CN106755059B - Backbone plasmid vector for genetic engineering and application - Google Patents

Backbone plasmid vector for genetic engineering and application Download PDF

Info

Publication number
CN106755059B
CN106755059B CN201610997402.2A CN201610997402A CN106755059B CN 106755059 B CN106755059 B CN 106755059B CN 201610997402 A CN201610997402 A CN 201610997402A CN 106755059 B CN106755059 B CN 106755059B
Authority
CN
China
Prior art keywords
rice
target
sequence
seq
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610997402.2A
Other languages
Chinese (zh)
Other versions
CN106755059A (en
Inventor
秦瑞英
杨剑波
许蓉芳
杨亚春
李娟�
李�浩
李莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rice Research Institute of Anhui Academy of Agricultural Sciences
Original Assignee
Rice Research Institute of Anhui Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rice Research Institute of Anhui Academy of Agricultural Sciences filed Critical Rice Research Institute of Anhui Academy of Agricultural Sciences
Priority to CN201610997402.2A priority Critical patent/CN106755059B/en
Publication of CN106755059A publication Critical patent/CN106755059A/en
Application granted granted Critical
Publication of CN106755059B publication Critical patent/CN106755059B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/60Vectors containing traps for, e.g. exons, promoters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a backbone plasmid vector for genetic engineering, which comprises a crRNA expression frame and a Cpf1 nuclease expression frame, wherein the crRNA expression frame and the Cpf1 nuclease expression frame are positioned in the same binary vector, and the crRNA expression frame is sequentially composed of a rice U3 promoter, a spectinomycin resistance gene and a Poly-T terminator; the LbCpf1 nuclease expression frame consists of a ZmUBI promoter, an LbCpf1 coding sequence modified by rice preferred codons and a 35s terminator in sequence. The invention also provides a recombinant vector containing a target sequence constructed by using the plasmid vector and application thereof in rice gene targeting. The backbone plasmid vector can be used for effectively targeting genes of target fragments to obtain rice plants with random insertion and/or random deletion on the target fragments in the target genes.

Description

Backbone plasmid vector for genetic engineering and application
Technical Field
The invention belongs to the field of plant gene engineering, and particularly relates to a gene engineering vector for plant gene targeting and application of the gene engineering vector in rice gene modification.
Background
Rice is one of the most important crops in the world. The yield and quality of rice are closely related to national economy and life, and the continuous cultivation of varieties with more excellent agronomic characters is crucial to rice production. Compared with the traditional breeding method, with the continuous development of biotechnology, the gene targeting technology which is gradually matured in recent years provides a convenient and efficient means for the optimization of key characters such as rice yield, quality and the like. The traditional gene targeting method comprises a homologous recombination technology, a zinc finger nuclease technology (ZFN), a transcription factor activator Technology (TALEN) and a CRISPR/Cas9 technology, wherein the homologous recombination technology has extremely low targeting efficiency in plants, and both the ZFN and TALEN technologies have the technical problems of complex construction of genetic engineering vectors, long period, high cost, unsuitability for transient transformation and the like, so that the practicability of the gene targeting technology in the rice breeding improvement process is greatly limited. The CRISPR/Cas9 technology has certain limitation on target site selection, and the deletion or insertion of a single base is easy to form in repair after the cleavage, so that the acquisition of the mutant is influenced to a certain extent.
The CRISPR/Cpf1 technology developed in the last 2 years provides a new means for gene targeting. The CRSIPR/Cpf1 system is an innate immune system that is present in bacteria. Cpf1 is capable of processing crRNA precursors alone and then using the mature crRNA to specifically recognize and cleave DNA. By using the principle, in eukaryotic cells, through artificial synthesis of crRNA with a target site combined with Cpf1 and specifically recognized, Cpf1 can be guided to cut a target site sequence in a genome, and random base insertion or deletion can occur in the cut site after a cell initiates a DNA repair mechanism, so that site-specific gene targeting is realized. At present, CRISPR/Cpf1 targeted gene targeting of the genome has been successfully achieved in rats. There have been no reports of gene targeting using the CRISPR/Cpf1 system in plants.
Disclosure of Invention
The invention provides a gene engineering backbone carrier for rice gene targeting.
In particular, in one aspect, the present invention provides a backbone plasmid vector for genetic engineering, characterized in that,
comprises a crRNA expression frame and a Cpf1 nuclease expression frame, wherein the nucleotide sequence of the crRNA expression frame is shown as the 107 th to 1716 th positions of Seq ID No.1, and the nucleotide sequence of the Cpf1 nuclease expression frame is shown as the 1746 th to 7878 th positions of Seq ID No. 1.
Preferably, in the backbone plasmid vector, a, the crRNA expression cassette comprises: the nucleotide sequence of the rice U3 promoter is shown as 107 th to 487 th sites of Seq ID No. 1; a spectinomycin resistance gene (SpR) whose nucleotide sequence is shown in SeqID No.1 at positions 495 to 1701; and a Poly-T terminator, the nucleotide sequence of which is shown in position 1709 to 1716 of Seq ID No.1,
b. the Cpf1 nuclease expression cassette comprises: the maize ZmUBI promoter, the nucleotide sequence of which is shown in Seq ID No.1, positions 1746-3777; the rice codon-preferred modified Cpf1 coding sequence has the nucleotide sequence as shown in Seq ID No.1 at positions 3786 to 7607 and the nucleotide sequence as shown in Seq ID No.1 at positions 7614 to 7878.
Preferably, the backbone plasmid vector further comprises: c. left and right border sequences of T-DNA, wherein the nucleotide sequence of the left border sequence is shown as position 10127 to 10150 of Seq ID No.1, the nucleotide sequence of the right border sequence is shown as position 1 to 25 of Seq ID No.1, and the crRNA expression cassette and the Cpf1 expression cassette are located between the left border sequence and the right border sequence.
In another aspect, the present invention provides a backbone plasmid vector for genetic engineering, wherein the nucleotide sequence of the backbone plasmid vector is as set forth in Seq ID No.1, herein designated pHUN 611.
In another aspect, the present invention provides a method for constructing a recombinant vector for targeting a target gene of rice, the method comprising the steps of:
selecting a double-stranded target fragment according to the coding sequence of the target gene, wherein the target fragment is located on the target gene, and one strand of the double-stranded target fragment has the following 5' TTTN- (N)X-3' structure, (N)XOne nucleotide sequence { N ] of X number1,N2……Nx},N1,N2……NxEach represents any one of bases A, G, C, T, and N in TTTN also represents any one of bases A, G, C, T (preferably, X is 25);
integrating the target fragment into the backbone plasmid vector to form crRNA with the target fragment.
Preferably, the vector construction comprises,
synthesizing 5' -GGCA- (N) according to the sequence of the target sequenceX-3 ' characteristic forward oligonucleotide strand and having 5 ' -AAAA- (N ')X-3' characteristic of the reverse oligonucleotide strand, wherein (N) in the forward oligonucleotide strandXAnd in the reverse oligonucleotide (N')XHas reverse complementary characteristics; cutting the backbone plasmid vector by BsaI endonuclease, replacing spectinomycin resistance gene with double-stranded nucleotide formed after annealing the forward oligonucleotide chain and the reverse oligonucleotide chain, and screening to form a recombinant vector for targeting the rice target gene through kanamycin forward selection and spectinomycin negative selection.
In another aspect, the present invention provides a use of the above recombinant vector in rice gene targeting, comprising the steps of,
transferring the recombinant vector into a rice cell, so that the rice cell simultaneously contains crRNA and Cpf1 nuclease aiming at a target gene; under the combined action of crRNA and Cpf1 nuclease, the double-stranded target segment of the target gene is sheared to induce the DNA repair function of the rice cell, and the random insertion and/or random deletion of the target segment in the target gene is realized.
Preferably, the transformation into rice cells refers to transient protoplast transformation or stable Agrobacterium-mediated transformation of the recombinant vector into rice cells or tissues.
Preferably, the use is for obtaining rice plants having random insertions and/or random deletions in the target fragment.
In another aspect, the present invention provides a method for obtaining a host bacterium, which comprises introducing the recombinant vector according to claim 6 into a target colony.
The backbone vector of the genetic engineering is a binary vector containing a T-DNA boundary sequence, and comprises 2 expression frames in two boundaries of the T-DNA: the Cpf1 gene expression cassette and the crRNA expression cassette, and may also include a hygromycin resistance gene expression cassette. The vector backbone sequence outside the T-DNA boundary may contain a structure such as a kanamycin resistance gene (FIG. 1).
In the present invention, BsaI endonuclease recognition sites (cleavage sites are shown at 495 th and 1701 th positions of Seq ID No. 1) are respectively present at both ends of the SpR gene in reverse arrangement for inserting the target fragment.
The invention also provides a transformant containing the recombinant vector, wherein the used host is a microorganism, specifically escherichia coli and agrobacterium.
One purpose of the invention is to use the recombinant vector to realize random insertion and/or random deletion of target segments of a target gene. Specifically, the recombinant vector is transferred into rice cells, so that the cells simultaneously contain crRNA and Cpf1 nuclease aiming at a target gene; under the combined action of crRNA and Cpf1 nuclease, the double-stranded target segment of the target gene is cut to induce the DNA repair function of rice cells, and finally the random insertion and/or random deletion of the target segment in the target gene is realized.
In the application, the crRNA is formed by connecting an RNA segment which can be complementarily combined with the target segment and a skeleton segment combined with cpf 1. The RNA segment which can be complementarily combined with the target segment in the crRNA is the RNA segment which can be complementarily combined with the 5' TTTN- (N)X-3' middle (N)XComplementary binding of RNA fragments.
The Cpf1 nuclease is a protein translated from an RNA fragment transcribed from the DNA represented by nucleotides 3786 to 7607 in SEQ ID No. 1.
The method for transferring the recombinant vector into the rice cells comprises the following steps: the DNA sequence of the recombinant vector is directly introduced into plant cells, such as PEG-mediated transient protoplast transformation or Agrobacterium-mediated stable callus transformation.
The regenerated plant is obtained by differentiating and regenerating transformed rice cells or tissues, such as protoplasts or callus. The application can obtain rice plants with random insertion and/or random deletion on target segments in target genes.
In order to realize the targeting of the CRISPR/Cpf1 system in a rice genome, the invention adopts a rice U3 promoter to express a combination of crRNA and a ZmUBI promoter to drive rice to prefer a Cpf1 gene modified by codon, successfully realizes the gene targeting in rice and obtains a corresponding rice mutant plant. Meanwhile, the invention presets a crRNA expression frame and a Cpf1 expression frame on the same plasmid skeleton in advance, thereby simplifying the process of constructing the recombinant targeting vector aiming at a certain gene.
In one implementation, the backbone plasmid vector of the present invention has the following nucleotide sequence (same as seq id No.1 in the sequence listing):
gtttacccgccaatatatcctgtcaaacactgatagtttaaactgaaggcgggaaacgacaatctgatccaagctcaagctaagctcacgtgacggaattaagcttaagggatctttaaacatacgaacagatcacttaaagttcttctgaagcaacttaaagttatcaggcatgcatggatcttggaggaatcagatgtgcagtcagggaccatagcacaagacaggcgtcttctactggtgctaccagcaaatgctggaagccgggaacactgggtacgttggaaaccacgtgatgtgaagaagtaagataaactgtaggagaaaagcatttcgtagtgggccatgaagcctttcaggacatgtattgcagtatgggccggcccattacgcaattggacgacaacaaagactagtattagtaccacctcggctatccacatagatcaaagctgatttaaaagagttgtgcagatgatccgtggcaagagaccaacccagtggacataagcctgttcggttcgtaagctgtaatgcaagtagcgtatgcgctcacgcaactggtccagaaccttgaccgaacgcagcggtggtaacggcgcagtggcggttttcatggcttgttatgactgtttttttggggtacagtctatgcctcgggcatccaagcagcaagcgcgttacgccgtgggtcgatgtttgatgttatggagcagcaacgatgttacgcagcagggcagtcgccctaaaacaaagttaaacatcatgggggaagcggtgatcgccgaagtatcgactcaactatcagaggtagttggcgtcatcgagcgccatctcgaaccgacgttgctggccgtacatttgtacggctccgcagtggatggcggcctgaagccacacagtgatattgatttgctggttacggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttggaaacttcggcttcccctggagagagcgagattctccgcgctgtagaagtcaccattgttgtgcacgacgacatcattccgtggcgttatccagctaagcgcgaactgcaatttggagaatggcagcgcaatgacattcttgcaggtatcttcgagccagccacgatcgacattgatctggctatcttgctgacaaaagcaagagaacatagcgttgccttggtaggtccagcggcggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaaccttaacgctatggaactcgccgcccgactgggctggcgatgagcgaaatgtagtgcttacgttgtcccgcatttggtacagcgcagtaaccggcaaaatcgcgccgaaggatgtcgctgccgactgggcaatggagcgcctgccggcccagtatcagcccgtcatacttgaagctagacaggcttatcttggacaagaagaagatcgcttggcctcgcgcgcagatcagttggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataatgtctagctagaaattcgttcaagccgacgccgcttcgcggcgcggcttaactcaagcgttagatgcactaagcacataattgctcacagccaaactatcaggtcaagtctgcttttattatttttaagcgtgcataataagccggtctcattttttttagtagtagcatctgacggtggggaagcttgatatcgaattcctgcagtgcagcgtgacccggtcgtgcccctctctagagataatgagcattgcatgtctaagttataaaaaattaccacatattttttttgtcacacttgtttgaagtgcagtttatctatctttatacatatatttaaactttactctacgaataatataatctatagtactacaataatatcagtgttttagagaatcatataaatgaacagttagacatggtctaaaggacaattgagtattttgacaacaggactctacagttttatctttttagtgtgcatgtgttctcctttttttttgcaaatagcttcacctatataatacttcatccattttattagtacatccatttagggtttagggttaatggtttttatagactaatttttttagtacatctattttattctattttagcctctaaattaagaaaactaaaactctattttagtttttttatttaataatttagatataaaatagaataaaataaagtgactaaaaattaaacaaataccctttaagaaattaaaaaaactaaggaaacatttttcttgtttcgagtagataatgccagcctgttaaacgccgtcgacgagtctaacggacaccaaccagcgaaccagcagcgtcgcgtcgggccaagcgaagcagacggcacggcatctctgtcgctgcctctggacccctctcgagagttccgctccaccgttggacttgctccgctgtcggcatccagaaatgcgtggcggagcggcagacgtgagccggcacggcaggcggcctcctcctcctctcacggcacggcagctacgggggattcctttcccaccgctccttcgctttcccttcctcgcccgccgtaataaatagacaccccctccacaccctctttccccaacctcgtgttgttcggagcgcacacacacacaaccagatctcccccaaatccacccgtcggcacctccgcttcaaggtacgccgctcgtcctccccccccccccctctctaccttctctagatcggcgttccggtccatggttagggcccggtagttctacttctgttcatgtttgtgttagatccgtgtttgtgttagatccgtgctgctagcgttcgtacacggatgcgacctgtacgtcagacacgttctgattgctaacttgccagtgtttctctttggggaatcctgggatggctctagccgttccgcagacgggatcgatttcatgattttttttgtttcgttgcatagggtttggtttgcccttttcctttatttcaatatatgccgtgcacttgtttgtcgggtcatcttttcatgcttttttttgtcttggttgtgatgatgtggtctggttgggcggtcgttctagatcggagtagaattctgtttcaaactacctggtggatttattaattttggatctgtatgtgtgtgccatacatattcatagttacgaattgaagatgatggatggaaatatcgatctaggataggtatacatgttgatgcgggttttactgatgcatatacagagatgctttttgttcgcttggttgtgatgatgtggtgtggttgggcggtcgttcattcgttctagatcggagtagaatactgtttcaaactacctggtgtatttattaattttggaactgtatgtgtgtgtcatacatcttcatagttacgagtttaagatggatggaaatatcgatctaggataggtatacatgttgatgtgggttttactgatgcatatacatgatggcatatgcagcatctattcatatgctctaaccttgagtacctatctattataataaacaagtatgttttataattattttgatcttgatatacttggatgatggcatatgcagcagctatatgtggatttttttagccctgccttcatacgctatttatttgcttggtactgtttcttttgtcgatgctcaccctgttgtttggtgttacttctgcagcccgggggatccccaatacttgtatggccgcggccgcatgtccaagctggagaagtttacaaactgttacagcctctccaaaaccctcaggtttaaagcgatcccggtgggcaagacccaggagaacatcgacaacaagaggctcctggtggaagacgagaagcgcgccgaagactacaagggcgtgaagaagctgctcgataggtactacctcagctttattaacgacgtgctgcacagcatcaaactcaagaatctcaacaactacatctccctcttccgcaaaaagacccgcaccgagaaggagaacaaggagctggagaacctggagatcaacctccgcaaggaaatcgccaaagcgttcaagggcaatgaagggtacaagagcctcttcaagaaagacatcatcgaaactatcctcccagagtttctcgatgacaaggacgagatcgcgctggtgaactcctttaacgggttcacaaccgcgtttaccggcttctttgataacagggaaaatatgttctccgaggaggccaagtccaccagcatcgccttcaggtgtatcaacgagaacctcacccgctacatttccaatatggacattttcgagaaggtggatgcgatcttcgataagcacgaggtgcaggagatcaaagagaagattctcaattccgattatgacgtcgaggatttcttcgaaggggagttctttaattttgtgctcacacaagagggcattgacgtgtacaacgcgattatcgggggcttcgtcacagagtccggggagaagattaaggggctgaatgagtacatcaatctgtacaatcagaagaccaagcagaaactgccgaaattcaagccgctctacaagcaagtcctgtccgatagggaaagcctctccttctacggcgagggctataccagcgacgaggaggtgctggaagtcttccgcaacacactgaataagaatagcgagattttctcctccatcaagaagctcgagaagctctttaagaactttgacgagtacagctccgccgggattttcgtgaagaacgggccggcgatcagcaccatctccaaggacatctttggcgagtggaacgtcatcagggacaagtggaacgccgagtacgacgacatccacctgaagaagaaggcggtggtgaccgagaagtatgaggacgatcgcaggaagtccttcaaaaaaatcggctccttcagcctcgaacagctccaggagtatgccgatgcggatctgtccgtcgtcgagaagctgaaggaaatcatcattcagaaggtcgacgagatctataaagtgtacgggtccagcgagaagctgttcgacgccgactttgtgctcgagaagtccctcaaaaagaatgacgccgtggtggccattatgaaagacctgctcgactccgtgaagtccttcgaaaattacattaaagcgttctttggggaggggaaggaaactaacagggatgagtccttctatggcgactttgtcctcgcgtacgacatcctgctgaaggtcgaccacatttacgacgcgatccgcaactacgtgacacagaagccgtactccaaagacaagttcaagctgtacttccagaacccgcaatttatggggggctgggacaaggataaagagacagactaccgcgcgacaattctccgctatggctccaaatactatctggccatcatggacaagaagtacgcgaagtgcctgcagaagatcgacaaagacgacgtcaatggcaactatgaaaagatcaactacaagctgctgccgggcccgaacaagatgctcccgaaggtgttcttcagcaagaagtggatggcctactacaatccaagcgaggatattcagaaaatctataaaaacgggaccttcaagaagggggacatgtttaacctcaacgactgccacaagctcattgatttcttcaaggatagcatttcccgctacccgaaatggtccaatgcgtacgattttaacttctccgagacagaaaagtacaaagacatcgcgggcttttacagggaggtggaggagcaagggtataaagtttcttttgaatccgcgagcaagaaggaagtcgacaagctcgtcgaggagggcaagctctacatgttccaaatttataacaaggacttttccgacaagagccatgggaccccaaacctccacaccatgtacttcaaactgctctttgacgagaacaaccacgggcaaatcaggctgagcggcggcgccgaattattcatgcgcagggcctccctcaagaaggaagagctggtcgtccatccagccaattccccgatcgcgaacaagaacccggacaatccgaaaaagaccaccaccctgtcctacgacgtctacaaggacaaacgcttcagcgaagaccagtacgaattacacatcccaattgcgattaataagtgcccaaagaatatcttcaaaattaatacagaggtcagggtgctgctcaaacacgacgacaatccgtatgtcatcggcattgacaggggcgagcgcaatctgctctatatcgtggtcgtggatgggaagggcaatattgtggagcagtactccctgaacgagattatcaacaacttcaatgggattaggattaagaccgactatcacagcctgctcgacaagaaagaaaaagagaggtttgaggcccgccaaaactggacctccattgagaatatcaaagaattaaaggccggctatatttcccaagtcgtccacaagatctgcgagctggtggagaaatatgacgccgtgattgcgctcgaagacttaaattctgggttcaagaactcccgcgtgaaggtggaaaaacaggtgtatcagaaattcgagaaaatgctgatcgacaaactcaattatatggtggataagaagtccaacccgtgtgccacagggggcgcgctgaagggctatcagatcaccaacaagttcgagagcttcaagagcatgagcacccagaacgggtttattttctacatcccggcgtggctcacctccaagattgacccgagcaccggcttcgtgaacctcctgaagacaaagtatacctccattgccgacagcaagaagtttatctcctccttcgaccgcattatgtatgtgccggaggaggacctcttcgagttcgccctcgactacaaaaacttcagccgcacagatgcggattacatcaagaagtggaagctgtactcctacgggaacaggatccgcatcttcaggaatccaaaaaaaaataacgtctttgactgggaggaagtgtgcctgacatccgcctacaaggaactgttcaataaatacggcatcaattaccagcagggcgacattcgcgccctcctctgtgagcagtccgacaaagcgttttactccagcttcatggccctcatgtccctgatgctccaaatgaggaatagcatcacagggcgcaccgacgtcgacttcctcatcagcccggtgaagaactccgacgggatcttttacgactcccgcaactatgaggcgcaagagaatgcgatcctcccgaagaacgccgatgcgaacggggcctataatatcgccaggaaagtgctctgggccatcgggcagttcaaaaaggcggaggatgagaagctcgacaaggtgaaaattgccatttccaacaaggagtggctggagtacgcgcagacctccgtgaagcacaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagggatcctacccatacgatgttccagattacgcttatccctacgacgtgcctgattatgcatacccatatgatgtccccgactatgcctaagagctccggccgggagcatgcgacgtcgatctaactgactagccgcggccatgctagagtccgcaaaaatcaccagtctctctctacaaatctatctctctctatttttctccagaataatgtgtgagtagttcccagataagggaattagggttcttatagggtttcgctcatgtgttgagcatataagaaacccttagtatgtatttgtatttgtaaaatacttctatcaataaaatttctaattcctaaaaccaaaatccagtgacctgaattcgaggcggtttgcgtattggctagagcagcttgccaacatggtggagcacgacactctcgtctactccaagaatatcaaagatacagtctcagaagaccaaagggctattgagacttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctatctgtcacttcatcaaaaggacagtagaaaaggaaggtggcacctacaaatgccatcattgcgataaaggaaaggctatcgttcaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagcaagtggattgatgtgataacatggtggagcacgacactctcgtctactccaagaatatcaaagatacagtctcagaagaccaaagggctattgagacttttcaacaaagggtaatatcgggaaacctcctcggattccattgcccagctatctgtcacttcatcaaaaggacagtagaaaaggaaggtggcacctacaaatgccatcattgcgataaaggaaaggctatcgttcaagatgcctctgccgacagtggtcccaaagatggacccccacccacgaggagcatcgtggaaaaagaagacgttccaaccacgtcttcaaagcaagtggattgatgtgatatctccactgacgtaagggatgacgcacaatcccactatccttcgcaagaccttcctctatataaggaagttcatttcatttggagaggacacgctgaaatcaccagtctctctctacaaatctatctctctcgagctttcgcagatcccggggggcaatgagatatgaaaaagcctgaactcaccgcgacgtctgtcgagaagtttctgatcgaaaagttcgacagcgtctccgacctgatgcagctctcggagggcgaagaatctcgtgctttcagcttcgatgtaggagggcgtggatatgtcctgcgggtaaatagctgcgccgatggtttctacaaagatcgttatgtttatcggcactttgcatcggccgcgctcccgattccggaagtgcttgacattggggagtttagcgagagcctgacctattgcatctcccgccgtgcacagggtgtcacgttgcaagacctgcctgaaaccgaactgcccgctgttctacaaccggtcgcggaggctatggatgcgatcgctgcggccgatcttagccagacgagcgggttcggcccattcggaccgcaaggaatcggtcaatacactacatggcgtgatttcatatgcgcgattgctgatccccatgtgtatcactggcaaactgtgatggacgacaccgtcagtgcgtccgtcgcgcaggctctcgatgagctgatgctttgggccgaggactgccccgaagtccggcacctcgtgcacgcggatttcggctccaacaatgtcctgacggacaatggccgcataacagcggtcattgactggagcgaggcgatgttcggggattcccaatacgaggtcgccaacatcttcttctggaggccgtggttggcttgtatggagcagcagacgcgctacttcgagcggaggcatccggagcttgcaggatcgccacgactccgggcgtatatgctccgcattggtcttgaccaactctatcagagcttggttgacggcaatttcgatgatgcagcttgggcgcagggtcgatgcgacgcaatcgtccgatccggagccgggactgtcgggcgtacacaaatcgcccgcagaagcgcggccgtctggaccgatggctgtgtagaagtactcgccgatagtggaaaccgacgccccagcactcgtccgagggcaaagaaatagagtagatgccgaccggatctgtcgatcgacaagctcgagtttctccataataatgtgtgagtagttcccagataagggaattagggttcctatagggtttcgctcatgtgttgagcatataagaaacccttagtatgtatttgtatttgtaaaatacttctatcaataaaatttctaattcctaaaaccaaaatccagtactaaaatccagatcccccgaattaattcggcgttaattcagtacattaaaaacgtccgcaatgtgttattaagttgtcactagtcaggttaactcaattcggcgttaattcagtacattaaaaacgtccgcaatgtgttattaagttgtctaagcgtcaatttgtttacaccacaatatatcctgccaccagccagccaacagctccccgaccggcagctcggcacaaaatcaccactcgatacaggcagcccatcagtccgggacggcgtcagcgggagagccgttgtaaggcggcagactttgctcatgttaccgatgctattcggaagaacggcaactaagctgccgggtttgaaacacggatgatctcgcggagggtagcatgttgattgtaacgatgacagagcgttgctgcctgtgatcacttaagtaactaactaacaggaagagtttgtagaaacgcaaaaaggccatccgtcaggatggccttctgcttagtttgatgcctggcagtttatggcgggcgtcctgcccgccaccctccgggccgttgcttcacaacgttcaaatccgctcccggcggatttgtcctactcaggagagcgttcaccgacaaacaacagataaaacgaaaggcccagtcttccgactgagcctttcgttttatttgatgcctggcagttccctactctcgcttagtagttagacgtccccgagatccatgctagaccatgaatccagaagcccgagaggttgccgcctttcgggctttttctttttcaaaaaaaaaaatttataaaacgatctgttgcggccggccgccgggttgtgggcaaaggcgctcgacggtgggcaaccgcttgcggttgtccacgggcggagccggtgcgcgtagcgcattgtccacaagccaagggcgaccaataattgatatatatattcataattgaaaagctaattgaacatactacttgctgtaactacttgccggagcgaggggtgtttgcaagctgttgatctgaaagggctattagcgttctcacgtgcctttttgattagcgatttcacgtgaccttattagcgatttcacgtactccgattagcgatttcacgtaccctgattagcgatttcacgtggatagtttttggagcgggccggaaagccccgtgaatcaaggctttgcggggcattagcggtttcacgtggataactaccctctatccacaggcttccggggataaaaaagcccgctcgacggcgggctgttggatggggatctagcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctaccgggtctgacgctcagtggaacggggcccaatctgaataatgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcagggacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttttccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaagcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctcgacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatatatttttatcttgtgcaatgtaacatcagagattttgagacacgggccagagctgcagtttgatcccgaggggaaccctgtggttgacatgcacatacaaatggacgaacggataaaccttttcacgcccttttaaatatccgttattctaataaacgctcttttctcttag
technical effects
The backbone vector of the present invention integrates the crRNA expression cassette and the Cpf1 nuclease expression cassette into a binary vector. The vector construction steps are simplified; 2. the SPR gene is integrated on the vector, so that antibiotic screening conditions are provided for vector identification, and the identification step is simplified.
Drawings
FIG. 1 is a vector diagram of backbone plasmid vector pHUN611 in one embodiment of the present invention;
FIG. 2 is a diagram showing the results of a site-directed mutagenesis assay of rice endogenous BEL gene using the recombinant pHUN611-BEL vector transferred into protoplasts, wherein WT represents a wild-type gene, "-" represents a sequence in which a deletion mutation has occurred, "+" represents a sequence in which an insertion mutation has occurred, and the number following "-/+" represents the number of nucleotides deleted or inserted;
FIG. 3 is a partial result diagram of the sequencing test of the site-directed mutagenesis of the endogenous BEL gene of rice in regenerated plants after PEG-mediated protoplast transfer using the PHUN611-BEL recombinant vector, wherein WT represents the wild-type gene, "-" represents the sequence in which the deletion mutation has occurred, "+" represents the sequence in which the insertion mutation has occurred, and the number following "-/+" represents the number of nucleotides deleted or inserted;
FIG. 4 is a partial graph showing the results of site-directed mutagenesis of endogenous BEL gene in rice in transgenic plants obtained by Agrobacterium-mediated stable transformation using the pHUN4c16-BEL recombinant vector, wherein WT represents a wild-type gene, "-" represents a sequence in which deletion mutation has occurred, "+" represents a sequence in which insertion mutation has occurred, and the numbers following "-/+" represent the number of nucleotides deleted or inserted;
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The following examples facilitate a better understanding of the invention, but do not limit the invention.
Examples
Design of backbone plasmid vectors
In particular, the present invention contemplates a backbone plasmid vector comprising a crRNA expression cassette and a Cpf1 nuclease expression cassette, the crRNA expression cassette comprising: a rice U3 promoter, a spectinomycin resistance gene and a Poly-T terminator. The Cpf1 nuclease expression cassette includes: a maize ZmUBI promoter, a rice preferred codon-engineered Cpf1 coding sequence, and a 35s terminator. The above sequences are unique parts of the backbone plasmid vector, which may also include the general structure of some conventional vectors, and will not be described again here. One implementation of the backbone plasmid vector designed by the present invention is shown in Seq ID No. 1. The vector may be constructed in a manner conventional in the art.
Preparation of recombinant vector for rice BEL gene targeting.
1.1 selection of the nucleotide sequence at position 2463-2487 in the Rice BEL Gene (LOC _ Os03g55240)TTTGGAAGAGAGTGACTGCGCTAGCAATC, (the 5' TTTN- (N) is underlined)X-TTTG moiety in 3' structure) as targeting site.
1.2, synthesizing (Huada Gene Co.) a forward oligonucleotide chain (BEL KO1P 1) and a complementary reverse oligonucleotide chain (BEL KO1P2) at the selected target site,
the specific sequence is as follows:
Figure BDA0001147537490000131
wherein the part not underlined is a sequence or a complementary sequence of the above target site from which TTTN is removed, and the underlined part is a cohesive end for ligation to a vector.
1.3, annealing both strands of BEL KO1P1 and BEL KO1P2 by an annealing program to form double-stranded DNA having cohesive ends as an insert for constructing a recombinant vector.
1.4, the pHUN611 vector was digested with BsaI endonuclease (NEB) at 37 ℃ for 2 hours, and the digestion system was inactivated at 65 ℃ for 20 minutes, to serve as a backbone fragment for constructing a recombinant vector.
1.5, the recombinant vector backbone fragment and the insert fragment were ligated with T4 ligase (NEB) and transformed into E.coli. Positive transformants were obtained by selecting plaques with kanamycin resistance and no spectinomycin resistance. After sequencing verification, positive plasmids are extracted to form recombinant vector plasmids for targeting rice BEL gene CRISPR/Cpf1, and the recombinant vector plasmids are named as pHUN 611-BEL.
Example 2 targeting of rice BEL Gene mediated by transient transformation of protoplasts.
2.1, the pHUN611-BEL plasmid is transformed into Nipponbare protoplasts of rice by the PEG Method, and the specific procedures for transformation of rice protoplasts are described in the experimental methods disclosed in Zhang et al A high level efficiency plasmid green plasmid for transformation gene expression and growing light/chloroplast-related process plant Method (2011).
2.2, extracting the genome DNA 48 hours after the protoplast transformation of the rice by using a plant genome miniprep kit (Tiangen Biochemical Co.). Using the DNA as a template, and performing PCR amplification on a sequence containing a target region by using Phusion high fidelity DNA polymerase (NEB company), wherein primers used for the PCR amplification are as follows:
Bel KO1 genome check FP:GTGGAGGTCGACATGACTGAAG
BelKO1 genome check RP:TTGCACATTCATACAAATTGGT
2.3, the PCR amplified fragment obtained was recovered by electrophoresis, cloned into pEASY-T vector (all-type gold), sequenced with M13F primer, and analyzed for mutations at the target site. Sequencing results show that 40 clones in 120 tested clones carry mutation on BEL gene target sequences, and the mutation efficiency is 33.3%; the form of the mutation includes insertion and/or deletion of a base. Partial results are shown in FIG. 2.
2.4, transforming the pHUN611-BEL plasmid into a rice Nipponbare protoplast by using a PEG method, and obtaining a regenerated rice plant. Specific procedures for Transformation and regeneration of Rice protoplasts reference is made to the experimental procedures disclosed in the document Hayashimoto et al A polyethylene glycol-media protocol Transformation System for Production of FertileTransgenic Rice plants plant Physiology (1990).
2.5, extracting the genome DNA of the obtained 60 regenerated plants by using a plant genome miniprep kit (Tiangen Biochemical company). Using this DNA as a template, a sequence containing the target region was PCR-amplified using Phusion high fidelity DNA polymerase (NEB) using the primers Bel KO1 genome check FP and Bel KO1 genome check RP described above.
2.6, PCR amplified fragments obtained by using Bel KO1 genome check FP as primer pair were directly sequenced, and mutations at the target sites were analyzed. Sequencing results show that 9 plants in 60 tested plants have mutation on the BEL gene target sequence, and the mutation efficiency is 15.0%; the form of the mutation includes insertion and/or deletion of a base. Partial results are shown in FIG. 3.
Example 3 targeting of the Agrobacterium-stabilized transgene mediated Rice BEL Gene.
3.1, transferring the pHUN611-BEL recombinant vector into Agrobacterium tumefaciens (Agrobacterium tumefaciens) EHA105 (component supervision and inspection test center for rice group preservation of transgenic biological products of department of agriculture of the academy of agricultural sciences of Anhui province) by using a freeze-thaw method to obtain a positive clone.
3.2, after the glumes of the mature seeds are removed, the seeds are soaked in 70% alcohol for 1min, and the alcohol is poured off. Seeds were soaked for 40min (150r/min) with 1 drop of Tween20 in 50% sodium hypochlorite (stock solution available chlorine concentration greater than 4%). And pouring off sodium hypochlorite, and washing for 5 times by using sterile water until the solution is clear and has no sodium hypochlorite taste. The seeds were soaked in sterile water overnight. The embryos were peeled off with a scalpel along the aleurone layer of the seeds and inoculated on callus induction medium. And after dark culture for 11 days at the temperature of 30 ℃, separating the callus from endosperm and embryo, and pre-culturing the primary callus with good bud removal state and vigorous division for 3-5 days for agrobacterium transformation.
3.3 Agrobacterium tumefaciens introduced with the recombinant expression vector as described above is used for Agrobacterium-mediated genetic transformation, such as those proposed with reference to Yongbo Duan (Yongbo Duan, ChengungZhai, et al. an infection and high-throughput protocol for Agrobacterium transformed base on phosphomanosis enzyme porous selection in Japonica attachment (Oryza sativa L.) [ J ]. Plant Report, 2012.DOI 10.1007/s00299-012 1275-3). 34 pHUN611-BEL plants (pHUN611-BEL transgenic rice plants) were obtained in total.
3.4, extracting the genome DNA of the obtained 34 pHUN611-BEL transgenic rice plants by using a plant genome minification kit (Tiangen Biochemical company). Using this DNA as a template, a sequence containing the target region was PCR-amplified using Phusion high fidelity DNA polymerase (NEB) using the primers Bel KO1 genome check FP and Bel KO1 genome check RP described above.
3.5, directly sequencing the PCR amplified fragment obtained by using Bel KO1 genome check FP as a primer pair, and analyzing the mutation of the target site. Sequencing results show that 14 plants among 34 tested plants have mutation on the BEL gene target sequence, and the mutation efficiency is 41.2%; the form of the mutation includes insertion and/or deletion of a base. Partial results are shown in FIG. 4.
As is apparent from FIG. 4, gene targeting at specific sites of rice can be achieved by using the vector of the present invention for gene targeting.
Sequence listing
<110> institute of Paddy Rice of agricultural science institute of Anhui province
<120> backbone plasmid vector for genetic engineering and application
<130>HCI20160266
<160>5
<170>PatentIn version 3.5
<210>1
<211>13069
<212>DNA
<213> backbone plasmid vector
<400>1:
gtttacccgc caatatatcc tgtcaaacac tgatagttta aactgaaggc gggaaacgac 60
aatctgatcc aagctcaagc taagctcacg tgacggaatt aagcttaagg gatctttaaa 120
catacgaaca gatcacttaa agttcttctg aagcaactta aagttatcag gcatgcatgg 180
atcttggagg aatcagatgt gcagtcaggg accatagcac aagacaggcg tcttctactg 240
gtgctaccag caaatgctgg aagccgggaa cactgggtac gttggaaacc acgtgatgtg 300
aagaagtaag ataaactgta ggagaaaagc atttcgtagt gggccatgaa gcctttcagg 360
acatgtattg cagtatgggc cggcccatta cgcaattgga cgacaacaaa gactagtatt 420
agtaccacct cggctatcca catagatcaa agctgattta aaagagttgt gcagatgatc 480
cgtggcaaga gaccaaccca gtggacataa gcctgttcgg ttcgtaagct gtaatgcaag 540
tagcgtatgc gctcacgcaa ctggtccaga accttgaccg aacgcagcgg tggtaacggc 600
gcagtggcgg ttttcatggc ttgttatgac tgtttttttg gggtacagtc tatgcctcgg 660
gcatccaagc agcaagcgcg ttacgccgtg ggtcgatgtt tgatgttatg gagcagcaac 720
gatgttacgc agcagggcag tcgccctaaa acaaagttaa acatcatggg ggaagcggtg 780
atcgccgaag tatcgactca actatcagag gtagttggcg tcatcgagcg ccatctcgaa 840
ccgacgttgc tggccgtaca tttgtacggc tccgcagtgg atggcggcct gaagccacac 900
agtgatattg atttgctggt tacggtgacc gtaaggcttg atgaaacaac gcggcgagct 960
ttgatcaacg accttttgga aacttcggct tcccctggag agagcgagat tctccgcgct 1020
gtagaagtca ccattgttgt gcacgacgac atcattccgt ggcgttatcc agctaagcgc 1080
gaactgcaat ttggagaatg gcagcgcaat gacattcttg caggtatctt cgagccagcc 1140
acgatcgaca ttgatctggc tatcttgctg acaaaagcaa gagaacatag cgttgccttg 1200
gtaggtccag cggcggagga actctttgat ccggttcctg aacaggatct atttgaggcg 1260
ctaaatgaaa ccttaacgct atggaactcg ccgcccgact gggctggcga tgagcgaaat 1320
gtagtgctta cgttgtcccg catttggtac agcgcagtaa ccggcaaaat cgcgccgaag 1380
gatgtcgctg ccgactgggc aatggagcgc ctgccggccc agtatcagcc cgtcatactt 1440
gaagctagac aggcttatct tggacaagaa gaagatcgct tggcctcgcg cgcagatcag 1500
ttggaagaat ttgtccacta cgtgaaaggc gagatcacca aggtagtcgg caaataatgt 1560
ctagctagaa attcgttcaa gccgacgccg cttcgcggcg cggcttaact caagcgttag 1620
atgcactaag cacataattg ctcacagcca aactatcagg tcaagtctgc ttttattatt 1680
tttaagcgtg cataataagc cggtctcatt ttttttagta gtagcatctg acggtgggga 1740
agcttgatat cgaattcctg cagtgcagcg tgacccggtc gtgcccctct ctagagataa 1800
tgagcattgc atgtctaagt tataaaaaat taccacatat tttttttgtc acacttgttt 1860
gaagtgcagt ttatctatct ttatacatat atttaaactt tactctacga ataatataat 1920
ctatagtact acaataatat cagtgtttta gagaatcata taaatgaaca gttagacatg 1980
gtctaaagga caattgagta ttttgacaac aggactctac agttttatct ttttagtgtg 2040
catgtgttct cctttttttt tgcaaatagc ttcacctata taatacttca tccattttat 2100
tagtacatcc atttagggtt tagggttaat ggtttttata gactaatttt tttagtacat 2160
ctattttatt ctattttagc ctctaaatta agaaaactaa aactctattt tagttttttt 2220
atttaataat ttagatataa aatagaataa aataaagtga ctaaaaatta aacaaatacc 2280
ctttaagaaa ttaaaaaaac taaggaaaca tttttcttgt ttcgagtaga taatgccagc 2340
ctgttaaacg ccgtcgacga gtctaacgga caccaaccag cgaaccagca gcgtcgcgtc 2400
gggccaagcg aagcagacgg cacggcatct ctgtcgctgc ctctggaccc ctctcgagag 2460
ttccgctcca ccgttggact tgctccgctg tcggcatcca gaaatgcgtg gcggagcggc 2520
agacgtgagc cggcacggca ggcggcctcc tcctcctctc acggcacggc agctacgggg 2580
gattcctttc ccaccgctcc ttcgctttcc cttcctcgcc cgccgtaata aatagacacc 2640
ccctccacac cctctttccc caacctcgtg ttgttcggag cgcacacaca cacaaccaga 2700
tctcccccaa atccacccgt cggcacctcc gcttcaaggt acgccgctcg tcctcccccc 2760
ccccccctct ctaccttctc tagatcggcg ttccggtcca tggttagggc ccggtagttc 2820
tacttctgtt catgtttgtg ttagatccgt gtttgtgtta gatccgtgct gctagcgttc 2880
gtacacggat gcgacctgta cgtcagacac gttctgattg ctaacttgcc agtgtttctc 2940
tttggggaat cctgggatgg ctctagccgt tccgcagacg ggatcgattt catgattttt3000
tttgtttcgt tgcatagggt ttggtttgcc cttttccttt atttcaatat atgccgtgca 3060
cttgtttgtc gggtcatctt ttcatgcttt tttttgtctt ggttgtgatg atgtggtctg 3120
gttgggcggt cgttctagat cggagtagaa ttctgtttca aactacctgg tggatttatt 3180
aattttggat ctgtatgtgt gtgccataca tattcatagt tacgaattga agatgatgga 3240
tggaaatatc gatctaggat aggtatacat gttgatgcgg gttttactga tgcatataca 3300
gagatgcttt ttgttcgctt ggttgtgatg atgtggtgtg gttgggcggt cgttcattcg 3360
ttctagatcg gagtagaata ctgtttcaaa ctacctggtg tatttattaa ttttggaact 3420
gtatgtgtgt gtcatacatc ttcatagtta cgagtttaag atggatggaa atatcgatct 3480
aggataggta tacatgttga tgtgggtttt actgatgcat atacatgatg gcatatgcag 3540
catctattca tatgctctaa ccttgagtac ctatctatta taataaacaa gtatgtttta 3600
taattatttt gatcttgata tacttggatg atggcatatg cagcagctat atgtggattt 3660
ttttagccct gccttcatac gctatttatt tgcttggtac tgtttctttt gtcgatgctc 3720
accctgttgt ttggtgttac ttctgcagcc cgggggatcc ccaatacttg tatggccgcg 3780
gccgcatgtc caagctggag aagtttacaa actgttacag cctctccaaa accctcaggt 3840
ttaaagcgat cccggtgggc aagacccagg agaacatcga caacaagagg ctcctggtgg 3900
aagacgagaa gcgcgccgaa gactacaagg gcgtgaagaa gctgctcgat aggtactacc 3960
tcagctttat taacgacgtg ctgcacagca tcaaactcaa gaatctcaac aactacatct 4020
ccctcttccg caaaaagacc cgcaccgaga aggagaacaa ggagctggag aacctggaga 4080
tcaacctccg caaggaaatc gccaaagcgt tcaagggcaa tgaagggtac aagagcctct 4140
tcaagaaaga catcatcgaa actatcctcc cagagtttct cgatgacaag gacgagatcg 4200
cgctggtgaa ctcctttaac gggttcacaa ccgcgtttac cggcttcttt gataacaggg 4260
aaaatatgtt ctccgaggag gccaagtcca ccagcatcgc cttcaggtgt atcaacgaga 4320
acctcacccg ctacatttcc aatatggaca ttttcgagaa ggtggatgcg atcttcgata 4380
agcacgaggt gcaggagatc aaagagaaga ttctcaattc cgattatgac gtcgaggatt 4440
tcttcgaagg ggagttcttt aattttgtgc tcacacaaga gggcattgac gtgtacaacg 4500
cgattatcgg gggcttcgtc acagagtccg gggagaagat taaggggctg aatgagtaca 4560
tcaatctgta caatcagaag accaagcaga aactgccgaa attcaagccg ctctacaagc 4620
aagtcctgtc cgatagggaa agcctctcct tctacggcga gggctatacc agcgacgagg 4680
aggtgctgga agtcttccgc aacacactga ataagaatag cgagattttc tcctccatca 4740
agaagctcga gaagctcttt aagaactttg acgagtacag ctccgccggg attttcgtga 4800
agaacgggcc ggcgatcagc accatctcca aggacatctt tggcgagtgg aacgtcatca 4860
gggacaagtg gaacgccgag tacgacgaca tccacctgaa gaagaaggcg gtggtgaccg 4920
agaagtatga ggacgatcgc aggaagtcct tcaaaaaaat cggctccttc agcctcgaac 4980
agctccagga gtatgccgat gcggatctgt ccgtcgtcga gaagctgaag gaaatcatca 5040
ttcagaaggt cgacgagatc tataaagtgt acgggtccag cgagaagctg ttcgacgccg 5100
actttgtgct cgagaagtcc ctcaaaaaga atgacgccgt ggtggccatt atgaaagacc 5160
tgctcgactc cgtgaagtcc ttcgaaaatt acattaaagc gttctttggg gaggggaagg 5220
aaactaacag ggatgagtcc ttctatggcg actttgtcct cgcgtacgac atcctgctga 5280
aggtcgacca catttacgac gcgatccgca actacgtgac acagaagccg tactccaaag 5340
acaagttcaa gctgtacttc cagaacccgc aatttatggg gggctgggac aaggataaag 5400
agacagacta ccgcgcgaca attctccgct atggctccaa atactatctg gccatcatgg 5460
acaagaagta cgcgaagtgc ctgcagaaga tcgacaaaga cgacgtcaat ggcaactatg 5520
aaaagatcaa ctacaagctg ctgccgggcc cgaacaagat gctcccgaag gtgttcttca 5580
gcaagaagtg gatggcctac tacaatccaa gcgaggatat tcagaaaatc tataaaaacg 5640
ggaccttcaa gaagggggac atgtttaacc tcaacgactg ccacaagctc attgatttct 5700
tcaaggatag catttcccgc tacccgaaat ggtccaatgc gtacgatttt aacttctccg 5760
agacagaaaa gtacaaagac atcgcgggct tttacaggga ggtggaggag caagggtata 5820
aagtttcttt tgaatccgcg agcaagaagg aagtcgacaa gctcgtcgag gagggcaagc 5880
tctacatgtt ccaaatttat aacaaggact tttccgacaa gagccatggg accccaaacc 5940
tccacaccat gtacttcaaa ctgctctttg acgagaacaa ccacgggcaa atcaggctga 6000
gcggcggcgc cgaattattc atgcgcaggg cctccctcaa gaaggaagag ctggtcgtcc 6060
atccagccaa ttccccgatc gcgaacaaga acccggacaa tccgaaaaag accaccaccc 6120
tgtcctacga cgtctacaag gacaaacgct tcagcgaaga ccagtacgaa ttacacatcc 6180
caattgcgat taataagtgc ccaaagaata tcttcaaaat taatacagag gtcagggtgc 6240
tgctcaaaca cgacgacaat ccgtatgtca tcggcattga caggggcgag cgcaatctgc 6300
tctatatcgt ggtcgtggat gggaagggca atattgtgga gcagtactcc ctgaacgaga 6360
ttatcaacaa cttcaatggg attaggatta agaccgacta tcacagcctg ctcgacaaga 6420
aagaaaaaga gaggtttgag gcccgccaaa actggacctc cattgagaat atcaaagaat 6480
taaaggccgg ctatatttcc caagtcgtcc acaagatctg cgagctggtg gagaaatatg 6540
acgccgtgat tgcgctcgaa gacttaaatt ctgggttcaa gaactcccgc gtgaaggtgg 6600
aaaaacaggt gtatcagaaa ttcgagaaaa tgctgatcga caaactcaat tatatggtgg 6660
ataagaagtc caacccgtgt gccacagggg gcgcgctgaa gggctatcag atcaccaaca 6720
agttcgagag cttcaagagc atgagcaccc agaacgggtt tattttctac atcccggcgt 6780
ggctcacctc caagattgac ccgagcaccg gcttcgtgaa cctcctgaag acaaagtata 6840
cctccattgc cgacagcaag aagtttatct cctccttcga ccgcattatg tatgtgccgg 6900
aggaggacct cttcgagttc gccctcgact acaaaaactt cagccgcaca gatgcggatt 6960
acatcaagaa gtggaagctg tactcctacg ggaacaggat ccgcatcttc aggaatccaa 7020
aaaaaaataa cgtctttgac tgggaggaag tgtgcctgac atccgcctac aaggaactgt 7080
tcaataaata cggcatcaat taccagcagg gcgacattcg cgccctcctc tgtgagcagt 7140
ccgacaaagc gttttactcc agcttcatgg ccctcatgtc cctgatgctc caaatgagga 7200
atagcatcac agggcgcacc gacgtcgact tcctcatcag cccggtgaag aactccgacg 7260
ggatctttta cgactcccgc aactatgagg cgcaagagaa tgcgatcctc ccgaagaacg 7320
ccgatgcgaa cggggcctat aatatcgcca ggaaagtgct ctgggccatc gggcagttca 7380
aaaaggcgga ggatgagaag ctcgacaagg tgaaaattgc catttccaac aaggagtggc 7440
tggagtacgc gcagacctcc gtgaagcaca aaaggccggc ggccacgaaa aaggccggcc 7500
aggcaaaaaa gaaaaaggga tcctacccat acgatgttcc agattacgct tatccctacg 7560
acgtgcctga ttatgcatac ccatatgatg tccccgacta tgcctaagag ctccggccgg 7620
gagcatgcga cgtcgatcta actgactagc cgcggccatg ctagagtccg caaaaatcac 7680
cagtctctct ctacaaatct atctctctct atttttctcc agaataatgt gtgagtagtt 7740
cccagataag ggaattaggg ttcttatagg gtttcgctca tgtgttgagc atataagaaa 7800
cccttagtat gtatttgtat ttgtaaaata cttctatcaa taaaatttct aattcctaaa 7860
accaaaatcc agtgacctga attcgaggcg gtttgcgtat tggctagagc agcttgccaa 7920
catggtggag cacgacactc tcgtctactc caagaatatc aaagatacag tctcagaaga 7980
ccaaagggct attgagactt ttcaacaaag ggtaatatcg ggaaacctcc tcggattcca 8040
ttgcccagct atctgtcact tcatcaaaag gacagtagaa aaggaaggtg gcacctacaa 8100
atgccatcat tgcgataaag gaaaggctat cgttcaagat gcctctgccg acagtggtcc 8160
caaagatgga cccccaccca cgaggagcat cgtggaaaaa gaagacgttc caaccacgtc 8220
ttcaaagcaa gtggattgat gtgataacat ggtggagcac gacactctcg tctactccaa 8280
gaatatcaaa gatacagtct cagaagacca aagggctatt gagacttttc aacaaagggt 8340
aatatcggga aacctcctcg gattccattg cccagctatc tgtcacttca tcaaaaggac 8400
agtagaaaag gaaggtggca cctacaaatg ccatcattgc gataaaggaa aggctatcgt 8460
tcaagatgcc tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt 8520
ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg atatctccac 8580
tgacgtaagg gatgacgcac aatcccacta tccttcgcaa gaccttcctc tatataagga 8640
agttcatttc atttggagag gacacgctga aatcaccagt ctctctctac aaatctatct 8700
ctctcgagct ttcgcagatc ccggggggca atgagatatg aaaaagcctg aactcaccgc 8760
gacgtctgtc gagaagtttc tgatcgaaaa gttcgacagc gtctccgacc tgatgcagct 8820
ctcggagggc gaagaatctc gtgctttcag cttcgatgta ggagggcgtg gatatgtcct 8880
gcgggtaaat agctgcgccg atggtttcta caaagatcgt tatgtttatc ggcactttgc 8940
atcggccgcg ctcccgattc cggaagtgct tgacattggg gagtttagcg agagcctgac 9000
ctattgcatc tcccgccgtg cacagggtgt cacgttgcaa gacctgcctg aaaccgaact 9060
gcccgctgtt ctacaaccgg tcgcggaggc tatggatgcg atcgctgcgg ccgatcttag 9120
ccagacgagc gggttcggcc cattcggacc gcaaggaatc ggtcaataca ctacatggcg 9180
tgatttcata tgcgcgattg ctgatcccca tgtgtatcac tggcaaactg tgatggacga 9240
caccgtcagt gcgtccgtcg cgcaggctct cgatgagctg atgctttggg ccgaggactg 9300
ccccgaagtc cggcacctcg tgcacgcgga tttcggctcc aacaatgtcc tgacggacaa 9360
tggccgcata acagcggtca ttgactggag cgaggcgatg ttcggggatt cccaatacga 9420
ggtcgccaac atcttcttct ggaggccgtg gttggcttgt atggagcagc agacgcgcta 9480
cttcgagcgg aggcatccgg agcttgcagg atcgccacga ctccgggcgt atatgctccg 9540
cattggtctt gaccaactct atcagagctt ggttgacggc aatttcgatg atgcagcttg 9600
ggcgcagggt cgatgcgacg caatcgtccg atccggagcc gggactgtcg ggcgtacaca 9660
aatcgcccgc agaagcgcgg ccgtctggac cgatggctgt gtagaagtac tcgccgatag 9720
tggaaaccga cgccccagca ctcgtccgag ggcaaagaaa tagagtagat gccgaccgga 9780
tctgtcgatc gacaagctcg agtttctcca taataatgtg tgagtagttc ccagataagg 9840
gaattagggt tcctataggg tttcgctcat gtgttgagca tataagaaac ccttagtatg 9900
tatttgtatt tgtaaaatac ttctatcaat aaaatttcta attcctaaaa ccaaaatcca 9960
gtactaaaat ccagatcccc cgaattaatt cggcgttaat tcagtacatt aaaaacgtcc 10020
gcaatgtgtt attaagttgt cactagtcag gttaactcaa ttcggcgtta attcagtaca 10080
ttaaaaacgt ccgcaatgtg ttattaagtt gtctaagcgt caatttgttt acaccacaat 10140
atatcctgcc accagccagc caacagctcc ccgaccggca gctcggcaca aaatcaccac 10200
tcgatacagg cagcccatca gtccgggacg gcgtcagcgg gagagccgtt gtaaggcggc 10260
agactttgct catgttaccg atgctattcg gaagaacggc aactaagctg ccgggtttga 10320
aacacggatg atctcgcgga gggtagcatg ttgattgtaa cgatgacaga gcgttgctgc 10380
ctgtgatcac ttaagtaact aactaacagg aagagtttgt agaaacgcaa aaaggccatc 10440
cgtcaggatg gccttctgct tagtttgatg cctggcagtt tatggcgggc gtcctgcccg 10500
ccaccctccg ggccgttgct tcacaacgtt caaatccgct cccggcggat ttgtcctact 10560
caggagagcg ttcaccgaca aacaacagat aaaacgaaag gcccagtctt ccgactgagc 10620
ctttcgtttt atttgatgcc tggcagttcc ctactctcgc ttagtagtta gacgtccccg 10680
agatccatgc tagaccatga atccagaagc ccgagaggtt gccgcctttc gggctttttc 10740
tttttcaaaa aaaaaaattt ataaaacgat ctgttgcggc cggccgccgg gttgtgggca 10800
aaggcgctcg acggtgggca accgcttgcg gttgtccacg ggcggagccg gtgcgcgtag 10860
cgcattgtcc acaagccaag ggcgaccaat aattgatata tatattcata attgaaaagc 10920
taattgaaca tactacttgc tgtaactact tgccggagcg aggggtgttt gcaagctgtt 10980
gatctgaaag ggctattagc gttctcacgt gcctttttga ttagcgattt cacgtgacct 11040
tattagcgat ttcacgtact ccgattagcg atttcacgta ccctgattag cgatttcacg 11100
tggatagttt ttggagcggg ccggaaagcc ccgtgaatca aggctttgcg gggcattagc 11160
ggtttcacgt ggataactac cctctatcca caggcttccg gggataaaaa agcccgctcg 11220
acggcgggct gttggatggg gatctagcgg taatacggtt atccacagaa tcaggggata 11280
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 11340
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 11400
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 11460
gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc 11520
tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 11580
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 11640
ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg 11700
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 11760
tgaagtggtg gcctaactac ggctacacta gaagaacagt atttggtatc tgcgctctgc 11820
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 11880
ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 11940
aagaagatcc tttgatcttt tctaccgggt ctgacgctca gtggaacggg gcccaatctg 12000
aataatgtta caaccaatta accaattctg attagaaaaa ctcatcgagc atcaaatgaa 12060
actgcaattt attcatatca ggattatcaa taccatattt ttgaaaaagc cgtttctgta 12120
atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg tatcggtctg 12180
cgattccgac tcgtccaaca tcaatacaac ctattaattt cccctcgtca aaaataaggt 12240
tatcaagtga gaaatcacca tgagtgacga ctgaatccgg tgagaatggc aaaagtttat 12300
gcatttcttt ccagacttgt tcaacaggcc agccattacg ctcgtcatca aaatcactcg 12360
catcaaccaa accgttattc attcgtgatt gcgcctgagc gagacgaaat acgcgatcgc 12420
tgttaaaagg acaattacaa acaggaatcg aatgcaaccg gcgcagggac actgccagcg 12480
catcaacaat attttcacct gaatcaggat attcttctaa tacctggaat gctgtttttc 12540
cggggatcgc agtggtgagt aaccatgcat catcaggagt acggataaaa tgcttgatgg 12600
tcggaagagg cataaattcc gtcagccagt ttagtctgac catctcatct gtaacatcat 12660
tggcaacgct acctttgcca tgtttcagaa acaactctgg cgcatcgggc ttcccataca 12720
agcgatagat tgtcgcacct gattgcccga cattatcgcg agcccattta tacccatata 12780
aatcagcatc catgttggaa tttaatcgcg gcctcgacgt ttcccgttga atatggctca 12840
taacacccct tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat 12900
ttttatcttg tgcaatgtaa catcagagat tttgagacac gggccagagc tgcagtttga 12960
tcccgagggg aaccctgtgg ttgacatgca catacaaatg gacgaacgga taaacctttt 13020
cacgcccttt taaatatccg ttattctaat aaacgctctt ttctcttag 13069
<210>2
<211>68
<212>DNA
<213>BEL KO1 P1
<400>2:
ggcagtcaaa agaccttttt aatttctact cttgtagatg aagagagtga ctgcgctagc 60
aatcgctc 68
<210>3
<211>68
<212>DNA
<213>BEL KO1 P2
<400>3:
aaaagagcga ttgctagcgc agtcactctc ttcatctaca agagtagaaa ttaaaaaggt 60
cttttgac 68
<210>4
<211>22
<212>DNA
<213>Bel KO1 genome check FP
<400>4:
gtggaggtcg acatgactga ag 22
<210>5
<211>22
<212>DNA
<213>Bel KO1 genome check RP
<400>5:
ttgcacattc atacaaattg gt 22

Claims (9)

1. A backbone plasmid vector for genetic engineering, characterized in that,
consists of a crRNA expression frame and a Cpf1 nuclease expression frame, wherein the nucleotide sequence of the crRNA expression frame is shown as the 107 th to 1716 th positions of Seq ID No.1, and the nucleotide sequence of the Cpf1 nuclease expression frame is shown as the 1746 th to 7878 th positions of Seq ID No. 1.
2. The backbone plasmid vector of claim 1, wherein a, the crRNA expression cassette comprises: the nucleotide sequence of the rice U3 promoter is shown as 107 th to 487 th sites of Seq ID No. 1; a spectinomycin resistance gene whose nucleotide sequence is shown in Seq ID No.1 at positions 495 to 1701; and a Poly-T terminator, the nucleotide sequence of which is shown in position 1709 to 1716 of Seq ID No.1,
b. the Cpf1 nuclease expression cassette comprises: the maize ZmUBI promoter, the nucleotide sequence of which is shown in Seq ID No.1, positions 1746-3777; LbCpf1, the nucleotide sequence of which is shown at 3786-7607 of Seq ID No.1 and the nucleotide sequence of which is shown at 7614-7878 of Seq ID No. 1.
3. The backbone plasmid vector of claim 2, wherein the backbone plasmid vector further comprises: c. left and right border sequences of T-DNA, wherein the nucleotide sequence of the left border sequence is shown as position 10127 to 10150 of Seq ID No.1, the nucleotide sequence of the right border sequence is shown as position 1 to 25 of Seq ID No.1, and the crRNA expression cassette and the Cpf1 expression cassette are located between the left border sequence and the right border sequence.
4. The backbone plasmid vector of claim 1, wherein the backbone plasmid vector further comprises a hygromycin resistance gene expression cassette.
5. A construction method of a recombinant vector for targeting a rice target gene is characterized by comprising the following steps:
selecting a double-stranded target fragment according to the coding sequence of the target gene, wherein the target fragment is located on the target gene, and one strand of the double-stranded target fragment has 5' TTTN- (N)X-3' structure, (N)XOne nucleotide sequence { N ] of X number1,N2……Nx},N1,N2……NxEach represents any one of bases A, G, C, T, and N in TTTN also represents any one of bases A, G, C, T;
integrating the target fragment into the backbone plasmid vector of any one of claims 1-4 to form crRNA bearing the target fragment.
6. The method for constructing a recombinant vector according to claim 5, wherein the method comprises: synthesizing 5' -GGCA- (N) according to the sequence of the target sequenceX-3 ' characteristic forward oligonucleotide strand and having 5 ' -AAAA- (N ')X-3' characteristic of the reverse oligonucleotide strand, wherein (N) in the forward oligonucleotide strandXAnd in the reverse oligonucleotide (N')XHas reverse complementary characteristics; cutting the backbone plasmid vector by BsaI endonuclease, replacing spectinomycin resistance gene with double-stranded nucleotide formed after annealing the forward oligonucleotide chain and the reverse oligonucleotide chain, and screening to form a recombinant vector for targeting the rice target gene through kanamycin forward selection and spectinomycin negative selection.
7. The use of the recombinant vector constructed by the method of claim 6 for rice gene targeting, comprising the steps of,
transferring the recombinant vector into a rice cell to ensure that the cell simultaneously contains crRNA and Cpf1 nuclease aiming at a target gene; under the combined action of crRNA and Cpf1 nuclease, the double-stranded target segment of the target gene is sheared to induce the DNA repair function of the rice cell, and the random insertion and/or random deletion of the target segment in the target gene is realized.
8. The use according to claim 7, wherein the rice cell transformation is transient protoplast transformation or stable Agrobacterium-mediated transformation of the recombinant vector into a rice cell or tissue, and the use is used to obtain rice plants with random insertions and/or random deletions into the target fragment.
9. A method for obtaining a host bacterium, comprising introducing the recombinant vector obtained by the method of claim 5 into a target colony.
CN201610997402.2A 2016-11-08 2016-11-08 Backbone plasmid vector for genetic engineering and application Active CN106755059B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610997402.2A CN106755059B (en) 2016-11-08 2016-11-08 Backbone plasmid vector for genetic engineering and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610997402.2A CN106755059B (en) 2016-11-08 2016-11-08 Backbone plasmid vector for genetic engineering and application

Publications (2)

Publication Number Publication Date
CN106755059A CN106755059A (en) 2017-05-31
CN106755059B true CN106755059B (en) 2020-02-18

Family

ID=58973408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610997402.2A Active CN106755059B (en) 2016-11-08 2016-11-08 Backbone plasmid vector for genetic engineering and application

Country Status (1)

Country Link
CN (1) CN106755059B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190097057A (en) * 2016-12-22 2019-08-20 키진 엔.브이. Targeted Modification of Double Helix DNA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602993A (en) * 2016-01-19 2016-05-25 上海赛墨生物技术有限公司 Mitochondrion-targeted gene editing system and method
CN105907785A (en) * 2016-05-05 2016-08-31 苏州吉玛基因股份有限公司 Application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cpf1 system with compounded crRNA in gene editing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105602993A (en) * 2016-01-19 2016-05-25 上海赛墨生物技术有限公司 Mitochondrion-targeted gene editing system and method
CN105907785A (en) * 2016-05-05 2016-08-31 苏州吉玛基因股份有限公司 Application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cpf1 system with compounded crRNA in gene editing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System;Bernd Zetsche等;《Cell》;20151022;第759-771页 *
Generation of targeted mutant rice using a CRISPR-Cpf1 system;Rongfang Xu等;《Plant Biotechnology Journal 》;20161122;第713-717页 *
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA;Ines Fonfara等;《Nature》;20160428;第532卷;第517-537页 *

Also Published As

Publication number Publication date
CN106755059A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN108368517B (en) Methods and compositions for rapid plant transformation
CN105838733A (en) Cas9 mediated carnation gene editing carrier and application
KR101327245B1 (en) Corn event MIR162
CN109456973A (en) Application of the SpCas9n&amp;PmCDA1&amp;UGI base editing system in plant gene editor
KR20190088512A (en) Simultaneous gene editing and haploid induction
CN107326043B (en) Construction and use method of multifunctional vector
CN109722436B (en) CRISPR-Cas 9-based genome traceless editing vector and application
CN106755059B (en) Backbone plasmid vector for genetic engineering and application
CN108165579B (en) Optimized method for identifying VIGS silencing system of China rose RhPDS gene
CN112708633B (en) CRISPR-Cas9 gene editing system containing corn seed fluorescent reporter group and application
CN101818151B (en) Specific promoter of soybean seeds and use thereof
CN110872584B (en) Barley alpha-amylase and coding gene and application thereof
CN114774427B (en) Recombinant gene for improving luteolin content in honeysuckle and application thereof
CN110923235B (en) Non-coding gene for controlling corn grain filling and application thereof
CN110964741B (en) Nuclear localization signal FNB and application thereof in improving base editing efficiency
CN110923262B (en) Sorghum alpha-amylase and coding gene and application thereof
CN110923258A (en) Genetic transformation method of hypsizigus marmoreus
CN114990115B (en) Vector constructed by optimized citrus Ccl-eEF1a promoter and CsUAP56 small intron and application
CN108893487A (en) A kind of construction method of plant expression plasmid carrier containing C-Myc protein fusion label and its carrier
CN109852628B (en) Method for identifying microbial gene function based on inducible promoter
CN109797165B (en) Method for improving yield of dibasic acid by traceless editing technology
CN114574467B (en) Gene expression regulation and control system and application thereof
CN110257444B (en) Method for producing medium-chain fatty acid in plant cells
CN111471702B (en) Slow-growing rhizobium stable red fluorescent labeling vector and application thereof
PL235163B1 (en) Nucleotide sequence of synthetic Cas9 gene, a cassette directing sgRNA for editing of plant genome and the efficient system for side-directed mutagenesis of a selected plant genome

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant