CN106774485A - 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法 - Google Patents

一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法 Download PDF

Info

Publication number
CN106774485A
CN106774485A CN201710031204.5A CN201710031204A CN106774485A CN 106774485 A CN106774485 A CN 106774485A CN 201710031204 A CN201710031204 A CN 201710031204A CN 106774485 A CN106774485 A CN 106774485A
Authority
CN
China
Prior art keywords
rheometer
shear stress
rotor
unstable state
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710031204.5A
Other languages
English (en)
Other versions
CN106774485B (zh
Inventor
陈雷
刘士元
刘刚
卢兴国
滕厚兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710031204.5A priority Critical patent/CN106774485B/zh
Publication of CN106774485A publication Critical patent/CN106774485A/zh
Application granted granted Critical
Publication of CN106774485B publication Critical patent/CN106774485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/0006Calibrating, controlling or cleaning viscometers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法,本发明以测试试样流变曲线光滑连续为前提,在流变仪初始扭矩加载时间域内进行离散,确定实测转子角速度与下一时刻应施加扭矩的数学关系,根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据预设的剪切应力、转子角加速度和流变仪旋转件的转动惯量,计算获得下一时刻应施加的扭矩值,并使用其进行调控。本发明保证了转子表面真实剪切应力符合预设值,适用于流变性与时间有关的流体控制剪切应力加载下的流变测试,具有一定通用性和适用性。

Description

一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法
技术领域
本发明涉及一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法。
背景技术
工业、医疗、食品、生活等各领域涉及多种流体,研究不同物料的流变特性是深入了解其流体特性并加以应用的必然要求。因此,物料流变性测量的准确程度将是能否准确认识其流变特性的关键。随着智能化流变仪的快速发展,诸如奥地利Anton Paar、德国HAAKE等品牌的高级旋转流变仪正在流变测量领域发挥着重要作用。
对于牛顿流体、幂律流体等与时间无关的流体,通常待流变仪稳定转动后测试其流变数据。对于聚合物、胶凝原油等粘弹性、触变性材料,其流变性与剪切时间密切相关,需要准确测量“剪切变形全过程”的力学特性。而流变测试初始阶段,测试系统不可避免地处于“非稳态”转动阶段,此时施加或测量的数值,可能存在偏差。
流变测量过程中,通过给转子施加扭矩值,实现转动剪切测试。读取的常见流变参数,剪切应力、应变、应变速率,是由流变仪中的扭矩、转子偏转角、转速分别对应计算的。具体的转换关系如下:
τ=CSST (1)
γ=CSDα (2)
式中,τ为剪切应力,Pa;T为流变仪施加扭矩,Nm,由图1中的结构1“马达”施加;γ为应变;α为转子的转角,rad;为应变速率,s-1;ω为转子的转速,rad/s;CSS、CSD、CSR表示流变仪运动参数与流变参数之间的转换函数式。
由于转子可以近似认为刚体,所以不会发生扭转变形,对于公式(2)与(3),在稳态与非稳态阶段均是严格成立的。但公式(1)中的剪切应力为基于扭矩值反算读取的“测量剪切应力”,仅流变仪处于“稳态”剪切的时候,“测量剪切应力”等于转子壁面的“真实剪切应力”。由于转子是实体装置,不可避免存在一定的质量,初始旋转阶段的加速过程会不可避免的消耗掉一部分扭矩,转子表面“真实剪切应力”、转子角加速度以及扭矩之间的关系式如下:
式中,H(t)为Heaviside阶跃函数;Ta为马达施加扭矩值,Nm;τw为图1中结构2“转子”表面的“真实剪切应力”,Pa;A代表不同流变测试系统,扭矩与应力之间的函数关系;I流变仪旋转件的转动惯量,kg·m2
流变仪施加与测量“剪切应力”时,其原始数据均为“扭矩”。根据公式(4)可知,当转子转速非定常值时,转子表面真实剪切应力与扭矩之间不再存在如公式(1)所示的对应关系。若准确测量流变仪内试样的流变性,需要准确获取“真实的”材料应变规律与剪切应力。材料的真实应变值可以通过转子转动角度依据公式(2)获取,真实剪切应力即是图1中结构2“转子”表面的剪切应力。
对于控制应变或应变速率的试验测试,可以根据测量扭矩值、转子角速度变化量等,依据公式(4)获得转子壁面处的真实剪切应力。但对于“控制剪切应力”模式下的测试过程,如“恒剪切应力”,流变测试系统根据公式(1)施加“恒扭矩”,但由于转子的非稳态转动,使公式(4)中的不为0,从而导致转子表面的真实剪切应力偏离预设值。若实现转子表面真实的剪切应力以“特定规律”变化,有两种途径:(1)实现I=0;(2)考虑转子非稳态转动引起的项,并根据剪切应力预设值与转动惯量项共同确定应施加的扭矩值。然而,对于流变仪旋转系统,不可能存在“I=0”的情况。所以,根据旋转系统角速度变化与预设剪切应力,计算应施加的扭矩值,是更可行的方案。
发明内容
本发明为了解决上述问题,提出了一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法,本发明能够达到准确控制初始启动非稳态转动阶段“转子表面真实剪切应力”的效果,适用于与流变性与时间有关的试样,使试样流变性测试结果准确度提高。
为了实现上述目的,本发明采用如下技术方案:
一种非稳态测试阶段的流变仪剪切应力反馈调控方法,以测试试样流变曲线光滑连续为前提,在流变仪初始扭矩加载时间域内进行离散,确定实测转子角速度与下一时刻应施加扭矩的数学关系,根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据预设的剪切应力、转子角加速度和流变仪旋转件的转动惯量,计算获得下一时刻应施加的扭矩值,并使用其进行调控。
具体的,在旋转流变仪控制应力模式下,对于t≥2Δt的情况,Δt为反馈调节方案下,数据信号采集、计算所用的离散时间间隔。t时刻马达施加的扭矩值是依据预设的t时刻应施加剪切应力、t-2Δt时刻与t-Δt时刻流变仪旋转件角速度实时调整的,依据流变曲线光滑连续的特征,根据检测的t-2Δt时刻与t-Δt时刻流变仪旋转件角速度,近似计算t时刻旋转件的角加速度,并根据预设的t时刻转子表面剪切应力、旋转件角加速度,计算t时刻应施加的扭矩值。
对于t≤Δt的情况,即,t=0与t=Δt时刻,近似忽略转子加速,认为扭矩值全部转化为转子表面真实剪切应力,T|0=Aτ0,T|Δt=Aτ0,τ0为预设剪切应力值,A代表不同流变测试系统,扭矩与应力之间的函数关系。
进一步的,扭矩值的计算公式为ωi为i时刻的实测角速度。
离散时间间隔Δt小于等于5ms。
一种非稳态测试阶段的流变仪剪切应力反馈调控系统,包括流变仪测试系统和控制器,所述控制器采集流变仪测试系统测得的实时角速度,以测试试样流变曲线光滑连续为前提,在流变仪初始扭矩加载时间域内进行离散,确定实测转子角速度与下一时刻应施加扭矩的数学关系,根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据预设的剪切应力、转子角加速度和流变仪旋转件的转动惯量,计算下一时刻应施加的扭矩值,应用该扭矩值对流变仪测试系统进行调控。
进一步的,所述流变仪测试系统定时对角速度进行采样,各个采样点的时间间隔一致。
所述流变仪测试系统在流变测量过程中,通过给转子施加扭矩值,实现转动剪切测试。
本发明的有益效果为:
(1)本发明根据已测量的转子旋转角速度,利用流变曲线光滑连续、极限近似的思想,计算下一时刻的转子角加速度,并根据转子角加速度计算马达在下一时刻应输出扭矩值,从而保证转子表面真实剪切应力满足预设值;
(2)本发明不涉及流体本构方程,广泛适用于流变性与时间相关的试样,解决了流变仪启动初始非稳态剪切带来的测量误差,且本方法可自动连续实时反馈调节,具有一定通用性和适用性。
附图说明
图1为本发明的流变仪结构示意图;
图2为本发明的扭矩反馈调节系统原理图;
其中,1为马达、2为转子。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
流变仪测试过程中,转动件的转动惯量应包括旋转件惯量和马达转动惯量。在空载下进行测试,可得到整个测量系统旋转时的转动惯量。
I=Igeometry+Irheometer (5)
非稳态转动阶段,若想达到预设剪切应力值,不应该根据公式(1)施加对应扭矩。而应该根据式(4),结合旋转系统的角速度与预设剪切应力值,计算应施加的扭矩值。为了使作用于物料的预设剪应力从剪切伊始即按照预设规律变化,则马达输出扭矩需要根据转子角加速度变化不断实时调整,实时调整的方式符合公式(6):
式中,τ0为预设剪切应力值,Pa;τ0可以是恒定值,也可以是与时间相关的函数。T(t)为马达实时输出扭矩值,Nm。
流变仪测试过程中的信号施加、数据采集并不是绝对连续的,而是多个离散的时刻节点。令Δt为采点时间间隔,不同时刻流变仪扭矩、预设的转子表面剪切应力以及转子角速度满足:
t=0为流变仪启动时刻;i为整数,t=iΔt表示试验结束时刻。
当Δt→0时,转子角速度对时间的一阶导数可近似表示为如下差分表达式:
将式(8)代入式(7),得到
此式即为本控制系统的控制方程,上式建立了实测转子角速度与下一时刻应施加扭矩的数学关系,可控制实时输出预设剪切应力值。
所以,当t≥2Δt,t时刻应施加的扭矩值可以根据t-Δt与t-2Δt时刻的角速度、预设剪切应力计算获得;当t≤Δt,t时刻前没有足够的角速度数据点,所以近似认为具体的实施步骤如图2所示:
1、简化初始条件,初始时刻近似忽略转子加速,认为施加扭矩值全部转化为转子表面真实剪切应力,流变仪机械系统处于稳定输出状态。
t=0,T|t=Aτ0 (10)
t=Δt,T|t=Aτ0 (11)
对应实测角速度为ω0和ωΔt
2、根据实测角速度ωt-Δt和ωt-2Δt,推导得到下一时刻应施加扭矩值为T|t,实现实时调节扭矩输出。
同理得到
基于流变仪旋转部件的转速变化,结合公式(13),通过t-Δt与t-2Δt时刻已经采集的数据信息,实时调节t时刻马达应输出扭矩值,以实现转子表面剪切应力符合预设值。
以测试试样流变曲线“光滑连续”为前提,在流变仪初始扭矩加载时间域内进行离散,推导出实测转子角速度与下一时刻应施加扭矩的数学关系。根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据“预设剪切应力”、“转子角加速度”等数据,依据公式(4),计算获得下一时刻应施加的“扭矩值”。
为使作用于物料的剪应力(即转子表面的真实剪切应力)始终保持为“预设值”,马达下一时刻输出扭矩必须根据流变仪转动系统的角加速度变化不断实时调整。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (9)

1.一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:以测试试样流变曲线光滑连续为前提,在流变仪初始扭矩加载时间域内进行离散,确定实测转子角速度与下一时刻应施加扭矩的数学关系,根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据预设的剪切应力、转子角加速度和流变仪旋转件的转动惯量,计算获得下一时刻应施加的扭矩值,并使用其进行调控。
2.如权利要求1所述的一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:在旋转流变仪控制应力模式下,对于t≥2Δt的情况,Δt为离散时间间隔,t时刻马达施加的扭矩值是依据预设的t时刻应施加剪切应力、t-2Δt时刻与t-Δt时刻流变仪旋转件角速度实时调整的,依据流变曲线光滑连续的特征,根据检测的t-2Δt时刻与t-Δt时刻流变仪旋转件角速度,近似计算t时刻旋转件的角加速度,并根据预设的t时刻转子表面剪切应力、旋转件角加速度,计算t时刻应施加的扭矩值。
3.如权利要求2所述的一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:对于t≤Δt的情况,即,t=0与t=Δt时刻,近似忽略转子加速,认为扭矩值全部转化为转子表面真实剪切应力,T|0=Aτ0,T|Δt=Aτ0,τ0为预设剪切应力值,A代表不同流变测试系统,扭矩与应力之间的函数关系。
4.如权利要求2所述的一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:对于t≥2Δt的情况,扭矩值的计算公式为τ0为预设剪切应力值,A代表不同流变测试系统,扭矩与应力之间的函数关系,ωi为i时刻的实测角速度。
5.如权利要求1或2所述的一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:转子表面真实剪切应力、转子角加速度以及扭矩之间的关系式如下:
H ( t ) T a = Aτ w + I ∂ ω ∂ t
式中,H(t)为Heaviside阶跃函数;Ta为马达施加扭矩值;τw为转子表面的真实剪切应力,A代表不同流变测试系统,扭矩与应力之间的函数关系;I流变仪旋转件的转动惯量。
6.如权利要求1或2所述的一种非稳态测试阶段的流变仪剪切应力反馈调控方法,其特征是:离散时间间隔Δt小于等于5ms。
7.一种非稳态测试阶段的流变仪剪切应力反馈调控系统,其特征是:包括流变仪测试系统和控制器,所述控制器采集流变仪测试系统测得的实时角速度,以测试试样流变曲线光滑连续为前提,在流变仪初始扭矩加载时间域内进行离散,确定实测转子角速度与下一时刻应施加扭矩的数学关系,根据已测得的转子转速,近似获取下一时刻的转子角加速度,并根据预设的剪切应力、转子角加速度和流变仪旋转件的转动惯量,计算下一时刻应施加的扭矩值,应用该扭矩值对流变仪测试系统进行调控。
8.如权利要求7所述的一种非稳态测试阶段的流变仪剪切应力反馈调控系统,其特征是:所述流变仪测试系统定时对角速度进行采样,各个采样点的时间间隔一致。
9.如权利要求7所述的一种非稳态测试阶段的流变仪剪切应力反馈调控系统,其特征是:所述流变仪测试系统在流变测量过程中,通过给转子施加扭矩值,实现转动剪切测试。
CN201710031204.5A 2017-01-17 2017-01-17 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法 Active CN106774485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710031204.5A CN106774485B (zh) 2017-01-17 2017-01-17 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710031204.5A CN106774485B (zh) 2017-01-17 2017-01-17 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法

Publications (2)

Publication Number Publication Date
CN106774485A true CN106774485A (zh) 2017-05-31
CN106774485B CN106774485B (zh) 2018-11-30

Family

ID=58946957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710031204.5A Active CN106774485B (zh) 2017-01-17 2017-01-17 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法

Country Status (1)

Country Link
CN (1) CN106774485B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573854A (zh) * 2017-06-15 2019-12-13 哈利伯顿能源服务公司 使用十字弹簧枢轴的凝胶剪切强度测量
CN111982751A (zh) * 2020-08-10 2020-11-24 清华大学 一种水泥基材料剪切稠化特性分析方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2376561A1 (en) * 1999-07-05 2001-01-11 Are Lund Multi-test assembly for evaluating, detecting and monitoring processes at elevated pressure
FR2801382B1 (fr) * 1999-11-23 2002-02-08 Cuir Viscosimetre rotatif a controle de couple de freinage
CN101324500A (zh) * 2008-07-11 2008-12-17 重庆大学 一种磁流变液流变学特性检测方法与装置
CN102929306A (zh) * 2012-11-08 2013-02-13 天津市亚安科技股份有限公司 一种根据旋转阻力自动调整旋转力矩的装置及其方法
CN202793967U (zh) * 2012-08-29 2013-03-13 厦门大学 一种温度可控旋转式粘度计
CN102967453A (zh) * 2012-11-09 2013-03-13 中北大学 一种具有在线扭矩激励和扭矩测量功能的转子试验台
CN104897523A (zh) * 2015-05-15 2015-09-09 上海交通大学 一种磁性液体流变性质测试系统及方法
CN105928833A (zh) * 2016-06-29 2016-09-07 中国石油大学(华东) 一种同轴圆筒流变仪流变测试数据的修正方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2376561A1 (en) * 1999-07-05 2001-01-11 Are Lund Multi-test assembly for evaluating, detecting and monitoring processes at elevated pressure
FR2801382B1 (fr) * 1999-11-23 2002-02-08 Cuir Viscosimetre rotatif a controle de couple de freinage
CN101324500A (zh) * 2008-07-11 2008-12-17 重庆大学 一种磁流变液流变学特性检测方法与装置
CN202793967U (zh) * 2012-08-29 2013-03-13 厦门大学 一种温度可控旋转式粘度计
CN102929306A (zh) * 2012-11-08 2013-02-13 天津市亚安科技股份有限公司 一种根据旋转阻力自动调整旋转力矩的装置及其方法
CN102967453A (zh) * 2012-11-09 2013-03-13 中北大学 一种具有在线扭矩激励和扭矩测量功能的转子试验台
CN104897523A (zh) * 2015-05-15 2015-09-09 上海交通大学 一种磁性液体流变性质测试系统及方法
CN105928833A (zh) * 2016-06-29 2016-09-07 中国石油大学(华东) 一种同轴圆筒流变仪流变测试数据的修正方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573854A (zh) * 2017-06-15 2019-12-13 哈利伯顿能源服务公司 使用十字弹簧枢轴的凝胶剪切强度测量
US11243155B2 (en) 2017-06-15 2022-02-08 Halliburton Energy Services, Inc. Gel shear strength measurement using a cross-spring pivot
CN110573854B (zh) * 2017-06-15 2022-03-18 哈利伯顿能源服务公司 使用十字弹簧枢轴的凝胶剪切强度测量
CN111982751A (zh) * 2020-08-10 2020-11-24 清华大学 一种水泥基材料剪切稠化特性分析方法

Also Published As

Publication number Publication date
CN106774485B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
JP3136183B2 (ja) 制御方法
CN105928833B (zh) 一种同轴圆筒流变仪流变测试数据的修正方法
CN101753073B (zh) 马达的齿槽定位转矩补偿系统及方法
CN106774485A (zh) 一种非稳态测试阶段的流变仪剪切应力反馈调控系统及方法
CN106743903A (zh) 一种非晶带材卷取张力控制方法及装置
CN108489015A (zh) 基于极点配置和帕德近似的空调系统温度控制方法
CN110767060A (zh) 核反应堆棒控系统实验装置及其实验方法
CN104460704A (zh) 一种基于扰动上界估计的电动转台俯仰位置跟踪控制方法
CN109189112A (zh) 一种张紧辊带钢张力滑模控制方法及控制装置
CN101471620B (zh) 步进电动机控制装置以及步进电动机的驱动控制方法
CN104792461A (zh) 一种回转体高精度转动惯量在线测量方法
CN105424276B (zh) 一种获得电机转动惯量的方法和装置
CN114739548A (zh) 一种伺服测试系统
CN111106771A (zh) 基于无模型控制器的永磁同步电机控制方法及装置
US4025763A (en) Process control including simulating a derivative
CN104571086A (zh) 基于传递函数的温度控制器仿真测试方法
EP2673610B1 (de) Verfahren und vorrichtung zur simulation eines translatorisch oder rotatorisch bewegten körpers
CN109510543B (zh) 一种伺服电机负载惯量的测定方法
KR970702515A (ko) 제어 시스템 및 방법(Control system and method)
CN103777143A (zh) 一种电机模拟惯性负载的测试方法
CN104932591B (zh) 全自动饱和蒸气压测定器及其测定方法
CN108089444A (zh) 一种基于修正参考模型的双轴转台同步控制方法
CN111775720B (zh) 一种纯电动汽车蠕行扭矩消抖控制方法
CN111928812B (zh) 一种高精度角度传感器标定检验方法
CN108471271A (zh) 一种投影仪滑门电机控制方法及控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant