CN106767937B - 调谐式光纤光栅波长解调仪的实时修正方法 - Google Patents

调谐式光纤光栅波长解调仪的实时修正方法 Download PDF

Info

Publication number
CN106767937B
CN106767937B CN201611074843.1A CN201611074843A CN106767937B CN 106767937 B CN106767937 B CN 106767937B CN 201611074843 A CN201611074843 A CN 201611074843A CN 106767937 B CN106767937 B CN 106767937B
Authority
CN
China
Prior art keywords
comb
measured
wavelength
real
function formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611074843.1A
Other languages
English (en)
Other versions
CN106767937A (zh
Inventor
李凯
董雷
于本化
覃玮玮
杨智龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Ligong Guangke Co Ltd
Original Assignee
Wuhan Ligong Guangke Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Ligong Guangke Co Ltd filed Critical Wuhan Ligong Guangke Co Ltd
Priority to CN201611074843.1A priority Critical patent/CN106767937B/zh
Publication of CN106767937A publication Critical patent/CN106767937A/zh
Application granted granted Critical
Publication of CN106767937B publication Critical patent/CN106767937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure

Abstract

本发明公开了一种调谐式光纤光栅波长解调仪的实时修正方法,包括以下步骤:对光源进行调制,得到波长—时间呈线性的扫频光;扫频光通过晶体型梳状滤波器和待测光栅,得到梳状光谱和待测光谱;通过光谱仪精确测得梳状光谱的波长值;另外根据光谱仪的采样率得到相应点数的梳状光谱光功率值,将梳状光谱的波长和梳状光功率值均保存,以作为修正的参考;梳状光谱和待测光谱通过光电转换模块转变为电信号,采集该电信号,得到的实时梳状光谱功率和待测光栅光谱功率;计算得到梳状光谱实时波长值;计算修正数组,使用修正数组对待测光栅的实时波长值进行修正,获得待测光栅的真实波长值。

Description

调谐式光纤光栅波长解调仪的实时修正方法
技术领域
本发明涉及光纤光栅传感领域,尤其涉及一种调谐式光纤光栅波长解调仪的实时修正方法及系统。
背景技术
光纤光栅波长解调技术是传感系统中关键的技术之一,它可以将感测的信息进行波长编码,且不必对连接器的损耗,光功率的起伏进行补偿,得到了广泛的应用。
目前比较典型的主要有以下几种解调方式:光谱仪检测法,匹配光栅检测法,可调谐滤波检测法,可调谐光源检测法,CCD分光法,非平衡M-Z干涉仪检测法等。其中光谱仪、干涉仪等方法,仪器中的精密光学器件较多,无法承受微小的振动,因此大多用于实验室中。而可调谐滤波和可调谐光源法,由于使用的是电控调谐,因此在户外和工程上应用非常广泛,例如火灾报警、周界入侵报警、桥梁应力监测等。目前可调谐式波长解调仪大多用于对物质的定性分析,例如是否产生火灾,是否产生入侵等;而在对精度要求更高的定量分析领域,例如化学反应中温度建模,不同物种的入侵建模等还基本无法得到应用,限制可调谐式波长解调仪发展的瓶颈就在于其测量精度较低,且波长重复性较差,特别是环境温度的变化会造成解调结果的大相径庭,低温时解调波长偏小,高温时解调波长偏大,如图1所示。
发明内容
本发明的目的在于提高可调谐式波长解调仪的解调精度,促进其更加快速的发展。为达上述目的,本发明提出了一种光纤光栅波长解调仪的实时修正方法,以性质非常稳定的晶体型梳状滤波器为参考,对解调结果进行实时修正,可消除绝大部分环境因素造成的影响,使解调结果维持在一个十分稳定的状态。
本发明为达上述目的所采用的技术方案是:
提供一种调谐式光纤光栅波长解调仪的实时修正方法,包括以下步骤:
对光源进行调制,经调制后,得到波长—时间呈线性的扫频光;
扫频光通过晶体型梳状滤波器和待测光栅,得到梳状光谱和待测光谱;
通过光谱仪精确测得梳状光谱的波长值,记为λ0…λn;另外根据光谱仪的采样率得到相应点数的梳状光谱光功率值,记为P0…Pm,将梳状光谱的波长和梳状光功率值均保存,以作为修正的参考;
梳状光谱和待测光谱通过光电转换模块转变为电信号,采集该电信号,并将采集得到的实时梳状光谱功率记为Φ0…Φm;采集到的待测光栅光谱功率记为Δ0…Δm
计算得到实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标,记为对得到的所有峰值的采样坐标,逐峰作插值计算,得到梳状光谱实时波长值记为ξ0…ξn
根据λ0…λn和ξ0…ξn得到一组修正数组μ0…μn,该修正数组由两部分组成:拉伸比和偏移量;其中拉伸比为两波长之间的距离之比,偏移量为波长的整体偏移;
计算得到待测光栅光谱功率Δ0…Δm所有峰值的采样坐标,记为与梳状光谱光功率值的采样坐标插值计算出待测光栅的实时波长值,记为δ0...δn
使用修正数组μ0…μn对待测光栅的实时波长值δ0...δn进行修正,获得待测光栅的真实波长值δ0'...δ'n
本发明所述的实时修正方法中,梳状光谱实时波长值ξn满足下式:
本发明所述的实时修正方法中,拉伸比εn,满足下式:
拉伸比主要反映了当前环境下两相邻波长的线性失真;
偏移量νn,满足下式:
νn=ξnn (3)
偏移量主要反映了当前环境下波长的平移失真。
本发明所述的实时修正方法中,待测光栅的实时波长值δn满足下式:
本发明所述的实时修正方法中,待测光栅的真实波长值δ0'...δ'n,δ'n满足下式:
本发明所述的实时修正方法中,具体通过质心寻峰算法计算得到实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标
本发明还提供了一种调谐式光纤光栅波长解调仪,包括光源、调谐模块、晶体型梳状滤波器和待测光栅、光电转换模块、数据采集模块以及数据处理及修正模块;
调谐模块,与光源连接,对光源发出的光进行调制,得到波长─时间呈线性的扫频光。
晶体型梳状滤波器和待测光栅,与调谐模块连接,扫频光通过晶体型梳状滤波器和待测光栅,得到梳状光谱和待测光谱;
光电转换模块,用于将晶体型梳状滤波器和待测光栅输出的光信号转变为电信号;
数据采集模块,与光电转换模块连接,用于采集该电信号,采集得到实时梳状光谱功率Φ0…Φm;待测光栅光谱功率Δ0…Δm
数据处理及修正模块,用于根据采集的数据计算实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标,记为 对得到的所有峰值的采样坐标,逐峰作插值计算,得到梳状光谱实时波长值记为ξ0…ξn;并根据λ0…λn和ξ0…ξn得到一组修正数组μ0…μn,该修正数组由两部分组成:拉伸比和偏移量;其中拉伸比为两波长之间的距离之比,偏移量为波长的整体偏移;其中λ0…λn为预先存储的、光谱仪精确测得的梳状光谱的波长值;P0…Pm为预先存储的、根据光谱仪的采样率得到的相应点数的梳状光谱光功率值;
该数据处理及修正模块还用于计算待测光栅光谱功率Δ0…Δm所有峰值的采样坐标,记为与梳状光谱光功率值的采样坐标插值计算出待测光栅的实时波长值,记为δ0...δn
该数据处理及修正模块还用于使用修正数组μ0…μn对待测光栅的实时波长值δ0...δn进行修正,获得待测光栅的真实波长值δ0'...δ'n
本发明所述的解调仪中,该数据处理及修正模块具体用于将采集得到的待测光谱功率和梳状光谱功率与存储的待测光谱功率和梳状光谱功率进行质心寻峰算法得到所有峰值的采样坐标,对比采样坐标并进行插值计算获得实时的待测波长值和梳状光谱波长值,计算得到修正数组。
本发明所述的解调仪中,光源为半导体环形腔激光器SOA,光谱带宽大于50nm,其输出光谱范围不应超过调谐模块的波长调谐范围。
本发明所述的解调仪中,数据采集模块包括A/D采样芯片和FPGA控制芯片。
本发明产生的有益效果是:本发明光纤光栅波长解调仪的实时修正方法,以性质非常稳定的晶体型梳状滤波器为参考,对解调结果进行实时修正,可消除绝大部分环境因素造成的影响,包括环境温度、湿度、迟滞等影响,提高解调结果的精度和准确度,使解调结果维持在一个十分稳定的状态。本发明无需增加任何额外器件,系统结构简单。且本发明可成功将光纤光栅解调仪引入定量分析领域。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是环境温度对波长解调结果的影响曲线图;
图2是本发明实施例调谐式光纤光栅波长解调仪的结构示意图;
图3是本发明实施例调谐式光纤光栅波长解调仪的实时修正方法的流程图;
图4是本发明利用修正方法得到的光谱修正示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明针对传统调谐式波长解调仪精度较低,解调结果受温度等环境因素影响较大的现状,提出了一种调谐式光纤光栅波长解调仪的实时修正方法,以性质非常稳定的晶体型梳状滤波器为参考,对解调结果进行实时修正,消除了环境因素的影响,提高了仪器的解调精度和稳定性。
如图2所示,调谐式光纤光栅波长解调仪包括光源、调谐模块、晶体型梳状滤波器和待测光栅、光电转换模块、数据采集模块以及数据处理及修正模块;光源1通过调谐模块2后被调制成波长─时间呈线性的扫频光,再经过晶体型梳状滤波器和待测光栅3后,得到梳状光谱和待测光谱,其中晶体型梳状滤波器的梳状光谱波长值可以通过光谱仪精确测得,另外还可以根据光谱仪的采样率得到梳状光谱相应点数的光功率值,将波长和光功率值均存入系统内存中作为修正的参考。之后梳状光谱和待测光谱通过光电转换模块4转变为电信号,然后被数据采集模块5采集,最后送到数据处理模块6进行解调和修正。其中:
光源1为整个系统提供原始光信号,光谱带宽一般大于50nm,其输出光谱范围不应超过调谐模块2的波长调谐范围;
调谐模块2为系统提供波长─时间呈线性的扫频光信号。
晶体型梳状滤波器和待测光栅3:其中晶体型梳状滤波器由两片温度系数相反的晶体组成,实现温度的互补偿,因此其表现出的特性基本与温度无关,宽谱光进入后与梳状峰波长重合的光可以通过,其他波长的光则被吸收。该器件用于产生波长固定、间隔基本一致的多个透射峰,这些透射峰的波长值可以通过光谱仪精确测量,测量所得的波长和功率数据被存入仪表内作为修正参考;待测光栅会反射携带传感信息的波长光谱,其波长不能超过光源1的光谱覆盖范围。
光电转换模块4将晶体型梳状滤波器和待测光栅3输出的光信号转换为电信号。
数据采集模块5中包含一个A/D采样芯片和一个FPGA控制芯片,A/D芯片将光电转换模块4输出的模拟信号进行A/D转换后得到与采样率点数一致的光功率数据。
数据处理与修正模块6将系统内存中梳状光谱光功率数据与A/D转换后得到的梳状光谱光功率数据进行逐一对比和插值计算,根据内存中梳状光谱的波长值可计算得出A/D转换后梳状光谱的波长值。假设所有的环境因素均一致,则计算出的梳状光谱波长值与系统内存中的应保持一致,但温度、湿度、迟滞等因素的影响,必然导致计算出的梳状光谱波长与系统内存中的存在差异,根据该差异可获得一组修正数组,利用该修正数组对待测光栅的解调结果进行修正,即可消除各因素影响,获得绝对准确的结果。
上述调谐式光纤光栅波长解调仪的实时修正方法如图3所示。光源1通过调谐模块2后被调制成波长─时间呈线性的扫频光,再经过晶体型梳状滤波器和待测光栅3后,得到梳状光谱和待测光谱,其中晶体型梳状滤波器的梳状光谱波长值可以通过光谱仪精确测得;另外还可以根据光谱仪的采样率得到梳状光谱相应点数的光功率值,将波长和光功率值均存入系统内存中作为修正的参考。之后梳状光谱和待测光谱通过光电转换模块4转变为电信号,然后被数据采集模块5采集,将采集得到的待测光谱功率和梳状光谱功率与存储的待测光谱功率和梳状光谱功率进行质心寻峰算法得到所有峰值的采样坐标,对比采样坐标并进行插值计算可获得实时的待测波长值和梳状光谱波长值,计算得到修正数组,最后用修正数组对实时的待测波长值进行修正即可获得真实的待测波长值。其中,最优方法为质心寻峰算法,还可以选用前沿寻峰算法和后沿寻峰算法得到所有峰值的采样坐标。
本实施例中可选用半导体环形腔激光器SOA作为光源1;调谐模块2为FFP滤波器;光电采集模块4中光电转换电路由同轴探测器、对数放大器构成;数据采集模块5由高速A/D采集芯片和FPGA芯片构成,数据处理及修正模块6可采用ARM9处理器实现。
本发明的一个较佳实施例中,光源1通过调谐模块2后被调制成波长─时间呈线性的扫频光,再经过晶体型梳状滤波器和待测光栅3后,得到梳状光谱和待测光谱,其中晶体型梳状滤波器的梳状光谱波长值可以通过光谱仪精确测得,记为λ0…λn;另外还可以根据光谱仪的采样率得到相应点数梳状光谱的光功率值,记为P0…Pm,将波长和光功率值均存入系统内存中作为后面修正的参考。之后梳状光谱和待测光谱通过光电转换模块4转变为电信号,然后被数据采集模块5采集,采集后送入数据处理及修正模块6进行处理:采集得到的梳状光谱功率记为Φ0…Φm,将Φ0…Φm和P0…P进行质心寻峰算法得到所有峰值的采样坐标(采样序列中的位置),记为逐峰作插值计可计算出采集得到的梳状光谱实时波长值(如图4),记为ξ0…ξn。其中n为整数。
ξn应满足下式:
根据λ0…λn和ξ0…ξn可得到一组修正数组μ0…μn,该数组由两部分组成:拉伸比和偏移量。其中拉伸比指的是两波长之间距离之比,例如λn、λn+1、ξn、ξn+1的拉伸比,记为εn,应满足下式:
该变量主要反映了当前环境下两相邻波长的线性失真(虽然在整个波段光谱的失真为非线性失真,但在两个梳状峰之间,一般为2nm,可以认为其失真是线性的);
偏移量指的是波长的整体偏移,例如λn、λn+1、ξn、ξn+1的偏移量记为νn,应满足下式:
νn=ξnn (3)
该变量主要反映了当前环境下该波长的平移失真。
然后根据采集到的待测光栅光谱功率,记为Δ0…Δm,将Δ0…Δm进行质心寻峰算法获得待测光栅波峰的采样坐标,记为插值可计算出待测光栅的实时波长值,记为δ0...δn
δn应满足下式:
最后使用修正数组μ0…μn对δ0...δn进行修正即可获得待测光栅的真实波长值δ0'...δ'n。δ'n应满足下式:
为证明该修正方法的正确性,在25℃和50℃环境温度下分别使用光纤光栅解调仪表对一组标准光栅进行了测量,修正前后的测量结果如下表所示。
由上表测量结果可知,该修正方法效果较好,无论在常温还是高温环境下,均可将测量精度控制在±5pm以内,满足定量分析的需求。
以上实施例仅供说明本发明之用,而非对本发明的限制,有关技术领域的技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变换或变型,因此所有等同的技术方案,都落入本发明的保护范围。

Claims (10)

1.一种调谐式光纤光栅波长解调仪的实时修正方法,其特征在于,包括以下步骤:
对光源进行调制,经调制后,得到波长—时间呈线性的扫频光;
扫频光通过晶体型梳状滤波器和待测光栅,得到梳状光谱和待测光谱;
通过光谱仪精确测得梳状光谱的波长值,记为λ0…λn;另外根据光谱仪的采样率得到相应点数的梳状光谱光功率值,记为P0…Pm,将梳状光谱的波长和梳状光功率值均保存,以作为修正的参考;
梳状光谱和待测光谱通过光电转换模块转变为电信号,采集该电信号,并将采集得到的实时梳状光谱功率记为Φ0…Φm;采集到的待测光栅光谱功率记为Δ0…Δm
计算得到实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标,记为对得到的所有峰值的采样坐标,逐峰作插值计算,得到梳状光谱实时波长值记为ξ0…ξn;根据λ0…λn和ξ0…ξn得到一组修正数组μ0…μn,该修正数组由两部分组成:拉伸比和偏移量;其中拉伸比为两相邻波长之间的距离之比,偏移量为波长的整体偏移;
计算得到待测光栅光谱功率Δ0…Δm所有峰值的采样坐标,记为与梳状光谱光功率值的采样坐标插值计算出待测光栅的实时波长值,记为δ0...δn
使用修正数组μ0…μn对待测光栅的实时波长值δ0...δn进行修正,获得待测光栅的真实波长值δ'0...δ'n
2.根据权利要求1所述的实时修正方法,其特征在于,梳状光谱实时波长值ξn满足下式:
3.根据权利要求1所述的实时修正方法,其特征在于,拉伸比εn,满足下式:
拉伸比主要反映了当前环境下两相邻波长的线性失真;
偏移量νn,满足下式:
νn=ξnn (3)
偏移量主要反映了当前环境下波长的平移失真。
4.根据权利要求1所述的实时修正方法,其特征在于,待测光栅的实时波长值δn满足下式:
5.根据权利要求1所述的实时修正方法,其特征在于,待测光栅的真实波长值δ'0...δ'n,δ'n满足下式:
6.根据权利要求1-5中任一项所述的实时修正方法,其特征在于,具体通过质心寻峰算法计算得到实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标。
7.一种调谐式光纤光栅波长解调仪,其特征在于,包括光源、调谐模块、晶体型梳状滤波器和待测光栅、光电转换模块、数据采集模块以及数据处理及修正模块;
调谐模块,与光源连接,对光源发出的光进行调制,得到波长—时间呈线性的扫频光;
晶体型梳状滤波器和待测光栅,与调谐模块连接,扫频光通过晶体型梳状滤波器和待测光栅,得到梳状光谱和待测光谱;
光电转换模块,用于将晶体型梳状滤波器和待测光栅输出的光信号转变为电信号;
数据采集模块,与光电转换模块连接,用于采集该电信号,采集得到实时梳状光谱功率Φ0…Φm;待测光栅光谱功率Δ0…Δm
数据处理及修正模块,用于根据采集的数据计算实时梳状光谱功率Φ0…Φm和梳状光谱光功率值P0…Pm所有峰值的采样坐标,记为 对得到的所有峰值的采样坐标,逐峰作插值计算,得到梳状光谱实时波长值记为ξ0…ξn;并根据λ0…λn和ξ0…ξn得到一组修正数组μ0…μn,该修正数组由两部分组成:拉伸比和偏移量;其中拉伸比为两相邻波长之间的距离之比,偏移量为波长的整体偏移;其中λ0…λn为预先存储的、光谱仪精确测得的梳状光谱的波长值;P0…Pm为预先存储的、根据光谱仪的采样率得到的相应点数的梳状光谱光功率值;
该数据处理及修正模块还用于计算待测光栅光谱功率Δ0…Δm所有峰值的采样坐标,记为与梳状光谱光功率值的采样坐标插值计算出待测光栅的实时波长值,记为δ0...δn
该数据处理及修正模块还用于使用修正数组μ0…μn对待测光栅的实时波长值δ0...δn进行修正,获得待测光栅的真实波长值δ'0...δ'n
8.根据权利要求7所述的解调仪,其特征在于,该数据处理及修正模块具体用于将采集得到的待测光谱功率和梳状光谱功率与存储的待测光谱功率和梳状光谱功率进行质心寻峰算法得到所有峰值的采样坐标,对比采样坐标并进行插值计算获得实时的待测波长值和梳状光谱波长值,计算得到修正数组。
9.根据权利要求7所述的解调仪,其特征在于,光源为半导体环形腔激光器SOA,光谱带宽大于50nm,其输出光谱范围不应超过调谐模块的波长调谐范围。
10.根据权利要求7所述的解调仪,其特征在于,数据采集模块包括A/D采样芯片和FPGA控制芯片。
CN201611074843.1A 2016-11-29 2016-11-29 调谐式光纤光栅波长解调仪的实时修正方法 Active CN106767937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611074843.1A CN106767937B (zh) 2016-11-29 2016-11-29 调谐式光纤光栅波长解调仪的实时修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611074843.1A CN106767937B (zh) 2016-11-29 2016-11-29 调谐式光纤光栅波长解调仪的实时修正方法

Publications (2)

Publication Number Publication Date
CN106767937A CN106767937A (zh) 2017-05-31
CN106767937B true CN106767937B (zh) 2019-06-28

Family

ID=58900961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611074843.1A Active CN106767937B (zh) 2016-11-29 2016-11-29 调谐式光纤光栅波长解调仪的实时修正方法

Country Status (1)

Country Link
CN (1) CN106767937B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180930B (zh) * 2017-12-29 2020-05-05 武汉理工光科股份有限公司 长距离阵列式光纤光栅传感解调方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059025A1 (en) * 1991-02-11 1992-08-12 Gunter Spahlinger Fibre-Optic Sagnac Interferometer with Digital Phase Modulation for Measuring a Rate of Rotation
FR2761839A1 (fr) * 1997-03-28 1998-10-09 Kokusai Denshin Denwa Co Ltd Dispositif de traitement optique a multiplexage par repartition en longueurs d'onde et voie de transmission de communication optique
JP3697320B2 (ja) * 1996-06-20 2005-09-21 株式会社日立製作所 光ファイバセンサ
US7580639B2 (en) * 2003-12-29 2009-08-25 Verizon Business Global Llc Characterization and control of optical dispersion compensating element
CN105115533A (zh) * 2015-07-30 2015-12-02 中国电子科技集团公司第四十一研究所 光纤光栅解调仪校准传递件及校准方法
CN105140777A (zh) * 2015-09-11 2015-12-09 武汉理工光科股份有限公司 宽可调谐半导体激光器输出波长控制方法及系统
CN105278206A (zh) * 2015-11-18 2016-01-27 武汉理工光科股份有限公司 压电陶瓷型可调谐波长滤波器的双边沿交叉解调及非线性修正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059025A1 (en) * 1991-02-11 1992-08-12 Gunter Spahlinger Fibre-Optic Sagnac Interferometer with Digital Phase Modulation for Measuring a Rate of Rotation
JP3697320B2 (ja) * 1996-06-20 2005-09-21 株式会社日立製作所 光ファイバセンサ
FR2761839A1 (fr) * 1997-03-28 1998-10-09 Kokusai Denshin Denwa Co Ltd Dispositif de traitement optique a multiplexage par repartition en longueurs d'onde et voie de transmission de communication optique
US7580639B2 (en) * 2003-12-29 2009-08-25 Verizon Business Global Llc Characterization and control of optical dispersion compensating element
CN105115533A (zh) * 2015-07-30 2015-12-02 中国电子科技集团公司第四十一研究所 光纤光栅解调仪校准传递件及校准方法
CN105140777A (zh) * 2015-09-11 2015-12-09 武汉理工光科股份有限公司 宽可调谐半导体激光器输出波长控制方法及系统
CN105278206A (zh) * 2015-11-18 2016-01-27 武汉理工光科股份有限公司 压电陶瓷型可调谐波长滤波器的双边沿交叉解调及非线性修正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速FBG光纤光栅解调仪的研制;庞启;《信息科技辑》;20130430;1-14

Also Published As

Publication number Publication date
CN106767937A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CA2509187C (en) Optical wavelength determination using multiple measurable features
CN104864911B (zh) 基于光纤法珀腔与光纤光栅双参量联合测量的高速解调装置及方法
CN103411686A (zh) 基于气体吸收谱线的光纤扫描光源波长标定装置及方法
CN102818531B (zh) 一种基于重叠多光栅的动态应变测量仪
CN104457803A (zh) 基于f-p标准具和参考光栅的波长解调系统和方法
CN203414177U (zh) 基于气体吸收谱线的光纤扫描光源波长标定装置
CN108562237A (zh) 一种采用hcn气室在光频域反射传感系统中进行光谱校准的装置和方法
CN112525828B (zh) 一种基于光学时间拉伸的穆勒矩阵测量系统及方法
CN106017533B (zh) 一种快速调谐实时校准光纤光栅解调装置及工作方法
CN105806380B (zh) 一种基于长周期光纤光栅反射型传感器的复用解调设备
Wang et al. Micro-cavity array with high accuracy for fully distributed optical fiber sensing
CN107389560A (zh) 多波段全光纤高光谱分辨率整层大气透过率同时测量装置及测量方法
CN106767937B (zh) 调谐式光纤光栅波长解调仪的实时修正方法
CN102080990B (zh) 一种四波段高温测量装置及方法
CN105953919B (zh) 一种全光纤傅里叶光谱分析仪
KR100275521B1 (ko) 파장선택형 광검출기를 이용한 광신호 파장 측정 장치와 광섬유브래그 격자 센서 장치 및 그방법
CN106441385A (zh) 波长全同光纤光栅光谱解调方法及系统
CN103344265A (zh) 一种光纤光栅解调仪
CN108204827A (zh) 一种相移光纤光栅解调系统
Lee et al. Wavelength-scanning calibration of detection efficiency of single photon detectors by direct comparison with a photodiode
CN110470618A (zh) 基于大气选择透过特性的单色仪光波长偏移量的检测方法
CN108426594A (zh) 一种相关算法的光纤光栅反射谱解调系统
CN205642638U (zh) 一种简易低成本的波长实时测量装置
CN212030748U (zh) 基于快照光谱成像技术的瞬态温度测量装置
Tian et al. Time-and wavelength-division multiplex distributed sensing interrogation system based on distributed feedback laser array and ultraweak fiber Bragg grating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant