CN106780412A - 一种利用手写体骨架线生成加工路径的方法 - Google Patents
一种利用手写体骨架线生成加工路径的方法 Download PDFInfo
- Publication number
- CN106780412A CN106780412A CN201611065543.7A CN201611065543A CN106780412A CN 106780412 A CN106780412 A CN 106780412A CN 201611065543 A CN201611065543 A CN 201611065543A CN 106780412 A CN106780412 A CN 106780412A
- Authority
- CN
- China
- Prior art keywords
- point
- handwritten form
- machining path
- skeleton line
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000003754 machining Methods 0.000 title claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000003672 processing method Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
一种利用手写体骨架线生成加工路径的方法,包括如下步骤:1)拍照获取个性化手写体的原始图片;2)获取图片中的感兴趣区并进行预处理;3)对预处理后的感兴趣区进行细化处理,提取单像素的手写体骨架线;4)提取步骤3)所得骨架线的中心线点链,逐条读取点链坐标,剔除孤立的无效点,并对有效点进行排序,存入数据结构;5)将各点的点链坐标在设定区域标准化,通过对比实际两点之间距离与单像素连续点链相邻两点之间的距离来判断是否需要做抬刀处理,将已获取的骨架线点链由原始的几何坐标数值转存到加工路径数据结构中,并且按顺序依次连接各点,生成所需要的加工路径。本发明能够简化加工路径的生成过程,提高加工效率,实施效果稳定。
Description
技术领域
本发明涉及图像处理领域,具体涉及一种利用手写体骨架线生成加工路径的方法。
背景技术
在工艺品加工中融入个性化的元素已经成为消费者青睐的模式,比如在工艺品上雕刻个人的手写体签名、个性化的图腾、独特的手绘标识等。传统工艺中是通过拍照获取签名图像,将图像导入CAD/CAM软件,通过手工描图的方式,移动鼠标,采用直线、圆弧或多义线绘制手写体中心线,再使用曲线编辑功能微调上述步骤所得的曲线,最终获得手写体曲线,进而生成切割路径。这种方案存在两点不足:1.描图最终所得曲线的质量是通过手工来控制的,对人员的技术要求比较高;2.如果手写体内容比较复杂,手工描图则需耗费较长的时间。综上所述,传统工艺整个手工描图过程准确度不高,对工作人员要求高,时间利用率低下。
发明内容
本发明的目的在于针对上述现有技术中的问题,提供一种利用手写体骨架线生成加工路径的方法,能够简化加工路径的生成过程,提高加工效率,实施效果稳定。
为了实现上述目的,本发明采用的技术方案包括如下步骤:
1)拍照获取个性化手写体的原始图片;
2)获取图片中的感兴趣区并进行预处理;
3)对预处理后的感兴趣区进行细化处理,提取单像素的手写体骨架线;
4)提取步骤3)所得骨架线的中心线点链,逐条读取点链坐标,根据相邻点之间的距离来判断是否为孤立点,剔除孤立的无效点,并对有效点进行排序,存入数据结构;
5)将各点的点链坐标在设定区域标准化,通过对比实际两点之间距离与单像素连续点链相邻两点之间的距离来判断是否需要做抬刀处理,将已获取的骨架线点链由原始的几何坐标数值转存到加工路径数据结构中,并且按顺序依次连接各点,生成所需要的加工路径。
所述的步骤2)获取图片中的感兴趣区并进行预处理时调用EasyAccess函数库。
所述的步骤2)获取图片中的感兴趣区并进行预处理时依次对图像进行如下处理:
①中值滤波处理,将每一像素点的灰度值设置为该点邻域窗口内所有像素点灰度值的中值,让周围的像素值接近真实值,消除孤立的噪声点;
②图像开处理,先腐蚀再膨胀,去掉目标外的孤立点,进而消除由于笔尖的粗细不同以及书写力度的不同对提取中心线造成的影响;
③最小值阈值处理;
④图像二值化处理;
⑤逐行读取手写体像素点,根据像素点是否为孤立点,逐步缩小待处理对象的尺寸,最终获取仅包含手写体图片的感兴趣区或手动选择待处理的手写体感兴趣区。
中值滤波处理时将每一像素点灰度值设为该点3*3邻域窗口内所有像素点灰度值的中值。
所述最小值阈值处理的具体过程包括:选择使源图像与阈值处理后的图像之间平方差最小的灰度值作为阈值,保留图像的重要信息,增强对比度。
所述图像二值化处理的具体过程包括:逐个读取像素,将所得灰度值为0和255的二值图像转化灰度值为0和1的二值图像。
所述的步骤3)对预处理后的感兴趣区采用Rosenfeld细化算法实现细化处理。
所述的步骤5)将各点的点链坐标在20*10的区域进行标准化。
与现有技术相比,本发明首先将拍摄的彩色图像转换为灰度图像,然后创建感兴趣区ROI,再依次经过中值滤波处理、开处理、阈值处理以及细化处理,最终得到单像素的、无序的中心线点链,顺次连接相邻的点,将各点的点链坐标在设定区域标准化,设置加工方法、加工参数,通过对比实际两点之间距离与单像素连续点链相邻两点之间的距离来判断是否需要做抬刀处理,将已获取的骨架线点链由原始的几何坐标数值转存到加工路径数据结构中,并且按顺序依次连接各点,即得到所需要的加工路径。本发明通过组合使用多种图像处理方法对图像进行预处理,最终准确获取待处理的感兴趣区,对获取的单像素点链进行剔除无效点操作,并进行分组、排序,直接利用所得的骨架线点琏生成所需要的加工路径。本发明方法效率高且效果稳定,能够实现由个性化手写体图像到机床加工路径的高效率、高质量转化,省去了繁琐的人工操作,减少了图像的失真,整个过程更加自动化、实用性更强。
附图说明
图1手写体原始拍摄图片示意图;
图2手写体图片感兴趣区示意图;
图3单像素的手写体骨架线示意图;
图4单像素的骨架线点链示意图;
图5生成的单线切割加工路径示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
本发明利用手写体骨架线生成加工路径的方法包括以下步骤:
1)用任何具有拍照功能的设备拍摄照片获取个性化手写体的原始图片,如图1所示;
2)参见图2,获取感兴趣区ROI。调用EasyAccess函数库,依次对图像做如下处理:
①中值滤波处理,将每一像素点的灰度值设置为该点3*3邻域窗口内的所有像素点灰度值的中值,让周围的像素值接近真实值,从而消除孤立的噪声点;
②图像开处理,先腐蚀再膨胀,可以去掉目标外的孤立点,进而消除由于笔尖的粗细不同以及书写力度的不同对提取中心线造成的影响;
③最小值阈值处理(ImgThreshold()),选择使源图像与阈值处理后的图像之间平方差最小的灰度值作为阈值,保留图像重要信息,增强对比度;
④图像二值化处理,逐个读取像素,将前述步骤所得灰度值为0和255的二值图像转化灰度值为0和1的二值图像,便于后期细化处理;
⑤逐行读取手写体像素点,根据像素点是否为孤立点,逐步缩小待处理对象的尺寸,最终获取仅包含手写体图片的感兴趣区,也可以手动拖拽选择待处理的手写体感兴趣区。
3)提取单像素的手写体骨架线。采用图像细化处理(Rosenfeld算法),对步骤二预处理的感兴趣区进行细化处理,确保提取的结果失真较小,如图3所示。
4)通过边界提取算法提取手写体中心线点链,逐条读取点链坐标,根据相邻点之间的距离判断是否为孤立点,剔除孤立的无效点,并对有效点进行排序,存入相应的数据结构最终获得高质量的骨架线点链,如图4所示。
5)首先将点链各点坐标标准化到20*10的区域,设置加工方法、加工参数,通过对比实际两点之间距离与单像素连续点链相邻两点之间的距离来判断是否需要做抬刀处理,将已获取的骨架线点链由原始的几何坐标数值转存到加工路径数据结构中,并且按顺序依次连接各点,最终生成单线切割加工路径或者DXF曲线,如图5所示。
本发明通过组合使用多种图像处理方法对图像进行预处理,最终准确获取待处理的感兴趣区;对获取的单像素点链进行剔除无效点操作,并进行分组、排序;直接利用所得骨架线点琏生成NC路径或者光顺的DXF曲线,实现由个性化手写体图像到机床加工路径的高效率、高质量转化。该方法实现了从输入图片到直接输出NC路径或者DXF曲线的快速转化,省去了繁琐的人工操作,减少了图像的失真,整个过程更加自动化、实用性更强。
Claims (8)
1.一种利用手写体骨架线生成加工路径的方法,其特征在于,包括如下步骤:
1)拍照获取个性化手写体的原始图片;
2)获取图片中的感兴趣区并进行预处理;
3)对预处理后的感兴趣区进行细化处理,提取单像素的手写体骨架线;
4)提取步骤3)所得骨架线的中心线点链,逐条读取点链坐标,根据相邻点之间的距离来判断是否为孤立点,剔除孤立的无效点,并对有效点进行排序,存入数据结构;
5)将各点的点链坐标在设定区域标准化,通过对比实际两点之间距离与单像素连续点链相邻两点之间的距离来判断是否需要做抬刀处理,将已获取的骨架线点链由原始的几何坐标数值转存到加工路径数据结构中,并且按顺序依次连接各点,生成所需要的加工路径。
2.根据权利要求1所述利用手写体骨架线生成加工路径的方法,其特征在于,所述的步骤2)获取图片中的感兴趣区并进行预处理时调用EasyAccess函数库。
3.根据权利要求1所述利用手写体骨架线生成加工路径的方法,其特征在于,所述的步骤2)获取图片中的感兴趣区并进行预处理时依次对图像进行如下处理:①中值滤波处理,将每一像素点的灰度值设置为该点邻域窗口内所有像素点灰度值的中值,让周围的像素值接近真实值,消除孤立的噪声点;②图像开处理,先腐蚀再膨胀,去掉目标外的孤立点,进而消除由于笔尖的粗细不同以及书写力度的不同对提取中心线造成的影响;③最小值阈值处理;④图像二值化处理;⑤逐行读取手写体像素点,根据像素点是否为孤立点,逐步缩小待处理对象的尺寸,最终获取仅包含手写体图片的感兴趣区或手动选择待处理的手写体感兴趣区。
4.根据权利要求3所述利用手写体骨架线生成加工路径的方法,其特征在于,所述中值滤波处理时将每一像素点的灰度值设置为该点3*3邻域窗口内所有像素点灰度值的中值。
5.根据权利要求3所述利用手写体骨架线生成加工路径的方法,其特征在于,所述最小值阈值处理的具体过程包括:选择使源图像与阈值处理后的图像之间平方差最小的灰度值作为阈值,保留图像的重要信息,增强对比度。
6.根据权利要求3所述利用手写体骨架线生成加工路径的方法,其特征在于,所述图像二值化处理的具体过程包括:逐个读取像素,将所得灰度值为0和255的二值图像转化灰度值为0和1的二值图像。
7.根据权利要求1所述利用手写体骨架线生成加工路径的方法,其特征在于,所述的步骤3)对预处理后的感兴趣区采用Rosenfeld细化算法实现细化处理。
8.根据权利要求1所述利用手写体骨架线生成加工路径的方法,其特征在于,所述的步骤5)将各点的点链坐标在20*10的区域进行标准化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611065543.7A CN106780412B (zh) | 2016-11-28 | 2016-11-28 | 一种利用手写体骨架线生成加工路径的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611065543.7A CN106780412B (zh) | 2016-11-28 | 2016-11-28 | 一种利用手写体骨架线生成加工路径的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106780412A true CN106780412A (zh) | 2017-05-31 |
CN106780412B CN106780412B (zh) | 2020-04-14 |
Family
ID=58902248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611065543.7A Active CN106780412B (zh) | 2016-11-28 | 2016-11-28 | 一种利用手写体骨架线生成加工路径的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106780412B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204019A (zh) * | 2017-05-31 | 2017-09-26 | 铜仁市万山区丹凤朱砂工艺品研发检测鉴定中心有限公司 | 一种根据照片生成加工代码的方法 |
CN114022886A (zh) * | 2021-10-20 | 2022-02-08 | 浪潮金融信息技术有限公司 | 一种平板用手写体识别训练集生成方法、系统及介质 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0962791A (ja) * | 1995-08-22 | 1997-03-07 | Hitachi Eng Co Ltd | 文字認識装置及び文字認識方法 |
CN101183283A (zh) * | 2007-12-04 | 2008-05-21 | 哈尔滨工业大学深圳研究生院 | 一种直接写入手写体信息的方法 |
CN101458768A (zh) * | 2009-01-04 | 2009-06-17 | 上海大学 | 自由手写数字串分割方法 |
CN102179726A (zh) * | 2011-03-24 | 2011-09-14 | 哈尔滨理工大学 | 基于图像技术的数控加工二次装夹偏差测量仪及方法 |
CN102509355A (zh) * | 2011-09-30 | 2012-06-20 | 北京航空航天大学 | 一种面向书法汉字的计算机虚拟雕刻方法 |
CN102750556A (zh) * | 2012-06-01 | 2012-10-24 | 山东大学 | 一种脱机手写体汉字识别方法 |
CN102819238A (zh) * | 2012-07-28 | 2012-12-12 | 西安煤矿机械有限公司 | 一种图文信息轮廓的雕刻方法 |
CN104077604A (zh) * | 2014-07-17 | 2014-10-01 | 重庆大学 | 一种文本内容无关的褶皱中文手写体鉴别方法 |
CN104156730A (zh) * | 2014-07-25 | 2014-11-19 | 山东大学 | 一种基于骨架的抗噪声汉字特征提取方法 |
CN104156721A (zh) * | 2014-07-31 | 2014-11-19 | 南京师范大学 | 一种基于模板匹配的脱机汉字笔画提取方法 |
-
2016
- 2016-11-28 CN CN201611065543.7A patent/CN106780412B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0962791A (ja) * | 1995-08-22 | 1997-03-07 | Hitachi Eng Co Ltd | 文字認識装置及び文字認識方法 |
CN101183283A (zh) * | 2007-12-04 | 2008-05-21 | 哈尔滨工业大学深圳研究生院 | 一种直接写入手写体信息的方法 |
CN101458768A (zh) * | 2009-01-04 | 2009-06-17 | 上海大学 | 自由手写数字串分割方法 |
CN102179726A (zh) * | 2011-03-24 | 2011-09-14 | 哈尔滨理工大学 | 基于图像技术的数控加工二次装夹偏差测量仪及方法 |
CN102509355A (zh) * | 2011-09-30 | 2012-06-20 | 北京航空航天大学 | 一种面向书法汉字的计算机虚拟雕刻方法 |
CN102750556A (zh) * | 2012-06-01 | 2012-10-24 | 山东大学 | 一种脱机手写体汉字识别方法 |
CN102819238A (zh) * | 2012-07-28 | 2012-12-12 | 西安煤矿机械有限公司 | 一种图文信息轮廓的雕刻方法 |
CN104077604A (zh) * | 2014-07-17 | 2014-10-01 | 重庆大学 | 一种文本内容无关的褶皱中文手写体鉴别方法 |
CN104156730A (zh) * | 2014-07-25 | 2014-11-19 | 山东大学 | 一种基于骨架的抗噪声汉字特征提取方法 |
CN104156721A (zh) * | 2014-07-31 | 2014-11-19 | 南京师范大学 | 一种基于模板匹配的脱机汉字笔画提取方法 |
Non-Patent Citations (4)
Title |
---|
冯志敏: "基于结构特征的手写体汉字识别研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
梅仕伟: "汉字雕刻数控代码自动生成系统研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 * |
陈松等: "曲面上复杂图形雕刻加工的刀位规划", 《机床与液压》 * |
陈琦等: "并联机器人曲面汉字雕刻刀路规划算法研究", 《计算机工程与设计》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204019A (zh) * | 2017-05-31 | 2017-09-26 | 铜仁市万山区丹凤朱砂工艺品研发检测鉴定中心有限公司 | 一种根据照片生成加工代码的方法 |
CN114022886A (zh) * | 2021-10-20 | 2022-02-08 | 浪潮金融信息技术有限公司 | 一种平板用手写体识别训练集生成方法、系统及介质 |
CN114022886B (zh) * | 2021-10-20 | 2024-06-14 | 浪潮金融信息技术有限公司 | 一种平板用手写体识别训练集生成方法、系统及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106780412B (zh) | 2020-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109961049B (zh) | 一种复杂场景下香烟品牌识别方法 | |
CN111626146B (zh) | 一种基于模板匹配的合并单元格表格分割识别方法 | |
CN104751142B (zh) | 一种基于笔划特征的自然场景文本检测方法 | |
CN103971102B (zh) | 基于手指轮廓和决策树的静态手势识别方法 | |
CN110738207A (zh) | 一种融合文字图像中文字区域边缘信息的文字检测方法 | |
CN110717872B (zh) | 一种激光辅助定位下的v型焊缝图像特征点提取方法及提取系统 | |
CN106157303A (zh) | 一种基于机器视觉对表面检测的方法 | |
CN109767445B (zh) | 一种高精度的pcb缺陷智能检测方法 | |
CN110443791B (zh) | 一种基于深度学习网络的工件检测方法及其检测装置 | |
CN104268602A (zh) | 一种基于二进制特征匹配的遮挡工件识别方法及装置 | |
CN110942107B (zh) | 基于零件工程图像的复合磨削加工特征自动识别方法 | |
CN107909571A (zh) | 一种焊缝图像处理方法、系统、设备及计算机存储介质 | |
CN110414517B (zh) | 一种用于配合拍照场景的快速高精度身份证文本识别算法 | |
CN109724988B (zh) | 一种基于多模板匹配的pcb板缺陷定位方法 | |
CN109859187B (zh) | 一种爆堆矿岩颗粒图像分割方法 | |
CN112686265B (zh) | 一种基于层级轮廓提取的象形文字分割方法 | |
CN114359538A (zh) | 一种水表读数定位与识别方法 | |
CN111325214B (zh) | 喷印字符提取处理方法、装置、存储介质和电子设备 | |
CN107194402B (zh) | 一种并行细化骨架提取方法 | |
CN106780412A (zh) | 一种利用手写体骨架线生成加工路径的方法 | |
CN107145888A (zh) | 视频字幕实时翻译方法 | |
CN107038708A (zh) | 图像识别算法在剪纸效果的应用 | |
CN113781413A (zh) | 一种基于Hough梯度法的电解电容定位方法 | |
CN110349129B (zh) | 一种高密度柔性ic基板外观缺陷检测方法 | |
CN117611571A (zh) | 一种基于改进yolo模型的带钢表面缺陷检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |