CN1067708C - 微波热法扩散掺杂合成荧光粉 - Google Patents

微波热法扩散掺杂合成荧光粉 Download PDF

Info

Publication number
CN1067708C
CN1067708C CN96114790A CN96114790A CN1067708C CN 1067708 C CN1067708 C CN 1067708C CN 96114790 A CN96114790 A CN 96114790A CN 96114790 A CN96114790 A CN 96114790A CN 1067708 C CN1067708 C CN 1067708C
Authority
CN
China
Prior art keywords
microwave
reaction
powder
fluorescent powder
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96114790A
Other languages
English (en)
Other versions
CN1157311A (zh
Inventor
李源英
蔡少华
王思发
崔俊峰
余全红
党华
铁绍龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN96114790A priority Critical patent/CN1067708C/zh
Publication of CN1157311A publication Critical patent/CN1157311A/zh
Application granted granted Critical
Publication of CN1067708C publication Critical patent/CN1067708C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明方法是先将荧光粉基质粉晶与掺杂离子溶液以及有机分散剂溶液充分混匀,使掺杂离子在有机分散剂的作用下均匀地分散到荧光粉基质粉晶表面,然后挥发掉有机分散剂,最后进行微波热反应,使掺杂离子在微波作用下均匀且迅速地进入荧光汾基质粉晶的晶格中,完成荧光粉的合成;本方法具有微波热法合成荧光粉的特点,还具有扩散掺杂均匀迅速、更省时节能、目标荧光粉不烧结以及能有效地控制荧光粉的晶相组成的显著优点。

Description

微波热法扩散掺杂合成荧光粉
本发明涉及荧光粉的一种新的合成方法,即在微波场的作用下驱使掺杂离子扩散进入荧光粉基质晶格中而合成荧光粉。
微波热法合成荧光粉(中国专利申请95106117.8)相对于高温固相反应法合成荧光粉,具有设备简单、操作简便、在微波场作用下化学反应彻底而又省时节能,且目标荧光粉产物的物相组成、发光学性能符合使用要求的优点。
本发明的目的是在微波热法合成荧光粉的基础上,改进反应物料的前处理及配制方法,即将荧光粉基质粉晶与掺杂离子溶液以及有机分散剂溶液均匀分散在基质粉晶表面,然后在微波热的条件下,迅速且均匀地进入基质粉晶的晶格中,完成荧光光粉的合成过程。
本发明的方法是将荧光粉基质粉晶与掺杂离子溶液以及有机分散剂溶液充分混合,干燥后进行微波热反应,得到目标荧光粉产物。
上述过程包括了掺杂离子分散到基质粉晶表面和掺杂离子进入基质粉晶晶格中两大步骤。要使掺杂离子均匀分散到基质粉晶的表面,基质的选择,基质粉晶粒度的控制、掺杂离子种类的选择及其浓度的控制以及有机分散剂的选择都是不可缺少的条件:首先荧光粉基质粉晶必须是纯净的,即其晶相组成及杂质含量要符合目标荧光粉的要求,粉晶的粒度最好不大于10μm;掺杂离子可分为激活剂、共激活剂、敏化剂、助熔剂四种,根据荧光粉基质和目标荧光粉的要求选择一种或一种以上,其中激活剂离子是必须的,当激活剂离子进入基质晶格中仍未能达到电荷平衡,共激活剂的加入,可以使电荷达到平衡,敏化剂的加入可增加目标荧光粉的发光效果,而助熔剂则有利于降低反应混合物的熔点,提高微波热效应;有机分散剂则为不与基质反应也不与掺杂离子溶液反应的低沸点有机溶剂,如乙醇、丙酮等。
当基质粉晶与掺杂离子溶液以及有机分散剂溶液混合,完成掺杂离子向基质粉晶表面的均匀分散后,挥发掉有机分散剂,将混合物装入反应装置里并置于微波设备中进行微波热反应,为使微波热反应即驱使掺杂离子向基质晶格内部的扩散均匀迅速,且达到目标荧光粉的晶相组成要求,反应装置的选择、反应混合物装料量、反应混合物的气氛、微波设备的功率和微波热反应时间都必须控制恰当:反应装置为双层封闭容器、夹层填充微波吸收介质,反应物装在内容器中,微波吸收介质为介电损耗大的化合物,起着吸收微波产生热和保护内容器的热不致迅速散发的作用;反应气氛可以是氧化气氛或还原气氛或其它气氛,对于须在还原气氛下反应的反应物,内容器中还须有一隔板将反应物与还原介质隔开,微波热反应的条件为:当目标产物的量为0.02~0.05mol时,微波预热功率为100~200W,预热时间为30~120秒,微波热反应功率为320~800W,反应时间为15~30分钟,微波热反应使用的是频率为2450MHz的微波辐射。
本发明方法的具体步骤为:
(1)荧光粉基质粉晶的准备;采用符合目标荧光粉要求的化学试剂或采用化学合成方法准备粒度不大于10μm的基质粉晶;
(2)掺杂离子溶液的准备;选择所需的掺杂离子原料配成溶液;
(3)反应物料的配制:按目标荧光粉所需配比称取一定量荧光粉基质粉晶混料器皿中,加入掺杂离子溶液,再加入有机分散剂溶液,充分混合后干燥,然后装入微波反应装置;
(4)微波预热:将装好反应在物料的反应装置放入微波设备中,用低功率短时时间预热;
(5)微波热反应;调高微波功率,加热一定时间,得到目标荧光粉产物。
本发明的微波热法扩散掺杂合成荧光粉,具有微波热法合成荧光粉的优点,还具有以下显著特点:
①扩散掺杂反应前的反应物料的混合比微波热法的反应前处理简单得多、且能达到掺杂离子均匀地分散到基质粉晶表面的目的;
②由于扩散掺杂反应前,掺杂离子已均匀地分散在基质粉晶表面,使反应过程掺杂离子在微波作用下,能均匀迅速地扩散到粉晶晶格中,较快地完成反应,更加省时节能;
③由于反应时间短,能有效地控制荧光粉的晶相组成,对于加热后容易产生相转变的基质更有利;
④目标荧光粉产物不烧结;
⑤本发明方法适用多种体系的荧光粉合成,如;氧化物体系、硅酸盐体系、铝酸盐体系、硼酸盐体系、磷酸盐体系、钒酸盐体系、硫氧化物体系以及硫化物体系、卤化物体系等。
以下为本发明方法的具体实施例:实施例1:β-ZnS:Cu、Al荧光粉合成
分别称取β-ZnS粉未5.00g、升华硫磺0.25g和MgCl2·6H2O 0.1g,混匀,加入含Cu2+浓度为1.0×10-3g/ml的CuSO4溶液1.0ml,含Al3+浓度为1.0×10-3g/ml的AlCl3溶液1.55ml,加丙酮15ml充分混匀后,装入刚玉坩埚中,压实,上面加一层升华硫磺,加盖后放入大坩埚中,夹层填充氧化铁粉未作为微波吸收介质,放入微波炉中先用160W预热1分钟后,继续用400W加热20分钟,反应完毕,稍冷取出,再冷至室温,产物为微绿色粉未,经X射线粉未衍射分析,结果表明为β-ZnS单相立方晶系,a为0.54092nm,与β-ZnS卡片值(36-1450)a=0.54060nm非常一致,其中α-ZnS(100)线相对强度只占3.7%。实施例2:氧化钇铕荧光粉合成
称取氧化钇粉未4.00g,加入含Ba3+浓度为0.215g/ml的Ba(NO3)3溶液1.0ml,加入乙醇15ml,充分混匀后,在红外灯下干燥,装入刚玉坩埚中压实,加盖后放入大坩埚中,夹层填充氧化铁粉未,放入微波炉中,先用160W预热1分钟,继续用720W加热20分钟,反应完毕,稍冷取出,冷至室温,产物为白色粉未。实施例3:β-ZnS:Ag荧光粉合成
分别称取粉未β-ZnS4.00g、升华硫磺0.16g、MgCl2·6H2O 0.05g和NaCl 0.05g混匀,加入含Ag+浓度为2×10-4g/ml的AgNO3溶液0.65ml,加丙酮15ml,充分混匀后,装入刚玉坩埚中,压实,加盖,放入大坩埚中,夹层填充氧化铁粉未,放入微波炉中,先用160W预热1分钟,继续用400W加热20分钟,反应完毕,稍冷取出,冷至室温,产物为白色粉未,经X-射线粉未衍射分析,结果表明为β-ZnS单相立方晶系,a=0.54101nm,与β-ZnS卡片值(36-1450)a=0.54060非常接近,其中α-ZnS(100)线相对强度仅占2.2%。实施例4:正硅酸锌锰荧光粉合成
称取正硅酸锌粉末4.40g,加入含Mn2+浓度为0.1g/ml的MnCl2溶液0.3ml,加入乙醇15ml充分混匀后,在红外灯下干燥,装入坩埚中压实,上加一隔板,隔板上加颗粒活性炭填满,外加盖,放入大坩埚中,夹层填充氧化铁粉未,放入微波护中,先用160W预热1分钟,继续用640W加热20分钟,反应完毕,稍冷取出,冷至室温,产物为白色粉未。实施例5:多铝酸钡镁铕荧光粉合成
称取BaMgAl10O17粉未4.00g,加入含Ba3+浓度0.215g/ml的Ba(NO3)3溶液0.7ml,加乙醇15ml充分混匀后,在红外灯下干燥,装入坩埚中,压实,上面加一隔板,隔板上加颗粒活性炭填满,外加盖,放入大坩埚中,夹层填充氧化铁粉未,放入微波炉中,先用160W预热1分钟,继续用800W加热20分钟,反应完毕,稍冷取出,冷至室温,产物为白色粉未。

Claims (3)

1、一种微波加热扩散掺杂合成荧光粉的方法,其特征是该方法的具体步骤为:
(1)荧光粉基质粉晶的准备:采用符合目标荧光粉要求的化学试剂或采用化学合成方法准备粒度不大于10μm的基质粉晶;
(2)掺杂离子溶液的准备:选择所需的掺杂离子原料配成溶液;
(3)反应物料的配制:按目标荧光粉所需配比,称取荧光粉基质粉晶于混料器皿中,加入掺杂离子溶液,再加入有机分散剂溶液,充分混合后干燥,然后装入微波反应装置;
(4)微波预热:将装好反应物料的反应装置放入微波设备中,用低功率短时间预热;
(5)微波热反应:调高微波功率,加热一定时间,得到目标荧光粉产物。
2、按照权利要求1所述的方法,其特征在于所说的有机分散剂溶液为不与基质反应、也不与掺杂离子反应的低熔点有机溶剂。
3、按照权利要求1所述的方法,其特征在于所说的微波反应条件为:当目标产物的量为0.02~~0.05mol时,微波预热功率为100~200W,时间为30~120秒;
CN96114790A 1996-12-14 1996-12-14 微波热法扩散掺杂合成荧光粉 Expired - Fee Related CN1067708C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96114790A CN1067708C (zh) 1996-12-14 1996-12-14 微波热法扩散掺杂合成荧光粉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96114790A CN1067708C (zh) 1996-12-14 1996-12-14 微波热法扩散掺杂合成荧光粉

Publications (2)

Publication Number Publication Date
CN1157311A CN1157311A (zh) 1997-08-20
CN1067708C true CN1067708C (zh) 2001-06-27

Family

ID=5122303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96114790A Expired - Fee Related CN1067708C (zh) 1996-12-14 1996-12-14 微波热法扩散掺杂合成荧光粉

Country Status (1)

Country Link
CN (1) CN1067708C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306005C (zh) * 2004-11-15 2007-03-21 王兵 铝酸盐基稀土长余辉发光材料的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064301A (zh) * 1991-12-28 1992-09-09 上海跃龙有色金属有限公司 高性能红色荧光粉及其制造工艺
CN1064472A (zh) * 1991-02-26 1992-09-16 通用电气公司 采用氢氧化物共沉淀法制备氧化钇-氧化钆陶瓷闪烁体的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064472A (zh) * 1991-02-26 1992-09-16 通用电气公司 采用氢氧化物共沉淀法制备氧化钇-氧化钆陶瓷闪烁体的方法
CN1064301A (zh) * 1991-12-28 1992-09-09 上海跃龙有色金属有限公司 高性能红色荧光粉及其制造工艺

Also Published As

Publication number Publication date
CN1157311A (zh) 1997-08-20

Similar Documents

Publication Publication Date Title
Li et al. Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors
Feng et al. Band structure, energy transfer and temperature-dependent luminescence of novel blue emitting KBaYSi2O7: Eu2+ phosphor
Ishigaki et al. Microwave synthesis technique for long phosphorescence phosphor SrAl2O4: Eu2+, Dy3+ using carbon reduction
Yan et al. NaY (MoO4) 2: Eu3+ and NaY0. 9Bi0. 1 (MoO4) 2: Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature-solid state reaction, microstructure and photoluminescence
Liu et al. UV-excited red-emitting phosphor Eu3+-activated Ca9Y (PO4) 7
Yang et al. Pink-emitting RbBaBP2O8: Sm phosphor with diamondoid structure and high thermostability
Golim et al. Synthesis, neutron diffraction and photoluminescence properties of a whitlockite structured Ca9MgLi (PO4) 7: Pr3+ phosphor
Wu et al. Influences of calcination temperature and charge compensators on the properties of SrMoO4: Sm3+ red phosphor prepared via the sol–gel method
Yu et al. Synthesis and luminescence properties of single‐component Ca5 (PO 4) 3F: Dy3+, Eu3+ white‐emitting phosphors
FI74297B (fi) Luminiserande bildyta.
CN1067708C (zh) 微波热法扩散掺杂合成荧光粉
Gao et al. Luminescence properties of SrB4O7: Eu, Tb phosphors
Wu et al. Zn‐doped CaTiO3: Eu3+ red phosphors for enhanced photoluminescence in white LEDs by solid‐state reaction
CN105018090B (zh) 一种Mn增强的稀土硫氧化物上转换发光材料及制备方法
Wu et al. Influence of microwave process on photoluminescence of europium-doped strontium aluminate phosphor prepared by a novel sol–gel-microwave process
Zhang et al. Preparation and luminescence properties of Ba 9 Y 2 Si 6 O 24: Sm 3+ phosphors with excellent thermal stability for solid-state lightning
CN1840608A (zh) 氧化锌基红色荧光材料及其制备方法
Mahalingam et al. Photoluminescence, Judd–Ofelt analysis and photometric characterization of Eu 3+ activated Ca 0.5 Gd (WO 4) 2 red phosphor
Liu et al. Enhancement of zero phonon line for Na 2 TiF 6: Mn 4+, Li+ phosphors induced by Li+
Zhang et al. Monodisperse CaAl12O19: Mn4+ microspheres for full-spectrum white LEDs
CN1052745C (zh) 微波热法合成荧光粉的方法
CN114874771A (zh) 全固相Eu、Dy激活的铝酸锶荧光粉及其制备方法
Deng et al. Enhancement of emission and negative thermal quenching effect of Na2TiF6: Mn4+, TEAH+ by antenna effect of TEAH+
Zhao et al. K 3 Gd 3 B 4 O 12: a new member of rare-earth orthoborate for luminescent host matrix
Fu et al. Enhanced red-emitting phosphor Na 2 Ca 3 Si 2 O 8: Eu 3+ by charge compensation

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee