CN106770093A - 一种评价污泥臭氧处理过程中活菌含量和组成的方法 - Google Patents

一种评价污泥臭氧处理过程中活菌含量和组成的方法 Download PDF

Info

Publication number
CN106770093A
CN106770093A CN201611075676.2A CN201611075676A CN106770093A CN 106770093 A CN106770093 A CN 106770093A CN 201611075676 A CN201611075676 A CN 201611075676A CN 106770093 A CN106770093 A CN 106770093A
Authority
CN
China
Prior art keywords
sludge
atp
viable bacteria
ozone
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611075676.2A
Other languages
English (en)
Other versions
CN106770093B (zh
Inventor
杨宏
田少囡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201611075676.2A priority Critical patent/CN106770093B/zh
Publication of CN106770093A publication Critical patent/CN106770093A/zh
Application granted granted Critical
Publication of CN106770093B publication Critical patent/CN106770093B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Sludge (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种评价污泥臭氧处理过程中活菌含量和组成的方法,涉及水处理领域。该方法通过ATP检测方法检测不同臭氧处理过程中污泥中活菌总量变化,对于有意义的臭氧处理污泥进行PMA辅助的PCR测序分析,完成臭氧处理后污泥中活菌组成分析。本检测方法可以快速分析不同臭氧处理条件下污泥中活菌杀灭效果,从而用于臭氧运行效果评价和优化;同时,可以进行活菌组成分析进行污泥臭氧氧化处理的微生态响应机制研究。

Description

一种评价污泥臭氧处理过程中活菌含量和组成的方法
技术领域
本发明涉及水处理领域,特别涉及污泥臭氧处理过程中活菌含量和组成的检测方法。
背景技术
剩余污泥是污水生物处理系统的副产物,其处理和处置费用占到污水厂运行费用的50%以上,因此需要开发有效的污泥减量方法。臭氧氧化是一种新兴的污泥减量方法,并且目前已有研究将臭氧污泥处理与生物脱氮除磷工艺结合:活性污泥臭氧处理后,处理后污泥回流至厌氧池或缺氧池,补充碳源以促进脱氮除磷效果。臭氧是一种强氧化剂,进行污泥处理时污泥细菌细胞膜首先被破坏导致细胞损伤,损伤后细菌胞内物质(三磷酸腺苷(ATP)、蛋白和DNA等大分子物质)流失,臭氧可以进一步氧化和溶解释放的大分子有机质,从而导致污泥减量。活性污泥主要由拟杆菌、变形菌、不动杆菌等种类繁多的细菌组成,不同的细菌具有不同的细胞结构,导致它们具有不同的臭氧氧化耐性。同时,一些活性污泥中的功能细菌类群,如反硝化菌、硝化细菌和聚磷菌等具有重要的水质净化功能,当臭氧污泥减量工艺与脱氮除鳞工艺结合时,这部分功能细菌没有必要被杀灭。因此,探明活性污泥中不同细菌在臭氧处理过程中的耐受性对于臭氧污泥减量工艺的优化具有重要指导意义。但是,目前对于污泥臭氧减量处理大家主要关注污泥总量的消减效果,很少关注内在的微生物响应机制。
如前所述,臭氧污泥处理主要通过细胞膜损伤导致污泥细菌灭活。因此,通过活菌检测可以判断不同活性污泥细菌对臭氧氧化的耐受性。传统的活菌检测主要使用营养培养基进行异样菌的筛选,再通过菌种鉴定进行活菌组成的解析。但是,活性污泥中超过90%的细菌是不可培养的,传统的基于培养的方法无法全面解析活菌群落组成与变化。同时,传统的基于培养的方法需要至少两天的检测时间,无法及时解析活菌总量变化,从而无法及时指导臭氧工艺运行优化。
ATP是活细胞内能量传递的重要介质,单细胞死亡后ATP不再产生,残留的ATP也会很快消耗掉,因此ATP含量与活细胞总量具有良好的一致性。同时,ATP依赖性的荧火虫发光素酶(Firefly Luoiferase)催化荧火虫发光素(Firefly Luciferin)氧化发光反应可作为活菌的标志快速检测ATP含量,总体检测时间少于<3min。基于上述优点,通过检测活性污泥中ATP总量可以快速检测污泥中活菌总量。ATP方法可以快速检测臭氧处理中活性污泥中活菌总量变化,从而及时对臭氧运行状况进行检测和评价。但是,ATP检测方法无法给出活菌群落具体组成信息,从而无法解析不同活性污泥细菌对臭氧氧化的耐受性。叠氮溴化丙锭(PMA)是一种新型的DNA染料,其可以进入死菌细胞内并与DNA结合,在强光照射下可以与DNA进行不可逆结合,从而抑制后续的PCR反应。因此,通过将PMA处理、PCR扩增及测序技术结合可以选择性的扩增活菌的16s rRNA基因,从而实现活性污泥中活菌群落分析。
发明内容
本发明提供一种快速和全面解析污泥臭氧处理过程中污泥中活菌数量和组成变化的检测方法,该方法通过ATP检测不同臭氧处理过程中污泥中活菌总量变化,对于有意义的臭氧处理污泥进行PMA辅助的PCR测序分析,完成臭氧处理后污泥中活菌组成分析。本检测方法可以快速分析不同臭氧处理条件下污泥中活菌杀灭效果,从而用于臭氧运行效果评价和优化;同时,可以进行活菌组成分析进行污泥臭氧氧化处理的微生态响应机制研究。
(1)对活性污泥和臭氧处理后污泥进行均一化处理,用10倍体积的Ringer1/4溶液进行稀释,1ml针管吹打10次;然后再用10倍体积的Ringer1/4溶液稀释于玻璃管中,超声波清洗机加入超纯水,超声45s,涡旋10s,共9个循环,据能量密度计算,控制消耗能量在16000J·L-1
(2)根据固体物质含量进行适当稀释后进行ATP检测:将步骤(1)处理好的污泥样品和ATP提取剂分别置于38℃水浴中至少1min;在500μl污泥样品中加入50μlATP提取液后,在水浴保持100s,立即测定荧光值,得到总ATP荧光值;用0.1μm无菌滤膜过滤上述测定测总ATP荧光值之后的样品,测量滤液ATP荧光值,得到胞外ATP荧光值;活菌ATP荧光值=总ATP荧光值-胞外ATP荧光值从而得到污泥臭氧处理过程中活菌含量;采用ATP依赖性的荧火虫发光素酶(Firefly Luoiferase)催化荧火虫发光素(Firefly Luciferin)氧化发光反应可作为活菌的标志快速检测ATP含量;
(3)基于ATP检测结果,针对步骤(2)臭氧处理前后ATP含量有变化的污泥,加入PMA并在强光照条件下处理:对步骤(1)对应均一化处理后的污泥使用磷酸盐缓冲液稀释至1000mg/L,取1ml稀释后污泥加入PMA染料至PMA终浓度为50uM,冰上暗育10min,然后650瓦强光照射下反应10min,照射过程降温保证反应温度<5℃;处理污泥,使用试剂盒进行总DNA提取,并进行16srRNA基因PCR扩增,并对PCR扩增产物进行测序分析,对于测序结果使用质控和群落组成分析,然后得出污泥臭氧处理过程中活菌组成。
采用本发明的方法很容易直接得出或评价污泥臭氧处理过程中活菌含量和组成。且方法简单,重复性好,准确性高,不受污泥浓度的影响。本检测方法可以快速分析不同臭氧处理条件下污泥中活菌杀灭效果,从而用于臭氧运行效果评价和优化;同时,可以进行活菌组成分析进行污泥臭氧氧化处理的微生态响应机制研究。
附图说明
图1为实例不同臭氧消耗量的活菌ATP浓度;
图2不同臭氧消耗量的胞外ATP浓度;
图3不同臭氧杀菌率;
图4为实例PMA检测不同臭氧消耗量的活菌DNA拷贝数结果。
具体实施方式
下面结合实施案例对本发明作进一步具体的描述,但本发明的实施方式不限于此。
实施例1
1.臭氧处理活性污泥的活菌检测
固定臭氧投入量分别为:0、51.99、114.38、135.15、155.94、207.90、259.89、311.89mg.g-1,污泥浓度2000mg/L。
2、ATP快速检测活菌含量
(1)取1ml污泥样品用Ringer1/4溶液1:10稀释,1ml针管吹打10次;用Ringer1/4溶液1:10稀释于玻璃管中,超声波清洗机加入12.7L超纯水,超声45s,涡旋10s,共9个循环(据能量密度计算,控制消耗能量在16000J·L-1)。
(2)将处理好的污泥样品和ATP提取剂分别在38℃水浴中至少1min;500μl体积样品中加入50μlATP提取液后,水浴时间100s,快速测定荧光值,得到总ATP荧光值;用0.1μm无菌滤膜过滤污泥样品,测量滤液ATP荧光值,得到胞外ATP荧光值;活菌ATP荧光值=总ATP-胞外ATP。
3、基于ATP检测结果,选择ATP含量有明显变化的污泥,加入PMA并在强光照条件下处理,处理污泥使用试剂盒进行总DNA提取,并进行16s rRNA基因PCR扩增,对PCR扩增产物进行测序分析。
随臭氧投加量的增加,活菌DNA的拷贝数开始减少,当消耗量达到135.2mg的时候,活菌DNA的拷贝数量变化明显,杀菌效果明显;之后随臭氧消耗量的增加,活菌DNA的拷贝数量的变化趋于持平,当臭氧消耗量达311.9mg时,DNA拷贝数又有一个明显下降,与ATP检测结果相符。
PMA浓度对活菌DNA的扩增的影响
取1ml浓度为1000mg/l活菌污泥样品,分别用PMA处理,使PMA终浓度分别为0μM、50μM、70μM、100μM,提取DNA,进行q-PCR鉴定,结果如图所示,在0、50、70μM浓度的PMA作用下,DNA的拷贝数变化差别并不明显,当PMA终浓度达到100Μm时,DNA拷贝数少量下降,说明PMA终浓度在70Μm以内时,PMA对活菌DNA的扩增并无明显影响,当PMA终浓度达到100Μm时,对活菌DNA的扩增有抑制作用。
表1不同时间取样的臭氧消耗量
ATP检测结果:
ATP检测结果如图所示,随臭氧投加量的增加,活菌数量开始减少,当消耗量达到135.15mg的时候,活菌数量变化明显,杀菌效果明显,杀菌效率达70.89%;之后随臭氧消耗量的增加,活菌数量的变化趋于持平,当臭氧消耗量达311.89mg时,杀菌率达87.96%。根据ATP检测结果选取臭氧消耗量为0mg.g-1、114.3mg.g-18、135.15mg.g-1、311.88mg.g-1的样品进行基因定量分析和活菌种群分析。
PMA检测结果
PMA检测结果如图所示,随臭氧投加量的增加,活菌DNA的拷贝数开始减少,当消耗量达到135.2mg的时候,活菌DNA的拷贝数量变化明显,杀菌效果明显;之后随臭氧消耗量的增加,活菌DNA的拷贝数量的变化趋于持平,当臭氧消耗量达311.9mg时,DNA拷贝数又有一个明显下降,与ATP检测结果相符。
上述实例表明,利用ATP结合PMA-qPCR方法,操作过程简单,可以快速分析不同臭氧处理条件下污泥中活菌杀灭效果,从而用于臭氧运行效果评价和优化;同时,可以进行活菌组成分析进行污泥臭氧氧化处理的微生态响应机制研究。

Claims (1)

1.一种评价污泥臭氧处理过程中活菌含量和组成的方法,其特征在于,包括以下步骤:
(1)对活性污泥和臭氧处理后污泥进行均一化处理,用10倍体积的Ringer1/4溶液进行稀释,1ml针管吹打10次;然后再用10倍体积的Ringer1/4溶液稀释于玻璃管中,超声波清洗机加入超纯水,超声45s,涡旋10s,共9个循环,据能量密度计算,控制消耗能量在16000J·L-1
(2)根据固体物质含量进行适当稀释后进行ATP检测:将步骤(1)处理好的污泥样品和ATP提取剂分别置于38℃水浴中至少1min;在500μl污泥样品中加入50μlATP提取液后,在水浴保持100s,立即测定荧光值,得到总ATP荧光值;用0.1μm无菌滤膜过滤上述测定测总ATP荧光值之后的样品,测量滤液ATP荧光值,得到胞外ATP荧光值;活菌ATP荧光值=总ATP荧光值-胞外ATP荧光值从而得到污泥臭氧处理过程中活菌含量;采用ATP依赖性的荧火虫发光素酶(Firefly Luoiferase)催化荧火虫发光素(Firefly Luciferin)氧化发光反应可作为活菌的标志快速检测ATP含量;
(3)基于ATP检测结果,针对步骤(2)臭氧处理前后ATP含量有变化的污泥,加入PMA并在强光照条件下处理:对步骤(1)对应均一化处理后的污泥使用磷酸盐缓冲液稀释至1000mg/L,取1ml稀释后污泥加入PMA染料至PMA终浓度为50uM,冰上暗育10min,然后650瓦强光照射下反应10min,照射过程降温保证反应温度<5℃;处理污泥,使用试剂盒进行总DNA提取,并进行16s rRNA基因PCR扩增,并对PCR扩增产物进行测序分析,对于测序结果使用质控和群落组成分析,然后得出污泥臭氧处理过程中活菌组成。
CN201611075676.2A 2016-11-28 2016-11-28 一种评价污泥臭氧处理过程中活菌含量和组成的方法 Expired - Fee Related CN106770093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611075676.2A CN106770093B (zh) 2016-11-28 2016-11-28 一种评价污泥臭氧处理过程中活菌含量和组成的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611075676.2A CN106770093B (zh) 2016-11-28 2016-11-28 一种评价污泥臭氧处理过程中活菌含量和组成的方法

Publications (2)

Publication Number Publication Date
CN106770093A true CN106770093A (zh) 2017-05-31
CN106770093B CN106770093B (zh) 2019-07-12

Family

ID=58898640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611075676.2A Expired - Fee Related CN106770093B (zh) 2016-11-28 2016-11-28 一种评价污泥臭氧处理过程中活菌含量和组成的方法

Country Status (1)

Country Link
CN (1) CN106770093B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899380A (zh) * 2021-01-21 2021-06-04 上海海洋大学 一种南美白对虾中活菌多样性分析模式构建方法
CN115488142A (zh) * 2022-07-28 2022-12-20 北京城市排水集团有限责任公司 一种废弃有机质资源化合成生物全降解塑料原料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098022A1 (ja) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. 細菌計数方法及び細菌計数装置
CN101260423A (zh) * 2008-04-28 2008-09-10 东北农业大学 一种检测单核细胞增生李斯特活菌的方法
CN101498666A (zh) * 2008-09-22 2009-08-05 中国海洋大学 荧光法快速测定活细菌总数
US20100112682A1 (en) * 2008-11-03 2010-05-06 General Electric Company Total bacteria monitoring system
CN102459650A (zh) * 2009-06-08 2012-05-16 韩国生命工学研究院 采用人工基因线路筛选及量化各种酶活性的方法
CN104561354A (zh) * 2015-01-30 2015-04-29 福州大学 一种基于fish技术的活细菌定量检测方法
CN105062919A (zh) * 2015-08-07 2015-11-18 新疆君阳宏泰环保科技有限公司 一种处理污水及污泥的微生物菌剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098022A1 (ja) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. 細菌計数方法及び細菌計数装置
CN101260423A (zh) * 2008-04-28 2008-09-10 东北农业大学 一种检测单核细胞增生李斯特活菌的方法
CN101498666A (zh) * 2008-09-22 2009-08-05 中国海洋大学 荧光法快速测定活细菌总数
US20100112682A1 (en) * 2008-11-03 2010-05-06 General Electric Company Total bacteria monitoring system
CN102459650A (zh) * 2009-06-08 2012-05-16 韩国生命工学研究院 采用人工基因线路筛选及量化各种酶活性的方法
CN104561354A (zh) * 2015-01-30 2015-04-29 福州大学 一种基于fish技术的活细菌定量检测方法
CN105062919A (zh) * 2015-08-07 2015-11-18 新疆君阳宏泰环保科技有限公司 一种处理污水及污泥的微生物菌剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈颖 等: ""利用ATP扩增反应与生物发光法结合检测微量微生物"", 《微生物学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899380A (zh) * 2021-01-21 2021-06-04 上海海洋大学 一种南美白对虾中活菌多样性分析模式构建方法
CN115488142A (zh) * 2022-07-28 2022-12-20 北京城市排水集团有限责任公司 一种废弃有机质资源化合成生物全降解塑料原料的方法
CN115488142B (zh) * 2022-07-28 2024-04-26 北京城市排水集团有限责任公司 一种废弃有机质资源化合成生物全降解塑料原料的方法

Also Published As

Publication number Publication date
CN106770093B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
Ma et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing
Silva et al. On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods
Auerbach et al. Tetracycline resistance genes in activated sludge wastewater treatment plants
Zakaria et al. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure
Guo et al. Bacterial communities in water and sediment shaped by paper mill pollution and indicated bacterial taxa in sediment in Daling River
Chen et al. Performance and microbial ecology of a nitritation sequencing batch reactor treating high-strength ammonia wastewater
Lebuhn et al. Using quantitative real-time PCR to determine the hygienic status of cattle manure
Yuan et al. Fates of antibiotic resistance genes in a distributed swine wastewater treatment plant
Zhang et al. Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure
Tang et al. Biodiversity and succession of microbial community in a multi-habitat membrane bioreactor
KR101040518B1 (ko) 미생물 자원 내 혐기성 암모늄 산화균의 탐색 및 배양 방법
CN106770093B (zh) 一种评价污泥臭氧处理过程中活菌含量和组成的方法
Marti et al. Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig‐associated genetic markers, assessed in river water microcosms
Sun et al. The removal of antibiotic resistance genes in secondary effluent by the combined process of PAC-UF
CN106929578A (zh) 一种太湖水体中浮游细菌群落的评价方法
Ruike et al. Use of real-time PCR with propidium monoazide for enumeration of viable Escherichia coli in anaerobic digestion
Amenu Wastewater treatment plants as a source of microbial pathogens in receiving watersheds
Jaziri et al. Comparing the effects of three pre-treatment disintegration techniques on aerobic sludge digestion: biodegradability enhancement and microbial community monitoring by PCR–DGGE
Kapley et al. Genomic tools in bioremediation
Ward et al. Utilisation of turbidity as an indicator for biochemical and chemical oxygen demand
Ge et al. Biological removal of phosphorus and diversity analysis of microbial community in the enhanced biological phosphorus removal (EBPR) system
Pullerits et al. Impact of coagulation–ultrafiltration on long-term pipe biofilm dynamics in a full-scale chloraminated drinking water distribution system
Banihashemi et al. Application of long amplicon propidium monoazide-PCR to assess the effects of temperature and background microbiota on pathogens in river water
Kaushal et al. Wastewater impact on human health and microorganism-mediated remediation and treatment through technologies
Grijalbo et al. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190712