CN106773009A - 目镜光学系统 - Google Patents
目镜光学系统 Download PDFInfo
- Publication number
- CN106773009A CN106773009A CN201611028369.9A CN201611028369A CN106773009A CN 106773009 A CN106773009 A CN 106773009A CN 201611028369 A CN201611028369 A CN 201611028369A CN 106773009 A CN106773009 A CN 106773009A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical axis
- eyepiece
- optical system
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 386
- 238000003384 imaging method Methods 0.000 claims description 47
- 210000001747 pupil Anatomy 0.000 claims description 32
- 230000004075 alteration Effects 0.000 description 108
- 238000010586 diagram Methods 0.000 description 85
- 230000007704 transition Effects 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000007 visual effect Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 210000001525 retina Anatomy 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000004310 photopic vision Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B25/00—Eyepieces; Magnifying glasses
- G02B25/001—Eyepieces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/005—Diaphragms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/12—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/011—Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明公开了目镜光学系统,从目侧至显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,且第一透镜、第二透镜及第三透镜各自包括一目侧面及一显示侧面。第一透镜具有屈光率,第二透镜的显示侧面具有一位于光轴附近区域的凸面部,且第三透镜具有屈光率。目镜光学系统符合:T3/G23≦4.3及G3D/T3≦3.51,其中T3为第三透镜在光轴上的厚度,G23为第二透镜到第三透镜在光轴上的空气间隙,且G3D为第三透镜到显示画面在光轴上的距离。
Description
技术领域
本发明涉及光学系统,且特别是有关于一种目镜光学系统。
背景技术
虚拟现实(Virtual Reality,VR)是利用计算机技术仿真产生一个三维空间的虚拟世界,提供用户关于视觉、听觉等感官仿真,让使用者感觉身历其境。目前现有的VR装置都是以视觉体验为主。藉由对应左右眼的两个视角略有差异的分割画面来模拟人眼的视差,以达到立体视觉。为了缩小虚拟现实装置的体积,让用户藉由较小的显示画面得到放大的视觉感受,具有放大功能的目镜光学系统成了VR研究发展的其中一个主题。
现有的目镜光学系统之半眼视视角较小,让观察者感到视觉狭窄、分辨率低且像差严重到显示画面要先进行像差补偿,因此如何增加半眼视视角并加强成像质量是目镜光学系统是一个需要改善的问题。
发明内容
本发明提供一种目镜光学系统,其在缩短系统长度的条件下,仍能保有良好的光学成像质量与大的半眼视视角。
本发明的一实施例提出一种目镜光学系统,用于成像光线从显示画面经目镜光学系统进入观察者的眼睛成像。朝向眼睛的方向为目侧,朝向显示画面的方向为显示侧。目镜光学系统从目侧至显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,且第一透镜、第二透镜及第三透镜各自包括一目侧面及一显示侧面。第一透镜具有屈光率,第二透镜的显示侧面具有一位于光轴附近区域的凸面部,且第三透镜具有屈光率。目镜光学系统符合:T3/G23≦4.3及G3D/T3≦3.51,其中T3为第三透镜在光轴上的厚度,G23为第二透镜到第三透镜在光轴上的空气间隙,且G3D为第三透镜到显示画面在光轴上的距离。
本发明的一实施例提出一种目镜光学系统,用于成像光线从显示画面经目镜光学系统进入观察者的眼睛成像。朝向眼睛的方向为目侧,朝向显示画面的方向为显示侧。目镜光学系统从目侧至显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,第一透镜、第二透镜及第三透镜各自包括一目侧面及一显示侧面。第一透镜具有屈光率,第二透镜的显示侧面具有一位于圆周附近区域的凸面部,且第三透镜具有屈光率。目镜光学系统符合:T3/G23≦4.3及G3D/T3≦3.51,其中T3为第三透镜在光轴上的厚度,G23为第二透镜到第三透镜在光轴上的空气间隙,且G3D为第三透镜到显示画面在光轴上的距离。
本发明的一实施例提出一种目镜光学系统,用于成像光线从显示画面经目镜光学系统进入观察者的眼睛成像。朝向眼睛的方向为目侧,朝向显示画面的方向为显示侧。目镜光学系统从目侧至显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,且第一透镜、第二透镜及第三透镜各自包括一目侧面及一显示侧面。第一透镜具有屈光率,第二透镜的目侧面具有一位于光轴附近区域的凸面部,且第三透镜的目侧面具有一位于圆周附近区域的凹面部。目镜光学系统符合:T3/G23≦4.3及G3D/T3≦3.51,其中T3为第三透镜在光轴上的厚度,G23为第二透镜到第三透镜在光轴上的空气间隙,且G3D为第三透镜到显示画面在光轴上的距离。
基于上述,本发明所述目镜光学系统的有益效果在于:藉由上述透镜的表面形状与屈光率设计与排列,以及光学参数的设计,使目镜光学系统在缩短系统长度的条件下,仍具备能够有效克服像差的光学性能,提供良好的成像质量,且具有大的眼视视角(apparentfield of view)。
附图说明
图1为一示意图,说明一目镜光学系统图。
图2为一示意图,说明一透镜的面型结构图。
图3为一示意图,说明一透镜的面型凹凸结构及光线焦点图。
图4为一示意图,说明一范例一的透镜的面型结构图。
图5为一示意图,说明一范例二的透镜的面型结构图。
图6为一示意图,说明一范例三的透镜的面型结构图。
图7为本发明之第一实施例之目镜光学系统的示意图。
图8A为第一实施例之目镜光学系统的纵向球差视场图。
图8B为第一实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图8C为第一实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图8D为第一实施例之目镜光学系统的畸变半眼视视角图。
图9为本发明之第一实施例之目镜光学系统的详细光学数据图。
图10为本发明之第一实施例之目镜光学系统的非球面参数图。
图11为本发明的第二实施例的目镜光学系统的示意图。
图12A为第二实施例之目镜光学系统的纵向球差视场图。
图12B为第二实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图12C为第二实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图12D为第二实施例之目镜光学系统的畸变半眼视视角图。
图13为本发明之第二实施例之目镜光学系统的详细光学数据图。
图14为本发明之第二实施例之目镜光学系统的非球面参数图。
图15为本发明的第三实施例的目镜光学系统的示意图。
图16A为第三实施例之目镜光学系统的纵向球差视场图。
图16B为第三实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图16C为第三实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图16D为第三实施例之目镜光学系统的畸变半眼视视角图。
图17为本发明之第三实施例之目镜光学系统的详细光学数据图。
图18为本发明之第三实施例之目镜光学系统的非球面参数图。
图19为本发明的第四实施例的目镜光学系统的示意图。
图20A为第四实施例之目镜光学系统的纵向球差视场图。
图20B为第四实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图20C为第四实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图20D为第四实施例之目镜光学系统的畸变半眼视视角图。
图21为本发明之第四实施例之目镜光学系统的详细光学数据图。
图22为本发明之第四实施例之目镜光学系统的非球面参数图。
图23为本发明的第五实施例的目镜光学系统的示意图。
图24A为第五实施例之目镜光学系统的纵向球差视场图。
图24B为第五实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图24C为第五实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图24D为第五实施例之目镜光学系统的畸变半眼视视角图。
图25为本发明之第五实施例之目镜光学系统的详细光学数据图。
图26为本发明之第五实施例之目镜光学系统的非球面参数图。
图27为本发明的第六实施例的目镜光学系统的示意图。
图28A为第六实施例之目镜光学系统的纵向球差视场图。
图28B为第六实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图28C为第六实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图28D为第六实施例之目镜光学系统的畸变半眼视视角图。
图29为本发明之第六实施例之目镜光学系统的详细光学数据图。
图30为本发明之第六实施例之目镜光学系统的非球面参数图。
图31为本发明的第七实施例的目镜光学系统的示意图。
图32A为第七实施例之目镜光学系统的纵向球差视场图。
图32B为第七实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图32C为第七实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图32D为第七实施例之目镜光学系统的畸变半眼视视角图。
图33为本发明之第七实施例之目镜光学系统的详细光学数据图。
图34为本发明之第七实施例之目镜光学系统的非球面参数图。
图35为本发明的第八实施例的目镜光学系统的示意图。
图36A为第八实施例之目镜光学系统的纵向球差视场图。
图36B为第八实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图36C为第八实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图36D为第八实施例之目镜光学系统的畸变半眼视视角图。
图37为本发明之第八实施例之目镜光学系统的详细光学数据。
图38为本发明之第八实施例之目镜光学系统的非球面参数。
图39为本发明的第九实施例的目镜光学系统的示意图。
图40A为第九实施例之目镜光学系统的纵向球差视场图。
图40B为第九实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图40C为第九实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图40D为第九实施例之目镜光学系统的畸变半眼视视角图。
图41为本发明之第九实施例之目镜光学系统的详细光学数据。
图42为本发明之第九实施例之目镜光学系统的非球面参数。
图43为本发明的第十实施例的目镜光学系统的示意图。
图44A为第十实施例之目镜光学系统的纵向球差视场图。
图44B为第十实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图44C为第十实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图44D为第十实施例之目镜光学系统的畸变半眼视视角图。
图45为本发明之第十实施例之目镜光学系统的详细光学数据图。
图46为本发明之第十实施例之目镜光学系统的非球面参数图。
图47为本发明的第十一实施例的目镜光学系统的示意图。
图48A为第十一实施例之目镜光学系统的纵向球差视场图。
图48B为第十一实施例之目镜光学系统的场曲(弧矢方向)半眼视视角图。
图48C为第十一实施例之目镜光学系统的场曲(子午方向)半眼视视角图。
图48D为第十一实施例之目镜光学系统的畸变半眼视视角图。
图49为本发明之第十一实施例之目镜光学系统的详细光学数据图。
图50为本发明之第十一实施例之目镜光学系统的非球面参数图。
图51为本发明之第一至第五实施例之目镜光学系统的各重要参数及其关系式的数值图。
图52为本发明之第六至第十一实施例之目镜光学系统的各重要参数及其关系式的数值图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。
10、V100:目镜光学系统;
A:光轴附近区域;
C:圆周附近区域;
DLD:观察者单一瞳孔对应之显示画面之对角线长;
E:延伸部;
EPD:出瞳直径;
I:光轴;
Lc:主光线;
Lm:边缘光线;
M、R:点;
V60:眼睛;
VD:明视距离;
VI:成像光线;
VV:放大虚像;
ω:半眼视视角。
一般而言,目镜光学系统V100的光线方向为一成像光线VI由显示画面V50射出,经由目镜光学系统V100进入眼睛V60,于眼睛V60的视网膜聚焦成像并且于明视距离VD产生一放大虚像VV,如图1所示。在以下说明本案之光学规格的判断准则是假设光线方向逆追迹(reversely tracking)为一平行成像光线由目侧经过目镜光学系统到显示画面聚焦成像。
本篇说明书所言之「一透镜具有正屈光率(或负屈光率)」,是指所述透镜以高斯光学理论计算出来之光轴上的屈光率为正(或为负)。该显示侧面、目侧面定义为成像光线通过的范围,其中成像光线包括了主光线(chief ray)Lc及边缘光线(marginal ray)Lm,如图2所示,I为光轴且此一透镜是以该光轴I为对称轴径向地相互对称,光线通过光轴上的区域为光轴附近区域A,边缘光线通过的区域为圆周附近区域C,此外,该透镜还包含一延伸部E(即圆周附近区域C径向上向外的区域),用以供该透镜组装于一光学成像镜头内,理想的成像光线并不会通过该延伸部E,但该延伸部E之结构与形状并不限于此,以下之实施例为求图式简洁均省略了部分的延伸部。更详细的说,判定面形或光轴附近区域、圆周附近区域、或多个区域的范围的方法如下:
1.请参照图2,其系一透镜径向上的剖视图。以该剖视图观之,在判断前述区域的范围时,定义一中心点为该透镜表面上与光轴的一交点,而一转换点是位于该透镜表面上的一点,且通过该点的一切线与光轴垂直。如果径向上向外有复数个转换点,则依序为第一转换点,第二转换点,而有效半效径上距光轴径向上最远的转换点为第N转换点。中心点和第一转换点之间的范围为光轴附近区域,第N转换点径向上向外的区域为圆周附近区域,中间可依各转换点区分不同的区域。此外,有效半径为边缘光线Lm与透镜表面交点到光轴I上的垂直距离。
2.如图3所示,该区域的形状凹凸系以平行通过该区域的光线(或光线延伸线)与光轴的交点在显示侧或目侧来决定(光线焦点判定方式)。举例言之,当光线通过该区域后,光线会朝显示侧聚焦,与光轴的焦点会位在显示侧,例如图3中R点,则该区域为凸面部。反之,若光线通过该某区域后,光线会发散,其延伸线与光轴的焦点在目侧,例如图3中M点,则该区域为凹面部,所以中心点到第一转换点间为凸面部,第一转换点径向上向外的区域为凹面部;由图3可知,该转换点即是凸面部转凹面部的分界点,因此可定义该区域与径向上相邻该区域的内侧的区域,系以该转换点为分界具有不同的面形。另外,若是光轴附近区域的面形判断可依该领域中通常知识者的判断方式,以R值(指近轴的曲率半径,通常指光学软件中的透镜数据库(lens data)上的R值)正负判断凹凸。以目侧面来说,当R值为正时,判定为凸面部,当R值为负时,判定为凹面部;以显示侧面来说,当R值为正时,判定为凹面部,当R值为负时,判定为凸面部,此方法判定出的凹凸和光线焦点判定方式相同。
3.若该透镜表面上无转换点,该光轴附近区域定义为有效半径的0~50%,圆周附近区域定义为有效半径的50~100%。
图4范例一的透镜显示侧表面在有效半径上仅具有第一转换点,则第一区为光轴附近区域,第二区为圆周附近区域。此透镜显示侧面的R值为正,故判断光轴附近区域具有一凹面部;圆周附近区域的面形和径向上紧邻该区域的内侧区域不同。即,圆周附近区域和光轴附近区域的面形不同;该圆周附近区域系具有一凸面部。
图5范例二的透镜目侧表面在有效半径上具有第一及第二转换点,则第一区为光轴附近区域,第三区为圆周附近区域。此透镜目侧面的R值为正,故判断光轴附近区域为凸面部;第一转换点与第二转换点间的区域(第二区)具有一凹面部,圆周附近区域(第三区)具有一凸面部。
图6范例三的透镜目侧表面在有效半径上无转换点,此时以有效半径0%~50%为光轴附近区域,50%~100%为圆周附近区域。由于光轴附近区域的R值为正,故此目侧面在光轴附近区域具有一凸面部;而圆周附近区域与光轴附近区域间无转换点,故圆周附近区域具有一凸面部。
图7为本发明之第一实施例之目镜光学系统的示意图,而图8A至图8D为第一实施例之目镜光学系统的纵向球差与各项像差图。请先参照图7,本发明的第一实施例之目镜光学系统10用于成像光线从显示画面100经目镜光学系统10及观察者的眼睛的瞳孔2进入观察者的眼睛成像,朝向眼睛的方向为目侧,朝向显示画面100的方向为显示侧。目镜光学系统10从目侧至显示侧沿目镜光学系统10的一光轴I依序包括一第一透镜3、一第二透镜4及一第三透镜5。当显示画面100所发出的光线进入目镜光学系统10,并依序经由第三透镜5、第二透镜4及第一透镜3后,会经由瞳孔2进入观察者的眼睛,而在眼睛的视网膜上形成一影像。
第一透镜3、第二透镜4及第三透镜5都各自具有一朝向目侧且使成像光线通过之目侧面31、41、51及一朝向显示侧且使成像光线通过之显示侧面32、42、52。为了满足产品轻量化的需求,第一透镜3、第二透镜4及第三透镜5皆为具备屈光率,且第一透镜3、第二透镜4及第三透镜5都是塑料材质所制成,但第一透镜3、第二透镜4及第三透镜5的材质仍不以此为限制。
第一透镜3具有正屈光率。第一透镜3的目侧面31为一凸面,且具有一位于光轴I附近区域的凸面部311及一位于圆周附近区域的凸面部313。第一透镜3的显示侧面32为一凸面,且具有一位于光轴I附近区域的凸面部321及一位于圆周附近区域的凸面部323。
第二透镜4具有正屈光率。第二透镜4的目侧面41为一凸面,且具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凸面部413。第二透镜4的显示侧面42为一凸面,且具有一位于光轴I附近区域的凸面部421及一位于圆周附近区域的凸面部423。
第三透镜5具有负屈光率。第三透镜5的目侧面51为一凹面,且具有一位于光轴I附近区域的凹面部512及一位于圆周附近区域的凹面部514。第三透镜5的显示侧面52具有一位于光轴I附近区域的凹面部522及一位于圆周附近区域的凸面部523。
此外,在本实施例中,只有上述透镜具有屈光率,且目镜光学系统10具有屈光率的透镜只有三片。
另外,第一实施例之目镜光学系统10中各重要参数间的关系如图1与图51所示。
其中,
EPD为目镜光学系统10之出瞳直径(exitpupil diameter),对应于观察者的瞳孔2的直径,白天约为3mm,晚上可到约7mm,如图1所绘示;
ER(eye relief)为出瞳距离,即观察者瞳孔2到第一透镜3在光轴I上的距离;
ω为半眼视视角(half apparent field of view),即观察者的一半视野角度,如图1所绘示;
T1为第一透镜3在光轴I上的厚度;
T2为第二透镜4在光轴I上的厚度;
T3为第三透镜5在光轴I上的厚度;
G12为第一透镜3的显示侧面32至第二透镜4的目侧面41在光轴I上的距离,即第一透镜3到第二透镜4在光轴I上的空气间隙;
G23为第二透镜4的显示侧面42至第三透镜5的目侧面51在光轴I上的距离,即第二透镜4到第三透镜5在光轴I上的空气间隙;
G3D为第三透镜5的显示侧面52至显示画面100在光轴I上的距离,即第三透镜5到显示画面100在光轴I上的空气间隙;
DLD为观察者单一瞳孔2对应之显示画面100之对角线长,如图1所绘示;
明视距离(Least distance of distinct vision)为眼睛可以清楚聚焦的最近之距离,青年人通常为250毫米(millimeter,mm),如图1所绘示之明视距离VD;
ALT为第一透镜3、第二透镜4及第三透镜5在光轴I上的厚度的总和,即T1与T2之和;
AAG为第一透镜3至第三透镜5在光轴I上的两个空气间隙的总和,即G12与G23之和;
TTL为第一透镜3的目侧面31到显示画面100在光轴I上的距离;
TL为第一透镜3的目侧面31至第三透镜5的显示侧面52在光轴I上的距离;
SL为系统长度,即观察者的瞳孔2到显示画面100在光轴I上的距离;以及
EFL为目镜光学系统10的系统焦距。
另外,再定义:
f1为第一透镜3的焦距;
f2为第二透镜4的焦距;
f3为第三透镜5的焦距;
n1为第一透镜3的折射率;
n2为第二透镜4的折射率;
n3为第三透镜5的折射率;
ν1为第一透镜3的阿贝数(Abbe number),阿贝数也可称为色散系数;
ν2为第二透镜4的阿贝数;
ν3为第三透镜5的阿贝数;
D1为第一透镜3的目侧面31的光学有效径(adiameter of a clear aperture);
D2为第二透镜4的目侧面41的光学有效径;以及
D3为第三透镜5的目侧面51的光学有效径。
第一实施例的其他详细光学数据如图9所示,且第一实施例的目镜光学系统10整体的系统焦距(effective focal length,EFL)为47.427mm,半眼视视角(half apparentfield of view,ω)为42.775°,TTL为66.543mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为77.236mm。其中,图9中的有效半径是指光学有效径的一半。
此外,在本实施例中,第一透镜3的目侧面31与显示侧面32、第二透镜4的目侧面41与显示侧面42及第三透镜5的目侧面51与显示侧面52共计六个面均是非球面。这些非球面是依下列公式定义:
其中:
Y:非球面曲线上的点与光轴I的距离;
Z:非球面之深度(非球面上距离光轴I为Y的点,与相切于非球面光轴I上顶点之切面,两者间的垂直距离);
R:透镜表面近光轴I处的曲率半径;
K:锥面系数(conic constant);
ai:第i阶非球面系数。
目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数如图10所示。其中,图10中字段编号31表示其为第一透镜3的目侧面31的非球面系数,其它字段依此类推。
再配合参阅图8A至图8D,图8A至图8D为第一实施例之目镜光学系统10的各项像差图,且为假设光线方向逆追迹为一平行成像光线由目侧依序经过瞳孔2及目镜光学系统10到显示画面100聚焦成像所得的各项像差图。在本实施例中,上述各项像差图中呈现的各项像差表现会决定来自显示画面100的成像光线于观察者的眼睛的视网膜成像的各项像差表现。也就是说,当上述各项像差图中呈现的各项像差较小时,观察者的眼睛的视网膜的成像的各项像差表现也会较小,使得观察者可以观看到成像质量较佳的影像。图8A的图式说明第一实施例当其光瞳半径(pupil radius)为2mm时的纵向球差(longitudinal sphericalaberration),图8B与图8C的图式则分别说明第一实施例当其波长为486nm、587nm及656nm时在显示画面100上有关弧矢(sagittal)方向的场曲(field curvature)像差及子午(tangential)方向的场曲像差,图8D的图式则说明第一实施例当其波长为486nm、587nm及656nm时在显示画面100上的畸变像差(distortion aberration)。本第一实施例的纵向球差图示图8A中,每一种波长所成的曲线皆很靠近并向中间靠近,说明每一种波长不同高度的离轴光线皆集中在成像点附近,由每一波长的曲线的偏斜幅度可看出,不同高度的离轴光线的成像点偏差控制在±0.48毫米的范围内,故本实施例确实明显改善相同波长的球差,此外,三种代表波长彼此间的距离也相当接近,代表不同波长光线的成像位置已相当集中,因而使色像差也获得明显改善。
在图8B与图8C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±0.8毫米内,说明本第一实施例的光学系统能有效消除像差。而图8D的畸变像差图式则显示本第一实施例的畸变像差维持在±21%的范围内,说明本第一实施例的畸变像差已符合光学系统的成像质量要求,据此说明本第一实施例相较于现有目镜光学系统,在SL已缩短至77.236mm左右的条件下,仍能提供良好的成像质量,故本第一实施例能在维持良好光学性能之条件下,缩短光学系统长度以及扩大眼视视角,以实现小型化、低像差且大眼视视角的产品设计。
图11为本发明的第二实施例的目镜光学系统的示意图,而图12A至图12D为第二实施例之目镜光学系统的纵向球差与各项像差图。请先参照图11,本发明目镜光学系统10的一第二实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。此外,在本实施例中,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凹面部414。另外,在本实施例中,第三透镜5的目侧面51具有一位于光轴I附近区域的凸面部511及一位于圆周附近区域的凹面部514。在此需注意的是,为了清楚地显示图面,图11中省略部分与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图13所示,且第二实施例的目镜光学系统10整体的EFL为48.928mm,ω为41.000°,TTL为61.725mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为79.881mm。
如图14所示,则为第二实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第二实施例之目镜光学系统10中各重要参数间的关系如图51所示。
本第二实施例在其光瞳半径为2.0000mm时的纵向球差图示图12A中,不同高度的离轴光线的成像点偏差控制在±1.1毫米的范围内。在图12B与图12C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±1.8毫米内。而图12D的畸变像差图式则显示本第二实施例的畸变像差维持在±20%的范围内。据此说明本第二实施例相较于现有的目镜光学系统,在SL已缩短至79.881mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第二实施例相较于第一实施例的优点在于:第二实施例的畸变小于第一实施例的畸变,且第二实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第二实施例比第一实施例易于制造,所以良率较高。
图15为本发明的第三实施例的目镜光学系统的示意图,而图16A至图16D为第三实施例之目镜光学系统的纵向球差与各项像差图。请先参照图15,本发明目镜光学系统10的一第三实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同,此外,在本实施例中,第一透镜3的目侧面31具有一位于光轴I附近区域的凸面部311及一位于圆周附近区域的凹面部314。在此需注意的是,为了清楚地显示图面,图15中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图17所示,且第三实施例的目镜光学系统10整体的EFL为33.624mm,ω为56.157°,TTL为50.411mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为58.411mm。
如图18所示,则为第三实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第三实施例之目镜光学系统10中各重要参数间的关系如图51所示。
本第三实施例在其光瞳半径为2.0000mm时的纵向球差图示图16A中,不同高度的离轴光线的成像点偏差控制在±0.52毫米的范围内。在图16B与图16C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±3.6毫米内。而图16D的畸变像差图式则显示本第三实施例的畸变像差维持在±30%的范围内。据此说明本第三实施例相较于现有光学镜头,在系统长度SL已缩短至58.411mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第三实施例相较于第一实施例的优点在于:第三实施例的目镜光学系统10的系统长度SL小于第一实施例的系统长度SL,且第三实施例的半眼视视角ω大于第一实施例的半眼视视角ω。
图19为本发明的第四实施例的目镜光学系统的示意图,而图20A至图20D为第四实施例之目镜光学系统的纵向球差与各项像差图。请先参照图19,本发明目镜光学系统10的一第四实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。此外,在本实施例中,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凹面部414。在此需注意的是,为了清楚地显示图面,图19中省略与第一实施例相同的凹面部与凸面部的标号。
第四实施例的目镜光学系统10详细的光学数据如图21所示,且第四实施例的目镜光学系统10整体的EFL为61.299mm,ω为40.975°,TTL为86.102mm,EPD为2.000mm,0.5倍的DLD为39.459mm,且SL为96.558mm。
如图22所示,则为第四实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第四实施例之目镜光学系统10中各重要参数间的关系如图51所示。
本第四实施例在光瞳半径为2.0000mm时的纵向球差图示图20A中,不同高度的离轴光线的成像点偏差控制在±0.54毫米的范围内。在图20B与图20C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±1.9毫米内。而图20D的畸变像差图式则显示本第四实施例的畸变像差维持在±28%的范围内。据此说明本第四实施例相较于现有光学镜头,在系统长度SL已缩短至96.558mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第四实施例相较于第一实施例的优点在于:第四实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第四实施例比第一实施例易于制造,所以良率较高。
图23为本发明的第五实施例的目镜光学系统的示意图,而图24A至图24D为第五实施例之目镜光学系统的纵向球差与各项像差图。请先参照图23,本发明目镜光学系统10的一第五实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同,此外,在本实施例中,第一透镜3的目侧面31具有一位于光轴I附近区域的凸面部311及一位于圆周附近区域的凹面部314。在此需注意的是,为了清楚地显示图面,图23中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图25所示,且第五实施例的目镜光学系统10整体的EFL为43.758mm,ω为40.996°,TTL为62.359mm,EPD为2.000mm,0.5倍的DLD为36.608mm,且SL为71.570mm。
如图26所示,则为第五实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第五实施例之目镜光学系统10中各重要参数间的关系如图51所示。
本第五实施例在其光瞳半径为2.0000mm时的纵向球差图示图24A中,不同高度的离轴光线的成像点偏差控制在±0.73毫米的范围内。在图24B与图24C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±2.9毫米内。而图24D的畸变像差图式则显示本第五实施例的畸变像差维持在±6%的范围内。据此说明本第五实施例相较于现有光学镜头,在系统长度SL已缩短至71.570mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第五实施例相较于第一实施例的优点在于:第五实施例的系统长度SL小于第一实施例的系统长度SL;第五实施例的畸变小于第一实施例的畸变。
图27为本发明的第六实施例的目镜光学系统的示意图,而图28A至图28D为第六实施例之目镜光学系统的纵向球差与各项像差图。请先参照图27,本发明目镜光学系统10的一第六实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。在此需注意的是,为了清楚地显示图面,图27中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图29所示,且第六实施例的目镜光学系统10整体的EFL为45.853mm,ω为40.551°,TTL为57.724mm,EPD为2.000mm,0.5倍的DLD为31.956mm,且SL为79.996mm。
如图30所示,则为第六实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第六实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第六实施例在其光瞳半径为2.0000mm时的纵向球差图示图28A中,不同高度的离轴光线的成像点偏差控制在±0.45毫米的范围内。在图28B与图28C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±4毫米内。而图28D的畸变像差图式则显示本第六实施例的畸变像差维持在±19%的范围内。据此说明本第六实施例相较于现有光学镜头,在系统长度SL已缩短至79.996mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第六实施例相较于第一实施例的优点在于:第六实施例的纵向球差小于第一实施例的纵向球差,且第六实施例的畸变小于第一实施例的畸变。
图31为本发明的第七实施例的目镜光学系统的示意图,而图32A至图32D为第七实施例之目镜光学系统的纵向球差与各项像差图。请先参照图31,本发明目镜光学系统10的一第七实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。在此需注意的是,为了清楚地显示图面,图31中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图33所示,且第七实施例的目镜光学系统10整体的EFL为61.919mm,ω为41.000°,TTL为80.258mm,EPD为2.000mm,0.5倍的DLD为44.369mm,且SL为92.925mm。
如图34所示,则为第七实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第七实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第七实施例在光瞳半径为2.0000mm时的纵向球差图示图32A中,不同高度的离轴光线的成像点偏差控制在±0.9毫米的范围内。在图32B与图32C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±1.9毫米内。而图32D的畸变像差图式则显示本第七实施例的畸变像差维持在±19%的范围内。据此说明本第七实施例相较于现有光学镜头,在系统长度SL已缩短至92.925mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第七实施例相较于第一实施例的优点在于:第七实施例的畸变像差小于第一实施例的畸变像差,且第七实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第七实施例比第一实施例易于制造,所以良率较高。
图35为本发明的第八实施例的目镜光学系统的示意图,而图36A至图36D为第八实施例之目镜光学系统的纵向球差与各项像差图。请先参照图35,本发明目镜光学系统10的一第八实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。在此需注意的是,为了清楚地显示图面,图35中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图37所示,且第八实施例的目镜光学系统10整体的EFL为45.381mm,ω为40.977°,TTL为75.038mm,EPD为2.000mm,0.5倍的DLD为35.240mm,且SL为85.651mm。
如图38所示,则为第八实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第八实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第八实施例在光瞳半径为2.0000mm时的纵向球差图示图36A中,不同高度的离轴光线的成像点偏差控制在±1.1毫米的范围内。在图36B与图36C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±3.5毫米内。而图36D的畸变像差图式则显示本第八实施例的畸变像差维持在±13%的范围内。据此说明本第八实施例相较于现有光学镜头,在系统长度SL已缩短至85.651mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第八实施例相较于第一实施例的优点在于:第八实施例的畸变像差小于第一实施例的畸变像差,且第八实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第八实施例比第一实施例易于制造,所以良率较高。
图39为本发明的第九实施例的目镜光学系统的示意图,而图40A至图40D为第九实施例之目镜光学系统的纵向球差与各项像差图。请先参照图39,本发明目镜光学系统10的一第九实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。此外,在本实施例中,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凹面部414。在此需注意的是,为了清楚地显示图面,图39中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图41所示,且第九实施例的目镜光学系统10整体的EFL为50.614mm,ω为41.000°,TTL为67.726mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为79.994mm。
如图42所示,则为第九实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第九实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第九实施例在光瞳半径为2.0000mm时的纵向球差图示图40A中,不同高度的离轴光线的成像点偏差控制在±0.4毫米的范围内。在图40B与图40C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±1.5毫米内。而图40D的畸变像差图式则显示本第九实施例的畸变像差维持在±21%的范围内。据此说明本第九实施例相较于现有光学镜头,在系统长度SL已缩短至79.994mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第九实施例相较于第一实施例的优点在于:第九实施例的纵向球差小于第一实施例的纵向球差,且第九实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第九实施例比第一实施例易于制造,所以良率较高。
图43为本发明的第十实施例的目镜光学系统的示意图,而图44A至图44D为第十实施例之目镜光学系统的纵向球差与各项像差图。请先参照图43,本发明目镜光学系统10的一第十实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。此外,在本实施例中,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凹面部414。在此需注意的是,为了清楚地显示图面,图43中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图45所示,且第十实施例的目镜光学系统10整体的EFL为47.427mm,ω为42.775°,TTL为66.543mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为77.236mm。
如图46所示,则为第十实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第十实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第十实施例在光瞳半径为2.0000mm时的纵向球差图示图44A中,不同高度的离轴光线的成像点偏差控制在±0.6毫米的范围内。在图44B与图44C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±0.6毫米内。而图44D的畸变像差图式则显示本第十实施例的畸变像差维持在±16%的范围内。据此说明本第十实施例相较于现有光学镜头,在系统长度SL已缩短至77.236mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第十实施例相较于第一实施例的优点在于:第十实施例的场曲小于第一实施例的场曲,第十实施例的畸变小于第一实施例的畸变,且第十实施例的透镜的光轴与圆周附近区域的厚薄差异比第一实施例小,因此第十实施例比第一实施例易于制造,所以良率较高。
图47为本发明的第十一实施例的目镜光学系统的示意图,而图48A至图48D为第十一实施例之目镜光学系统的纵向球差与各项像差图。请先参照图47,本发明目镜光学系统10的一第十一实施例,其与第一实施例大致相似,而两者的差异如下所述:各光学数据、非球面系数及这些透镜3、4及5间的参数或多或少有些不同。此外,在本实施例中,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411及一位于圆周附近区域的凹面部414。在此需注意的是,为了清楚地显示图面,图47中省略与第一实施例相同的凹面部与凸面部的标号。
目镜光学系统10详细的光学数据如图49所示,且第十一实施例的目镜光学系统10整体的EFL为49.186mm,ω为41.000°,TTL为61.444mm,EPD为2.000mm,0.5倍的DLD为35.000mm,且SL为80.000mm。
如图50所示,则为第十一实施例的目侧面31、41及51与显示侧面32、42及52在公式(1)中的各项非球面系数。
另外,第十一实施例之目镜光学系统10中各重要参数间的关系如图52所示。
本第十一实施例在光瞳半径为2.0000mm时的纵向球差图示图48A中,不同高度的离轴光线的成像点偏差控制在±0.5毫米的范围内。在图48B与图48C的二个场曲像差图示中,三种代表波长在整个视场范围内的焦距变化量落在±1.9毫米内。而图48D的畸变像差图式则显示本第十一实施例的畸变像差维持在±18%的范围内。据此说明本第十一实施例相较于现有光学镜头,在系统长度SL已缩短至80.000mm左右的条件下,仍能提供良好的成像质量。
经由上述说明可得知,第十一实施例相较于第一实施例的优点在于:第十一实施例的畸变小于第一实施例的畸变。
再配合参阅图51与图52,为上述十一个实施例的各项光学参数的表格图,当本发明的实施例的目镜光学系统10中的各项光学参数间的关系式符合下列条件式的至少其中之一时,可协助设计者设计出具备良好光学性能、整体长度有效缩短、且技术上可行之目镜光学系统:
一、当系统满足T3/G23≦4.3条件式,有利于修正第一透镜3与第二透镜4的像差。较佳为满足0.1≦T3/G23≦4.3。当满足G3D/T3≦3.51条件式,有助于微调第一透镜3、第二透镜4及第三透镜5所产生的像差,较佳为满足0.16≦G3D/T3≦3.51。
二、250mm为青年人的明视距离,即青年人眼睛可以清楚聚焦的最近之距离,则系统之放大率可近似于250mm与EFL的比值,因此当系统满足250毫米/EFL≦25时,使得系统放大率不致过大而增加透镜厚度与制造困难度。较佳为满足2.5≦250毫米/EFL≦25,使得EFL不致过长而影响系统长度。
三、当系统满足40°≦ω时,不致让观察者感到视觉狭窄。较佳为满足40°≦ω≦60°,不致增加设计的难度。
四、系统可满足0.1≦G23/G3D≦10、0.7≦AAG/T2≦25、0.5≦T1/T2≦10、2.2≦ALT/T2≦50、0.7≦T1/T3≦10及0.4≦AAG/G3D≦20的至少其中之一,目的是为使各透镜的厚度与间隔维持一适当值,避免任一参数过大而不利于该目镜光学系统10整体之薄型化,或是避免任一参数过小而影响组装或是提高制造上之困难度。
五、系统可满足EFL/ALT≦1.8、EFL/AAG≦6.2及1.23≦TTL/EFL≦10的至少其中之一,较佳为满足0.17≦EFL/ALT≦1.8及0.3≦EFL/AAG≦6.2的至少其中之一,目的是为使系统焦距EFL与光学各参数维持一适当值,避免任一参数过大而不利于该目镜光学系统整体之像差的修正,或是避免任一参数过小而影响组装或是提高制造上之困难度。
六、系统可满足ER/T1≦8、1≦ALT/ER≦10、ER/T3≦4.31、3≦SL/ER≦29、(ER+G12+G3D)/T3≦8.01、ER/G23≦20及(ER+G12+G3D)/G23≦36的至少其中之一,较佳为满足0.4≦ER/T1≦8、0.2≦ER/T3≦4.31、0.5≦(ER+G12+G3D)/T3≦8.01、0.45≦ER/G23≦20及0.3≦(ER+G12+G3D)/G23≦36的至少其中之一,目的是使出瞳距离与光学各参数维持一适当值,避免任一参数过大而使目镜光学系统10离眼睛距离太远或太近造成眼睛不适,或是避免任一参数过小而影响组装或是提高制造上之困难度。
然而,有鉴于光学系统设计的不可预测性,在本发明的实施例的架构之下,符合上述条件式能较佳地使本发明的实施例的系统长度缩短、可用光圈增大、眼视视角增加、成像质量提升,或组装良率提升而改善先前技术的缺点。
综上所述,本发明的实施例的目镜光学系统10可获致下述的功效及优点:
一、本发明各实施例的纵向球差、场曲、畸变皆符合使用规范。另外,486纳米、587纳米、656纳米三种代表波长在不同高度的离轴光线皆集中在成像点附近,由每一曲线的偏斜幅度可看出不同高度的离轴光线的成像点偏差皆获得控制而具有良好的球差、像差、畸变抑制能力。进一步参阅成像质量数据,486纳米、587纳米、656纳米三种代表波长彼此间的距离亦相当接近,显示本发明的实施例在各种状态下对不同波长光线的集中性佳而具有优良的色散抑制能力,故透过上述可知本发明的实施例具备良好光学性能。
二、第二透镜4的显示侧面42具有一位于光轴I附近区域的凸面部421及一位于圆周附近区域的凸面部423,第二透镜4的目侧面41具有一位于光轴I附近区域的凸面部411,且第三透镜5的目侧面51具有一位于圆周附近区域的凹面部514,如此有利于放大影像。
三、此外,另可选择实施例参数之任意组合关系增加系统限制,以利于本发明实施例相同架构的系统设计。有鉴于光学系统设计的不可预测性,在本发明的实施例的架构之下,符合上述条件式能较佳地使本发明的实施例的系统长度缩短、出瞳直径增大、成像质量提升,或组装良率提升而改善先前技术的缺点。
四、前述所列之示例性限定关系式,亦可任意选择性地合并不等数量施用于本发明之实施态样中,并不限于此。在实施本发明时,除了前述关系式之外,亦可针对单一透镜或广泛性地针对多个透镜额外设计出其他更多的透镜的凹凸曲面排列等细部结构,以加强对系统性能及/或分辨率的控制,举例来说,第一透镜的目侧面上可选择性地额外形成有一位于光轴附近区域的凸面部。须注意的是,此些细节需在无冲突之情况之下,选择性地合并施用于本发明之其他实施例当中。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的申请专利范围所界定者为准。
Claims (20)
1.一种目镜光学系统,用于成像光线从显示画面经该目镜光学系统进入观察者的眼睛成像,朝向该眼睛的方向为目侧,朝向该显示画面的方向为显示侧,该目镜光学系统从该目侧至该显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,该第一透镜、该第二透镜及该第三透镜各自包括一目侧面及一显示侧面;
该第一透镜具有屈光率;
该第二透镜的该显示侧面具有一位于光轴附近区域的凸面部;以及
该第三透镜具有屈光率,
其中,该目镜光学系统符合:
T3/G23≦4.3;及
G3D/T3≦3.51,
其中T3为该第三透镜在该光轴上的厚度,G23为该第二透镜到该第三透镜在该光轴上的空气间隙,且G3D为该第三透镜到该显示画面在该光轴上的距离。
2.一种目镜光学系统,用于成像光线从显示画面经该目镜光学系统进入观察者的眼睛成像,朝向该眼睛的方向为目侧,朝向该显示画面的方向为显示侧,该目镜光学系统从该目侧至该显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,该第一透镜、该第二透镜及该第三透镜各自包括一目侧面及一显示侧面;
该第一透镜具有屈光率;
该第二透镜的该显示侧面具有一位于圆周附近区域的凸面部;以及
该第三透镜具有屈光率,
其中,该目镜光学系统符合:
T3/G23≦4.3;及
G3D/T3≦3.51,
其中T3为该第三透镜在该光轴上的厚度,G23为该第二透镜到该第三透镜在该光轴上的空气间隙,且G3D为该第三透镜到该显示画面在该光轴上的距离。
3.一种目镜光学系统,用于成像光线从显示画面经该目镜光学系统进入观察者的眼睛成像,朝向该眼睛的方向为目侧,朝向该显示画面的方向为显示侧,该目镜光学系统从该目侧至该显示侧沿一光轴依序包括一第一透镜、一第二透镜及一第三透镜,该第一透镜、该第二透镜及该第三透镜各自包括一目侧面及一显示侧面;
该第一透镜具有屈光率;
该第二透镜的该目侧面具有一位于光轴附近区域的凸面部;以及
该第三透镜的该目侧面具有一位于圆周附近区域的凹面部,
其中,该目镜光学系统符合:
T3/G23≦4.3;及
G3D/T3≦3.51,
其中T3为该第三透镜在该光轴上的厚度,G23为该第二透镜到该第三透镜在该光轴上的空气间隙,且G3D为该第三透镜到该显示画面在该光轴上的距离。
4.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:ER/T1≦8,ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离,且T1为该第一透镜在该光轴上的厚度。
5.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:0.1≦G23/G3D≦10。
6.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:EFL/ALT≦1.8,其中EFL为该目镜光学系统的系统焦距,且ALT为该第一透镜、该第二透镜及该第三透镜在该光轴上的厚度的总和。
7.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:0.7≦AAG/T2≦25,其中AAG为该第一透镜至该第三透镜在该光轴上的两个空气间隙的总和,且T2为该第二透镜在该光轴上的厚度。
8.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:2.5≦250毫米/EFL≦25,其中EFL为该目镜光学系统的系统焦距。
9.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:1≦ALT/ER≦10,其中ALT为该第一透镜、该第二透镜及该第三透镜在该光轴上的厚度的总和,且ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离。
10.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:ER/T3≦4.31,其中ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离。
11.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:0.5≦T1/T2≦10,T1为该第一透镜在该光轴上的厚度,且T2为该第二透镜在该光轴上的厚度。
12.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:EFL/AAG≦6.2,其中EFL为该目镜光学系统的系统焦距,且AAG为该第一透镜至该第三透镜在该光轴上的两个空气间隙的总和。
13.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:3≦SL/ER≦29,其中SL为该观察者的该眼睛的瞳孔到该显示画面在该光轴上的距离,且ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离。
14.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:(ER+G12+G3D)/T3≦8.01,其中ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离,且G12为该第一透镜到该第二透镜在该光轴上的空气间隙。
15.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:2.2≦ALT/T2≦50,其中ALT为该第一透镜、该第二透镜及该第三透镜在该光轴上的厚度的总和,且T2为该第二透镜在该光轴上的厚度。
16.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:ER/G23≦20,其中ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离。
17.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:0.7≦T1/T3≦10,其中T1为该第一透镜在该光轴上的厚度。
18.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:1.23≦TTL/EFL≦10,其中TTL为该第一透镜的该目侧面到该显示画面在该光轴上的距离,且EFL为该目镜光学系统的系统焦距。
19.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:0.4≦AAG/G3D≦20,其中AAG为该第一透镜至该第三透镜在该光轴上的两个空气间隙的总和。
20.如权利要求1、2或3项所述的目镜光学系统,其中该目镜光学系统更符合:(ER+G12+G3D)/G23≦36,其中ER为该观察者的该眼睛的瞳孔到该第一透镜在该光轴上的距离,且G12为该第一透镜到该第二透镜在该光轴上的空气间隙。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011426640.0A CN112526743B (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
CN201611028369.9A CN106773009A (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
US15/378,062 US10139592B2 (en) | 2016-11-18 | 2016-12-14 | Ocular optical system |
TW105141318A TWI627441B (zh) | 2016-11-18 | 2016-12-14 | 目鏡光學系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611028369.9A CN106773009A (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011426640.0A Division CN112526743B (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106773009A true CN106773009A (zh) | 2017-05-31 |
Family
ID=58971317
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011426640.0A Active CN112526743B (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
CN201611028369.9A Pending CN106773009A (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011426640.0A Active CN112526743B (zh) | 2016-11-18 | 2016-11-18 | 目镜光学系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10139592B2 (zh) |
CN (2) | CN112526743B (zh) |
TW (1) | TWI627441B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110727101A (zh) * | 2018-07-16 | 2020-01-24 | 玉晶光电股份有限公司 | 目镜光学系统 |
TWI707171B (zh) * | 2019-12-04 | 2020-10-11 | 佐臻股份有限公司 | 目鏡光學系統 |
CN115291383A (zh) * | 2022-09-01 | 2022-11-04 | 舜宇光学(中山)有限公司 | 目镜镜头 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107861247B (zh) * | 2017-12-22 | 2020-08-25 | 联想(北京)有限公司 | 光学部件及增强现实设备 |
TWI747747B (zh) * | 2021-02-24 | 2021-11-21 | 新鉅科技股份有限公司 | 成像透鏡組及攝像模組 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6454410A (en) * | 1987-08-25 | 1989-03-01 | Konishiroku Photo Ind | Small-sized inverted galilean finder |
JPH05181071A (ja) * | 1992-01-07 | 1993-07-23 | Sony Corp | ファインダー用接眼レンズ |
US5446588A (en) * | 1994-07-29 | 1995-08-29 | The University Of Rochester | Wide-angle eyepiece optical system employing refractive and diffractive optical elements |
US20050013011A1 (en) * | 2003-07-18 | 2005-01-20 | Nikon Corporation | Eyepiece lens |
JP2007225835A (ja) * | 2006-02-23 | 2007-09-06 | Citizen Miyota Co Ltd | ファインダー用接眼レンズ |
JP5646440B2 (ja) * | 2011-11-18 | 2014-12-24 | 昭和オプトロニクス株式会社 | 接眼レンズ |
CN104718484A (zh) * | 2012-10-04 | 2015-06-17 | 株式会社尼康 | 目镜光学系统,光学装置,和制造目镜光学系统的方法 |
CN107683432A (zh) * | 2015-11-13 | 2018-02-09 | 深圳纳德光学有限公司 | 大视场角的目镜光学系统及头戴显示装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9403925D0 (en) * | 1994-03-01 | 1994-04-20 | Virtuality Entertainment Ltd | Optical system |
JP3387338B2 (ja) * | 1996-12-24 | 2003-03-17 | 三菱電機株式会社 | 接眼光学系、及び接眼映像表示装置 |
JP2009145909A (ja) * | 2003-10-08 | 2009-07-02 | Takechika Nishi | 画像表示装置 |
DE102006027958A1 (de) * | 2006-06-14 | 2007-12-20 | Schott Ag | Optokeramiken, daraus hergestellte optische Elemente sowie Abbildungsoptiken |
JP2008096552A (ja) * | 2006-10-10 | 2008-04-24 | Ricoh Co Ltd | 観察光学系、鏡胴ユニットおよびカメラ |
JP4893995B2 (ja) * | 2006-10-27 | 2012-03-07 | 株式会社ニコン | 接眼レンズおよびこれを備えた光学機器 |
JP5025354B2 (ja) * | 2007-07-09 | 2012-09-12 | オリンパス株式会社 | 光学素子、それを備えた光学系及びそれを用いた内視鏡 |
JP5304380B2 (ja) * | 2008-07-23 | 2013-10-02 | 株式会社リコー | 光走査装置、これを用いた画像投影装置、ヘッドアップディスプレイ装置および携帯電話機 |
JP6221731B2 (ja) * | 2013-09-03 | 2017-11-01 | セイコーエプソン株式会社 | 虚像表示装置 |
CN104536129B (zh) * | 2014-12-17 | 2017-02-08 | 歌尔科技有限公司 | 一种微显示目镜、头戴目镜系统和头戴可视设备 |
CN104635333B (zh) * | 2015-01-26 | 2017-05-31 | 青岛歌尔声学科技有限公司 | 一种目镜、头戴目镜系统和微显示头戴设备 |
CN205176383U (zh) * | 2015-09-28 | 2016-04-20 | 深圳纳德光学有限公司 | 大视场角目镜光学系统 |
CN108303795B (zh) * | 2015-11-16 | 2020-10-30 | 董润 | 头戴显示设备用光学目镜镜头 |
US10422976B2 (en) * | 2016-02-26 | 2019-09-24 | Samsung Electronics Co., Ltd. | Aberration corrected optical system for near-eye displays |
CN205427336U (zh) * | 2016-02-29 | 2016-08-03 | 中山联合光电科技股份有限公司 | 一种虚拟现实光学系统 |
TWI597522B (zh) | 2016-07-05 | 2017-09-01 | Tan Cian Technology Co Ltd | Magnified lens set for virtual reality |
-
2016
- 2016-11-18 CN CN202011426640.0A patent/CN112526743B/zh active Active
- 2016-11-18 CN CN201611028369.9A patent/CN106773009A/zh active Pending
- 2016-12-14 US US15/378,062 patent/US10139592B2/en active Active
- 2016-12-14 TW TW105141318A patent/TWI627441B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6454410A (en) * | 1987-08-25 | 1989-03-01 | Konishiroku Photo Ind | Small-sized inverted galilean finder |
JPH05181071A (ja) * | 1992-01-07 | 1993-07-23 | Sony Corp | ファインダー用接眼レンズ |
US5446588A (en) * | 1994-07-29 | 1995-08-29 | The University Of Rochester | Wide-angle eyepiece optical system employing refractive and diffractive optical elements |
US20050013011A1 (en) * | 2003-07-18 | 2005-01-20 | Nikon Corporation | Eyepiece lens |
JP2007225835A (ja) * | 2006-02-23 | 2007-09-06 | Citizen Miyota Co Ltd | ファインダー用接眼レンズ |
JP5646440B2 (ja) * | 2011-11-18 | 2014-12-24 | 昭和オプトロニクス株式会社 | 接眼レンズ |
CN104718484A (zh) * | 2012-10-04 | 2015-06-17 | 株式会社尼康 | 目镜光学系统,光学装置,和制造目镜光学系统的方法 |
CN107683432A (zh) * | 2015-11-13 | 2018-02-09 | 深圳纳德光学有限公司 | 大视场角的目镜光学系统及头戴显示装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110727101A (zh) * | 2018-07-16 | 2020-01-24 | 玉晶光电股份有限公司 | 目镜光学系统 |
TWI707171B (zh) * | 2019-12-04 | 2020-10-11 | 佐臻股份有限公司 | 目鏡光學系統 |
US11366286B2 (en) | 2019-12-04 | 2022-06-21 | Jorjin Technologies Inc. | Ocular optical system |
CN115291383A (zh) * | 2022-09-01 | 2022-11-04 | 舜宇光学(中山)有限公司 | 目镜镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN112526743B (zh) | 2022-08-05 |
US20180143401A1 (en) | 2018-05-24 |
TW201723581A (zh) | 2017-07-01 |
US10139592B2 (en) | 2018-11-27 |
TWI627441B (zh) | 2018-06-21 |
CN112526743A (zh) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106773008B (zh) | 目镜光学系统 | |
CN106526852B (zh) | 目镜光学系统 | |
CN106526851B (zh) | 目镜光学系统 | |
CN111208640B (zh) | 目镜光学系统 | |
CN112526743B (zh) | 目镜光学系统 | |
CN111443479B (zh) | 目镜光学系统 | |
CN106970464B (zh) | 目镜光学系统 | |
CN108107566B (zh) | 目镜光学系统 | |
TWI624708B (zh) | 目鏡光學系統 | |
CN110727101B (zh) | 目镜光学系统 | |
CN107193121B (zh) | 目镜光学系统 | |
CN115097622A (zh) | 目镜光学系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |