CN106770944B - 水体气溶率测定方法 - Google Patents

水体气溶率测定方法 Download PDF

Info

Publication number
CN106770944B
CN106770944B CN201611138576.XA CN201611138576A CN106770944B CN 106770944 B CN106770944 B CN 106770944B CN 201611138576 A CN201611138576 A CN 201611138576A CN 106770944 B CN106770944 B CN 106770944B
Authority
CN
China
Prior art keywords
gas
water
inlet pipe
underwater
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611138576.XA
Other languages
English (en)
Other versions
CN106770944A (zh
Inventor
兰晨
王敬富
陈敬安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geochemistry of CAS
Original Assignee
Institute of Geochemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geochemistry of CAS filed Critical Institute of Geochemistry of CAS
Priority to CN201611138576.XA priority Critical patent/CN106770944B/zh
Publication of CN106770944A publication Critical patent/CN106770944A/zh
Application granted granted Critical
Publication of CN106770944B publication Critical patent/CN106770944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供一种水体气溶率测定方法,属于水体生态环境监测领域。该方法包括以下步骤:将水下气体通量监测装置放置在水面上;利用充气系统向水底通入气体;打开所述水下气体通量监测装置,将从水里逃逸出来的气体收集起来,并对水下逃逸气体通量进行测定;然后利用数学模型求解矫正后的水下气体流量和原始流量;最后利用上述数据通过数学模型求解得到水体气溶率。上述测定系统包括充气系统和水下气体通量监测装置,充气系统用于向水下充气,水下气体通量监测装置用于测定水下逃逸气体的通量。由于对气体流量进行了矫正,并且该系统避免了气体在通道中的堵塞现象,从而可以得到比较准确的气体溶解率数据。

Description

水体气溶率测定方法
技术领域
本发明涉及水体生态环境监测领域,具体而言,涉及一种水体气溶率测定方法。
背景技术
深水湖库湖下层长期缺氧将导致水体富营养化,藻类及其它浮游生物迅速繁殖,水体溶氧量进一步下降,鱼类及其它生物大量死亡,突发性水质恶化事件时有发生。气溶率是评价湖库水质曝气修复技术的重要指标。对该指标的监测可反映出空气(氧气)在水中的溶解效率,从而可对曝气水质修复技术的实际运用进行较直观的评价。
因此,提供一种水体气溶率测定方法及水体气溶率测定系统,对于科学研究具有极其重要的现实意义。
发明内容
本发明的目的在于提供一种水体气溶率测定方法,利用该方法可以测定出水体的气体溶解率,从而为科学研究提供重要数据支撑。
本发明的另一目的在于提供一种水体气溶率测定系统,其能够向水体中充气,并将逃逸的气体进行收集起来,从而为计算气体溶解率提供原始数据支撑。
本发明是这样实现的:
一种水体气溶率测定方法,包括以下步骤:
a.将水下气体通量监测装置放置在水面上;
b.打开充气系统,利用放置于水下的充气管向水下通入气体;
c.打开所述水下气体通量监测装置,将从水里逃逸的气体收集起来;
d.计算水面气泡逃逸通量:
e.计算水面气泡逃逸流量
水面气泡逃逸流量=水面气泡逃逸通量×逸出气体的水面面积
f.计算压力矫正后的气体原始流量:
g.计算气体溶解率:
一种水体气溶率测定系统,包括充气系统和水下气体通量监测装置,所述充气系统用于向水下充气,所述水下气体通量监测装置用于测定水下逃逸气体的通量。
本发明的有益效果是:
本发明通过上述设计得到的水体气溶率测定方法,由于对气体通量进行了矫正,从而可以得到比较准确的气体容积率数据。
本发明通过上述设计得到的水体气溶率测定系统,由于所述进气管不同位置的通流面积一致,因此,从进气管进入的气泡不会在上升过程中堵塞,即可以全部进入到集气装置中,从而为科学研究提供比较准确的数据。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例提供的水体气溶率测定方法的流程图;
图2是本发明实施例提供的水下气体通量监测装置的结构示意图;
图3是本发明实施例提供的水下气体通量监测装置的使用状态下的示意图;
图4是本发明实施例提供的水下气体通量监测装置的使用状态下的示意图;
图5是本发明实施例提供的紧固环的结构示意图;
图6是本发明实施例提供的充气系统结构示意图。
图标:100-水下气体通量监测装置;110-集气装置;112-第一表面;120-进气管;122-第一开关件;130-出水管;132-凹槽;132-第二开关件;140-进水管;142-第三开关件;150-浮体;152-安装孔;200-水下气体通量监测装置;210-导流管;220-紧固环;222-紧固本体;2222-第一连接端;2224-第二连接端;224-紧固装置;2242-锁盖;2244-锁扣;2246-锁钩;300-充气系统;310-气体生成装置;320-充气管;330-传输管;400-水上载重平台。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,指示方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例:
本实施例提供了一种水体气溶率测定方法,如图1和图2,该方法主要包括以下步骤:
a.将水下气体通量监测装置放置在水面上;
b.打开充气系统,利用放置于水下的充气管向水下通入气体;
c.打开所述水下气体通量监测装置,将从水里逃逸的气体收集起来;
d.计算水面气泡逃逸通量:
e.计算水面气泡逃逸流量
水面气泡逃逸流量=水面气泡逃逸通量×逸出气体的水面面积
f.计算压力矫正后的气体原始流量:
g.计算气体溶解率:
步骤d中的水面气泡逃逸通量指的是单位时间内通过单位通流面积的逃逸气体体积,水面面积指的有气体逃逸的水面面积,在该水域气体通量基本一致。步骤f是必要的,充气管深度指的是充气系统300(图6)的出气管口所在的深度。由于随着水深的变化,水体温度会发生变化,从而影响气体的体积,故该步骤是必要的。
深水湖库湖下层长期缺氧将导致水体富营养化,藻类及其它浮游生物迅速繁殖,水体溶氧量进一步下降,鱼类及其它生物大量死亡,突发性水质恶化事件时有发生。气溶率是评价湖库水质曝气修复技术的重要指标。对该指标的监测可反映出空气(氧气)在水中的溶解效率,从而可对曝气水质修复技术的实际运用进行较直观的评价。
利用本实施例提供的方法可以比较准确地计算出水体的气溶率,从而为改善水体生态环境提供数据支撑。
如图2,水下气体通量监测装置100主要包括集气装置110、进气管120、出水管130、进水管140和浮体150。进气管120和出水管130均连接于集气装置110的底部,进水管140连接于集气装置110的上部;集气装置110固定安装在浮体150上。
集气装置110包括相对设置的第一表面112和第二表面;整个集气装置110为中空结构,内部包括一个储存空间。在第二表面上设置有进气管120和出水管130,在第一表面112上设置有进水管140。进气管120为直管,包括第一端和第二端,第一端用于与集气装置110连接;进气管120不同位置的通流面积一致;出水管130为一L形管。另外,在进气管120上设置有第一开关件122,用于将进气管120的通道打开或关闭;在出水管130上设置有第二开关件132,用于将出水管130的通道打开或关闭;在进水管140上设置有第三开关件142,用于将进水管140的通道打开或关闭。作为优选,出水管130的有效通流面积与进气管140的有效通流面积相等。
本实施例中的第一开关件122、第二开关件132和第三开关件142均为设有螺纹的封盖,第一开关件122、第二开关件132和第三开关件142分别与进气管120、出水管130和进水管140螺纹连接。在其它实施例中,第一开关件122、第二开关件132和第三开关件142也可以采用截止阀。
浮体150又密度比水的密度小的材料制成,其中部设置安装孔152,当集气装置110安装在浮体150上时,进气管120和出水管130贯穿安装孔152。
如图2和图3,使用时,先将第一开关件122和第二开关件132关闭,将第三开关件142打开,并将水通过进水管140注入到集气装置110中,直至储存空间内存满水;然后,关闭第三开关件142,将整个气体监测装置放置到水面上;此时,浮体150漂浮在水面上,进气管120和出水管130均浸入到水中,集气装置110位于水面之上;最后打开第一开关件122和第二开关件132。在大气压的作用下,集气装置110里的水不会流出,此时,由于进气管120为直管,进气管120的气体从水底逃逸后通过进气管120进入到集气装置110的储存空间内。由于进气管120不同位置的通流面积一致,因此,当大量气体同时逃逸时,从进气管120进入的气体仍能全部进入到集气装置110内;如果第一端的通流面积小于第二端的通流面积,大量的气体从第二端进入到进气管120后,容易在第一端发生堵塞,部分气体从第二端的边缘逃逸;这将导致计算得到的水下气体通量数据不准确。另外,由于出水管130为L型,其出水口端面垂直于气体上升方向,故不会有较多的气体从出水管130进入到集气装置110,从而保证数据的误差较小。
为了保证良好的密封效果,作为优选,集气装置110、进气管120、出水管130和进水管140一体成型;为了便于观察集气装置110的内部情况,集气装置110、进气管120、出水管130和进水管140均由透明有机玻璃制成。
需要说明的是,进水管140并不是必须的,在其它实施例中也可以没有进水管140。此时,在往集气装置110中注水时,可以将集气装置110倒置,并将第一开关件122打开,通过进气管120注水。
作为优选,如图4,本实施例还提供了另外一种水下气体通量监测装置200,其与水下气体通量监测装置的100结构基本相同,区别在于,在出水管130的端部还连接有导流管210和用于紧固导流管210的紧固环220;导流管210的自由端放置于无气体逃逸的水域。
如图5,紧固环220包括紧固装置224和紧固本体222,紧固本体222为带有开口的环形件,包括第一连接端2222和第二连接端2224。紧固装置224一端与第一连接端2222铰接,另一端与第二连接端2224卡扣连接。
紧固装置224包括锁盖2242、锁扣2244和锁钩2246。锁钩2246与第二连接端2224固定连接;锁盖2242为截面呈U型的冲压件,包括两个相对设置的侧板;锁扣2244由弹性条状件弯折而成,包括大致平行的第一段和第二段,还包括连接第一段和第二段的连接段;第一段的自由端和第二段的自由端分别与锁盖2242的侧板中部铰接,连接段用于卡入或脱离锁钩2246。
使用时,将紧固环220套在导流管210的端部,将导流管210套设在出水管130上,然后将紧固环220的锁扣2244卡入锁钩2246,这样便可以将导流管210与出水管130进行固定连接;拆卸时,将锁盖2242抬起,锁扣2244便可脱离锁钩2246。
由于导流管210可以完全避免气体通过出水管130进入到集气装置110中,从而可以保证实验数据的准确性;另外由于采用了紧固环220,使得导流管210和出水管130的连接及拆卸都非常方便。
如图6,充气系统300包括气体生成装置310、充气管320和传输管330。气体生成装置310将产生的气体通过传输管330输送到充气管320中,由充气管320对水体充气。整个气体生成装置310可以固定在水上载重平台400上,充气管320吊挂在载重平台下。
本实施例中的充气管320优选采用微孔曝气管,由于微孔曝气管的孔径非常小,更有利于气体溶解于水体中,从而使得测得的气溶率数据更加准确。另外,微孔曝气管上的微孔分布均匀,可以使得气泡逃逸时该水域的气泡均匀分布,从而可以减少实验数据误差。
本实施例中的水下气体通量监测装置100(或水下气体通量监测装置200)和充气系统300共同组成了水体气溶率测定系统。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种水体气溶率测定方法,其特征在于,包括以下步骤:
a.将水下气体通量监测装置放置在水面上;
b.打开充气系统,利用放置于水下的充气管向水下通入气体;
c.打开所述水下气体通量监测装置,将从水里逃逸的气体收集起来;
d.计算水面气泡逃逸通量:
e.计算水面气泡逃逸流量
水面气泡逃逸流量=水面气泡逃逸通量×逸出气体的水面面积
f.计算压力矫正后的气体原始流量:
g.计算气体溶解率:
所述水下气体通量监测装置包括集气装置、浮体、进气管和出水管,所述集气装置为中空结构,包括一个储存空间;
所述集气装置包括相对设置的第一表面和第二表面,所述进气管和所述出水管均设置在所述第一表面上;所述进气管与所述储存空间连通,所述出水管与所述储存空间连通;所述集气装置连接于所述浮体上,所述浮体中部设有安装孔,所述进气管及所述出水管贯穿所述安装孔;
所述进气管为一直管,所述进气管包括第一端和第二端,所述第一端与所述集气装置连接,所述进气管不同位置的通流面积一致;所述进气管上设置有第一开关件,所述第一开关件用于关闭或打开所述进气管的通道;所述出水管为L形,并设置有第二开关件,所述第二开关件用于关闭或打开所述出水管的通道;
所述水下气体通量监测装置还包括进水管,所述进水管设置在所述第二表面上,所述进水管上设置有第三开关件,所述第三开关件用于打开或关闭所述进水管的通道;
所述水下气体通量监测装置还包括导流管,所述导流管的一端与所述出水管的出水口连接;
所述集气装置、所述进气管、所述进水管和所述出水管一体成型,均是由透明有机玻璃制成;
所述充气系统包括气体生成装置、传输管和充气管;所述气体生成装置通过所述传输管与所述充气管连通。
2.根据权利要求1所述的水体气溶率测定方法,其特征在于,所述导流管为柔性管,所述导流管套设在所述出水管上;所述水下气体通量监测装置还包括紧固环,所述紧固环套设在所述导流管和所述出水管的配合段;
所述紧固环包括紧固本体和紧固装置,所述紧固本体包括第一连接端和第二连接端,所述紧固装置的一端与所述第一连接端铰接,所述紧固装置的另一端与所述第二连接端锁扣连接。
3.根据权利要求2所述的水体气溶率测定方法,其特征在于,所述紧固装置包括锁扣、锁钩和锁盖;
所述锁盖为截面为U形的冲压件,包括两个侧板;所述锁盖的一端通过侧板与所述紧固本体的第一连接端铰接,所述锁钩设置于所述紧固本体的第二连接端;
所述锁扣包括第一段、第二段和连接段;所述第一段和所述第二段平行设置,所述第一段和所述第二段通过所述连接段连接;所述第一段和所述第二段铰接于所述锁盖的侧板中部,所述连接段可卡入所述锁钩。
4.根据权利要求2所述的水体气溶率测定方法,其特征在于,所述充气管为微孔曝气管。
CN201611138576.XA 2016-12-12 2016-12-12 水体气溶率测定方法 Active CN106770944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611138576.XA CN106770944B (zh) 2016-12-12 2016-12-12 水体气溶率测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611138576.XA CN106770944B (zh) 2016-12-12 2016-12-12 水体气溶率测定方法

Publications (2)

Publication Number Publication Date
CN106770944A CN106770944A (zh) 2017-05-31
CN106770944B true CN106770944B (zh) 2019-02-26

Family

ID=58875451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611138576.XA Active CN106770944B (zh) 2016-12-12 2016-12-12 水体气溶率测定方法

Country Status (1)

Country Link
CN (1) CN106770944B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193569A (ja) * 1998-12-28 2000-07-14 Mie Prefecture ガス採取装置およびそれを用いた大気汚染物質の簡易測定法
CN101975841A (zh) * 2010-09-06 2011-02-16 北京市华云分析仪器研究所有限公司 一种水体-大气界面甲烷气体通量的原位监测方法
CN102608273A (zh) * 2012-03-23 2012-07-25 重庆大学 水动力条件下水下气泡收集装置与水下气泡通量监测方法
CN102841039A (zh) * 2012-09-06 2012-12-26 戴会超 水库水面温室气体通量多点同步测量方法和装置
CN202757658U (zh) * 2012-08-15 2013-02-27 江苏省农业科学院 一种水体释放气体体积的自动测量装置
CN103033598A (zh) * 2012-12-11 2013-04-10 中国长江三峡集团公司 河道水气界面气体通量在线测量方法
CN202903553U (zh) * 2012-10-25 2013-04-24 江苏省农业科学院 一种适用于水体水柱分层的水体释放气体收集装置
CN205157272U (zh) * 2015-12-02 2016-04-13 浙江省嘉兴市农业科学研究院(所) 温室气体排放通量采集装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193569A (ja) * 1998-12-28 2000-07-14 Mie Prefecture ガス採取装置およびそれを用いた大気汚染物質の簡易測定法
CN101975841A (zh) * 2010-09-06 2011-02-16 北京市华云分析仪器研究所有限公司 一种水体-大气界面甲烷气体通量的原位监测方法
CN102608273A (zh) * 2012-03-23 2012-07-25 重庆大学 水动力条件下水下气泡收集装置与水下气泡通量监测方法
CN202757658U (zh) * 2012-08-15 2013-02-27 江苏省农业科学院 一种水体释放气体体积的自动测量装置
CN102841039A (zh) * 2012-09-06 2012-12-26 戴会超 水库水面温室气体通量多点同步测量方法和装置
CN202903553U (zh) * 2012-10-25 2013-04-24 江苏省农业科学院 一种适用于水体水柱分层的水体释放气体收集装置
CN103033598A (zh) * 2012-12-11 2013-04-10 中国长江三峡集团公司 河道水气界面气体通量在线测量方法
CN205157272U (zh) * 2015-12-02 2016-04-13 浙江省嘉兴市农业科学研究院(所) 温室气体排放通量采集装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
水库水气界面温室气体通量监测方法综述;赵炎等;《水科学进展》;20110131;第22卷(第1期);全文 *
漂浮通量箱法和扩散模型法测定内陆水体CH4和N2O排放通量的初步比较研究;高洁等;《气候与环境研究》;20140531;第19卷(第3期);全文 *

Also Published As

Publication number Publication date
CN106770944A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN206348170U (zh) 一种基于无线通信技术的定水深原状水样采集仪
CN109329127A (zh) 一种用于黄条鰤呼吸生理指标测定的装置及其使用方法
CN106770944B (zh) 水体气溶率测定方法
CN201740714U (zh) 液体表面张力测试装置
CN113916849B (zh) 一种光学溶解氧传感器校准方法及校准装置
CN208313682U (zh) 一种用于自动稀释的定容装置
CN108922341A (zh) 一种静水压强实验教学装置及测定方法
CN109323953A (zh) 含硫气体中的元素硫溶解度的测定方法
CN209117539U (zh) 一种评价反渗透系统进水污堵潜力的装置
CN201514336U (zh) 一种多功能采水器
Wu A respirometer for continuous, in situ, measurements of sediment oxygen demand
CN211235856U (zh) 一种动水流作用下的土样崩解试验装置
CN211012922U (zh) 建筑物沉降测量装置
CN207908457U (zh) 黑白瓶法测水中水体浮游植物初级生产力的装置
CN203630065U (zh) 水-沉积物界面热通量测量装置
CN208313556U (zh) 一种环境水力学水槽
CN207428227U (zh) 一种鱼类毒理实验装置
CN208313772U (zh) 一种墙体透水率检测装置
CN106501461A (zh) 水下气体通量监测装置及水下气体通量测定方法
CN207278249U (zh) 一种快捷油水计量装置
CN207366409U (zh) 一种透水系数测定仪
CN201757751U (zh) 水面遮盖力仪
CN207488164U (zh) 一种硫酸透明度测定装置
CN205642514U (zh) 一种防冻水表
CN206208874U (zh) 水下气体通量监测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant