。
CN201611167571.XA 2016-12-16 2016-12-16 一种高效率全固态铥激光封装模块 Active CN106785824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611167571.XA CN106785824B (zh) 2016-12-16 2016-12-16 一种高效率全固态铥激光封装模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611167571.XA CN106785824B (zh) 2016-12-16 2016-12-16 一种高效率全固态铥激光封装模块

Publications (2)

Publication Number Publication Date
CN106785824A true CN106785824A (zh) 2017-05-31
CN106785824B CN106785824B (zh) 2019-01-04

Family

ID=58893147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611167571.XA Active CN106785824B (zh) 2016-12-16 2016-12-16 一种高效率全固态铥激光封装模块

Country Status (1)

Country Link
CN (1) CN106785824B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109144137A (zh) * 2018-07-27 2019-01-04 北京量子体系科技股份有限公司 一种温度控制装置及激光器
CN112103757A (zh) * 2020-09-01 2020-12-18 西安电子科技大学 一种固体激光块材料的模块化热管理装置及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144484A (en) * 1998-05-01 2000-11-07 Light Solutions Corporation CW laser amplifier
CN1845399A (zh) * 2006-05-17 2006-10-11 中国科学院上海光学精密机械研究所 减小热容激光介质热应力的方法
CN201008073Y (zh) * 2006-12-13 2008-01-16 中国科学院上海光学精密机械研究所 倍频晶体温度梯度补偿法控温装置
CN101252248A (zh) * 2007-11-30 2008-08-27 西安电子科技大学 二极管泵浦固体激光器中晶体热管热沉制冷方法
WO2010058315A1 (en) * 2008-11-18 2010-05-27 Laserwave S.R.L. A secondary laser source and a laser device
CN102790346A (zh) * 2012-07-17 2012-11-21 湖北工业大学 一种ld泵浦高功率铥激光模块
CN104852265A (zh) * 2015-06-10 2015-08-19 湖北工业大学 一种高效率钬激光器
CN204989714U (zh) * 2015-09-23 2016-01-20 中国工程物理研究院应用电子学研究所 一种半导体控温片状晶体和频器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144484A (en) * 1998-05-01 2000-11-07 Light Solutions Corporation CW laser amplifier
CN1845399A (zh) * 2006-05-17 2006-10-11 中国科学院上海光学精密机械研究所 减小热容激光介质热应力的方法
CN201008073Y (zh) * 2006-12-13 2008-01-16 中国科学院上海光学精密机械研究所 倍频晶体温度梯度补偿法控温装置
CN101252248A (zh) * 2007-11-30 2008-08-27 西安电子科技大学 二极管泵浦固体激光器中晶体热管热沉制冷方法
WO2010058315A1 (en) * 2008-11-18 2010-05-27 Laserwave S.R.L. A secondary laser source and a laser device
CN102790346A (zh) * 2012-07-17 2012-11-21 湖北工业大学 一种ld泵浦高功率铥激光模块
CN104852265A (zh) * 2015-06-10 2015-08-19 湖北工业大学 一种高效率钬激光器
CN204989714U (zh) * 2015-09-23 2016-01-20 中国工程物理研究院应用电子学研究所 一种半导体控温片状晶体和频器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109144137A (zh) * 2018-07-27 2019-01-04 北京量子体系科技股份有限公司 一种温度控制装置及激光器
CN112103757A (zh) * 2020-09-01 2020-12-18 西安电子科技大学 一种固体激光块材料的模块化热管理装置及其控制方法

Also Published As

Publication number Publication date
CN106785824B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US20030198264A1 (en) Systems and methods for thermal management of diode-pumped solid-state lasers
Li et al. High-power high-brightness 2-\mu m continuous wave laser with a double-end dif fusion-bonded Tm, Ho: YVO4 crystal
Cao et al. A 200 W diode-side-pumped CW 2 μm Tm: YAG laser with water cooling at 8° C
CN106785824B (zh) 一种高效率全固态铥激光封装模块
Dergachev et al. A CW side-pumped Tm: YLF laser
US5982792A (en) Solid-state laser device
Yu et al. High power diode-pumped 914-nm Nd: YVO4 laser
Pavel et al. Radial-pumped microchip high-power composite Yb: YAG laser: Design and power characteristics
Liu et al. A design of a surface-doped Yb: YAG slab laser with high power and high efficiency
Lei et al. Experimental and Theoretical Study of Dual-Wavelength Continuous-wave Laser in Yb: YAG at 1030 and 1048 nm
Hemmati Efficient holmium: yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array
Vretenar et al. Yb: YAG thin-disk laser performance at room and cryogenic temperatures
Liu et al. Compact corner-pumped Nd: YAG/YAG composite slab laser
Zhu et al. High Power (~ 10 kW) Yb: YAG Ceramic Slab Laser Operating at 1030 nm
Xu et al. 2.94 μm diode side pumped Er: YAG laser
Manni Amplification of microchip oscillator emission using a diode-pumped wedged-slab amplifier
Kratochvíl et al. Tm, Ho: GGAG Disordered Garnet Crystal for Tunable 2.1 µm Cryogenically Cooled Laser
Chanteloup et al. Defining the optimal gradient doped: YAG disk for room and low temperature diode pumped solid-state laser operations
Brasseur et al. 2.3-kW continuous operation cryogenic Yb: YAG laser
Lu et al. Theoretical and experimental research on cryogenic Yb: YAG regenerative amplifier
Zong et al. 4.6-W compact and efficient NdAl 3 (BO 3) 4 thin-disk laser
Yi-Ting et al. High efficiency multi-kW diode-side-pumped Nd: YAG laser with reduced thermal effect
Yang et al. 2277-W continuous-wave diode-pumped heat capacity laser
Zhang et al. 37 W 888-nm-pumped grown-together composite crystal YVO 4/Nd: YVO 4/YVO 4 oscillator at 1342 nm
Wang et al. Study of diode-pumped Yb: YAG disk lasers at low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201009

Address after: Room 501, industrial building, Xinte Optoelectronic Industrial Park, No. 18, liufangyuan South Road, Donghu New Technology Development Zone, Wuhan, Hubei Province

Patentee after: WUHAN LEIJIAN TECHNOLOGY Co.,Ltd.

Address before: 430068 Wuhan Province, Wuchang District, South Lake, Lee Ka pier village, No. 1, No. 1, No.

Patentee before: HUBEI University OF TECHNOLOGY

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A high-efficiency solid-state thulium laser packaging module

Effective date of registration: 20231227

Granted publication date: 20190104

Pledgee: Industrial Bank Limited by Share Ltd. Wuhan branch

Pledgor: WUHAN LEIJIAN TECHNOLOGY Co.,Ltd.

Registration number: Y2023980074639

PE01 Entry into force of the registration of the contract for pledge of patent right