CN106753335A - 一种用高分子改性有机荧光染料防止荧光淬灭的方法 - Google Patents

一种用高分子改性有机荧光染料防止荧光淬灭的方法 Download PDF

Info

Publication number
CN106753335A
CN106753335A CN201611005326.9A CN201611005326A CN106753335A CN 106753335 A CN106753335 A CN 106753335A CN 201611005326 A CN201611005326 A CN 201611005326A CN 106753335 A CN106753335 A CN 106753335A
Authority
CN
China
Prior art keywords
pcl
fluorescent dye
organic fluorescent
organic
fluorescence molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611005326.9A
Other languages
English (en)
Inventor
权莉
丁红燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201611005326.9A priority Critical patent/CN106753335A/zh
Publication of CN106753335A publication Critical patent/CN106753335A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种用高分子改性有机荧光染料防止荧光淬灭的方法。首先对有机荧光分子氨基化,再用高分子PCL修饰有机荧光分子,然后与嵌段共聚物PEG‑PCL自组装成纳米粒子。通过调节PCL的长度可有效包裹荧光分子,阻滞荧光分子聚集引起荧光淬灭,同时提高荧光分子的光稳定性。本发明改善了有机荧光染料的亲水性和生物相容性,使有机荧光染料具有更广泛的应用。

Description

一种用高分子改性有机荧光染料防止荧光淬灭的方法
技术领域
本发明涉及纳米粒子制备技术和有机荧光染料改性技术,特别涉及聚集引起荧光淬灭的高分子改性方法。
背景技术
有机荧光染料是一类具有特殊光学性能的化合物,它们大多包含平面和多环π-共轭框架,它们能吸收特定频率的光,并发射出低频率(较长波长)的荧光释放所吸收的能量。目前有机荧光染料在工业界和学术界非常吸引人们的注意力,因为它们在电子、光学、光电子学、化学、生物传感方面具有潜在的应用价值。
通常传统的有机荧光染料在稀溶液中才表现出发射荧光的特质,而在高浓度溶液或固体状态会因为短程分子相互作用的非辐射途径(短程分子相互作用中的非辐射途径),如分子骨架平面π–π堆积,产生严重的荧光淬灭现象。Forster和Kasper首先发现了这种现象,称之为聚集引起荧光淬灭。聚集引起荧光淬灭严重阻碍了有机荧光染料在光电子器件、显像剂和生物传感器等实际中的应用。
为了解决这个问题,人们主要从以下几个方面努力:包括分子平面化,分子内旋转的限制,激子扩散的预防,从单体到聚集体的高效能量转移,J-聚集体的形成和这些影响的协同组合,但取得的效果都是有限的或者只针对某种荧光染料。所以寻找一种简单通用的方法保护荧光势在必行。
发明内容
本发明目的在于提供一种简单易行的方法阻滞有机荧光染料分子聚集从而保护荧光。
本发明实现以上目的采用的技术方案是,先对有机荧光分子氨基化,再用PCL对有机荧光分子进行修饰,然后与嵌段共聚物自组装,通过调节PCL长度,阻滞有机荧光染料分子之间因为π–π堆积距离太近产生的能量传递,使荧光分子达到游离分子荧光的效果。其步骤包含:
对有机荧光分子氨基化处理,得到氨基-有机荧光染料;
氨基-有机荧光染料与ε-己内酯(PCL)按1:7-1:1200(摩尔比)比例投料,辛酸亚锡作为催化剂,25℃-140℃下反应4-72小时;
用乙醚或甲醇沉降,得到PCL修饰的有机荧光染料,其中PCL的分子量在800-140000。
优选的,氨基-有机荧光染料物质的量范围为0.05mM-10mM,PCL物质的量范围为0.35mM-12000mM,辛酸亚锡物质的量范围为0.35mM-12000mM;
优选的,对所述PCL修饰的有机荧光染料进一步处理,制备荧光分子-PCL纳米粒子(FD-PCL),其步骤包括:
将10-100mg PCL修饰的有机荧光染料与10-100mg PCL2K-PEG5K共溶于1-10ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10-100ml水中,待四氢呋喃完全挥发后,得到荧光分子-PCL纳米粒子。
与现有技术相比,本发明的有益效果是:
1、用高分子修饰,可调节高分子的链长,使高分子有效缠裹荧光分子阻滞分子之间的堆积,保护荧光。
2、高分子的缠绕相当于给每个荧光分子加上一个保护壳,在保护荧光的同时提高荧光分子的光稳定性。
3、把有机荧光分子做成纳米粒子,增加了有机荧光分子水溶性和生物相容性,拓展了有机荧光染料的应用,特别是在生物成像领域中的应用。
附图说明
下面结合附图和实施例对本发明的方法作进一步详细的说明。
图1为氨基-荧光分子引发ε-己内酯共聚物的制备。
图2荧光强度与PCL链长的关系。
图3为高分子修饰前后荧光强度。
图4为高分子修饰前后光稳定性。
图5为制备的荧光分子-PCL纳米粒子电镜图。
图6为荧光分子-PCL纳米粒子细胞成像。
如图1所示,氨基-荧光分子引发ε-己内酯共聚,最后得到PCL修饰的有机荧光染料FD-PCL;
如图2所示,荧光强度与PCL链长有一个抛物线的关系,也就是说不是PCL越长越好,即有一个最佳PCL链长,经过缠绕可有效防止荧光分子聚集,从而达到最佳荧光保护状态。
如图3所示,有机荧光分子FD在PCL修饰前后,荧光强度有很大的变化,这进一步说明PCL的修饰可以有效阻止荧光分子聚集,保护荧光。
如图4所示,PCL修饰之后,荧光分子的光稳定性得到很大的提高。最常用的荧光显像剂荧光素钠,在光照1小时后,荧光强度降低了44%,而PCL修饰的有机荧光分子FD,光照1小时后,荧光强度仅降低了3%。
具体实施方式
实施例一
A、氨基-荧光分子引发ε-己内酯共聚物的制备:如图1所示,将0.05mM氨基-荧光分子与0.35mMε-己内酯混合,加入0.35mM辛酸亚锡,140℃下反应4小时。然后用乙醚沉降,得到PCL修饰的有机荧光染料,其中PCL的分子量是800;
B、荧光分子-PCL纳米粒子的制备:将10mg PCL修饰的有机荧光染料与10mg PCL2K-PEG5K共溶于1ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10ml水中,待四氢呋喃完全挥发后,得到荧光分子-PCL纳米粒子。
实施例二
A、氨基-荧光分子引发ε-己内酯共聚物的制备:如图1所示,将1.8mM氨基-荧光分子与94.7mMε-己内酯混合,加入94.7mM辛酸亚锡,25℃下反应72小时。然后用甲醇沉降,得到PCL修饰的有机荧光染料,其中PCL的分子量是6000;
B、荧光分子-PCL纳米粒子的制备:将100mg PCL修饰的有机荧光染料与100mgPCL2K-PEG5K共溶于1ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到100ml水中,待四氢呋喃完全挥发后,得到荧光分子-PCL纳米粒子。
如图5所示,有机荧光分子FD用PCL修饰之后与PEG-PCL自组装,形成纳米粒子的粒径大约为200nm。
如图6所示,用市售的荧光显像剂荧光素钠和用高分子修饰的荧光分子(FD-PCL)分别做细胞成像实验,从实验结果可以看出:与荧光素钠相比,用高分子修饰的荧光分子在培养细胞一小时后细胞成像效果很清晰;在光照一小时后,荧光素钠的荧光基本消失,细胞成像的效果很差,而高分子修饰的荧光分子依旧保持很好的荧光效果细胞成像依旧清晰。
实施例三
A、氨基-荧光分子引发ε-己内酯共聚物的制备:如图1所示,将0.54mM氨基-荧光分子与94.7mMε-己内酯混合,加入94.7mM辛酸亚锡,110℃下反应12小时。然后用甲醇沉降,得到PCL修饰的有机荧光染料,其中PCL的分子量是20000;
B、荧光分子-PCL纳米粒子的制备:将10mg PCL修饰的有机荧光染料与10mg PCL2K-PEG5K共溶于1ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10ml水中,待四氢呋喃完全挥发后,得到荧光分子-PCL纳米粒子。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种用高分子改性有机荧光染料防止荧光淬灭的方法,其步骤包含:
对有机荧光分子氨基化处理,得到氨基-有机荧光染料;
所述氨基-有机荧光染料与ε-己内酯(PCL)按1:7-1:1200(摩尔比)比例投料,辛酸亚锡作为催化剂,25℃-140℃下反应4-72小时;
用乙醚或甲醇沉降,得到PCL修饰的有机荧光染料,其中PCL的分子量在800-140000。
2.根据权利要求1所述的一种用高分子改性有机荧光染料防止荧光淬灭的方法,其特征在于,所述氨基-有机荧光染料物质的量范围为0.05mM-10mM,所述PCL物质的量范围为0.35mM-12000mM,所述辛酸亚锡物质的量范围为0.35mM-12000mM。
3.根据权利要求1或2所述的一种用高分子改性有机荧光染料防止荧光淬灭的方法,其特征在于,对所述PCL修饰的有机荧光染料进一步处理,制备荧光分子-PCL纳米粒子,其步骤包括:
将10-100mg所述PCL修饰的有机荧光染料与10-100mg PCL2K-PEG5K共溶于1-10ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10-100ml水中,待所述四氢呋喃完全挥发后,得到荧光分子-PCL纳米粒子。
CN201611005326.9A 2016-11-15 2016-11-15 一种用高分子改性有机荧光染料防止荧光淬灭的方法 Pending CN106753335A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611005326.9A CN106753335A (zh) 2016-11-15 2016-11-15 一种用高分子改性有机荧光染料防止荧光淬灭的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611005326.9A CN106753335A (zh) 2016-11-15 2016-11-15 一种用高分子改性有机荧光染料防止荧光淬灭的方法

Publications (1)

Publication Number Publication Date
CN106753335A true CN106753335A (zh) 2017-05-31

Family

ID=58968826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611005326.9A Pending CN106753335A (zh) 2016-11-15 2016-11-15 一种用高分子改性有机荧光染料防止荧光淬灭的方法

Country Status (1)

Country Link
CN (1) CN106753335A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228515A (zh) * 2019-12-27 2020-06-05 南京大学 一种单分子包覆的荧光素纳米粒子及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148095A1 (en) * 2005-12-23 2007-06-28 Industrial Technology Research Institute Fluorescent magnetic nanoparticles with specific targeting functions
CN103102479A (zh) * 2012-12-24 2013-05-15 深圳先进技术研究院 具有fret效应的还原敏感型荧光纳米胶束及其制备方法
CN103881073A (zh) * 2014-03-05 2014-06-25 华东师范大学 利用自组装实现荧光增强的荧光聚合物的制备方法
CN105524441A (zh) * 2016-01-28 2016-04-27 华南理工大学 一种含有聚集诱导发光分子的高分子囊泡及其制法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070148095A1 (en) * 2005-12-23 2007-06-28 Industrial Technology Research Institute Fluorescent magnetic nanoparticles with specific targeting functions
CN103102479A (zh) * 2012-12-24 2013-05-15 深圳先进技术研究院 具有fret效应的还原敏感型荧光纳米胶束及其制备方法
CN103881073A (zh) * 2014-03-05 2014-06-25 华东师范大学 利用自组装实现荧光增强的荧光聚合物的制备方法
CN105524441A (zh) * 2016-01-28 2016-04-27 华南理工大学 一种含有聚集诱导发光分子的高分子囊泡及其制法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. MEENARATHI等: "Synthesis and characterization of fluorescent bio-degradable Poly (ε-Caprolactone)", 《INT J PLAST TECHNOL》 *
KANG- YU PENG ET AL.: "Methoxy poly(eth ylene glycol)-b-p oly(ε -caprolactone) block-gra ft copoly mers with pendant fluorescent groups:synthesis, characteriza tion and cellular uptake", 《J POLYM RES》 *
LI QUAN ET AL.: "Near-Infrared Emitting Fluorescent BODIPY Nanovesicles for in Vivo Molecular Imaging and Drug Delivery", 《ACS APPL. MATER. INTERFACES》 *
权莉等: "扩散控制的聚合物囊泡荧光增强及其应用", 《中国化学会第十四届胶体与界面化学会议论文摘要集-第2分会:溶液中的聚集与分子组装》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111228515A (zh) * 2019-12-27 2020-06-05 南京大学 一种单分子包覆的荧光素纳米粒子及其制备方法

Similar Documents

Publication Publication Date Title
Zhong et al. Elimination of photon quenching by a transition layer to fabricate a quenching‐shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+‐sensitized nanoparticles
Zuo et al. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure
Maldiney et al. In vivo optical imaging with rare earth doped Ca 2 Si 5 N 8 persistent luminescence nanoparticles
Deng et al. Upconversion in NaYF4: Yb, Er nanoparticles amplified by metal nanostructures
Mo et al. Cascade resonance energy transfer for the construction of nanoparticles with multicolor long afterglow in aqueous solutions for information encryption and bioimaging
Ni et al. Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing
Morsi et al. Nd: YAG nanosecond laser induced growth of Au nanoparticles within CMC/PVA matrix: Multifunctional nanocomposites with tunable optical and electrical properties
Zhang et al. Self‐quenching‐resistant red emissive carbon dots with high stability for warm white light‐emitting diodes with a high color rendering index
Yin et al. Multifunctional upconverting nanoparticles for near-infrared triggered and synergistic antibacterial resistance therapy
Escudero et al. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications
Alam et al. Preparation and characterization of optically transparent and photoluminescent electrospun nanofiber composed of carbon quantum dots and polyacrylonitrile blend with polyacrylic acid
Chen et al. Controllable synthesis of NaYF4: Yb, Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans
Rafique et al. Morphological evolution of upconversion nanoparticles and their biomedical signal generation
Wu et al. Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: stable, freestanding, enhanced-quenching Cu 2+-ions sensor
Sun et al. Highly fluorescent silica‐coated bismuth‐doped aluminosilicate nanoparticles for near‐infrared bioimaging
Dong et al. Polyol-mediated C-dot formation showing efficient Tb 3+/Eu 3+ emission
Carvalho et al. Hydrothermal synthesis to water-stable luminescent carbon dots from acerola fruit for photoluminescent composites preparation and its application as sensors
Munkhbat et al. Performance Boost of Organic Light‐Emitting Diodes with Plasmonic Nanostars
Zhai et al. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique
Barman et al. Carbon dot/cellulose-based transparent films for efficient UV and high-energy blue light screening
Liu et al. Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles
Hao et al. Highly luminescent and photostable core–shell dye nanoparticles for high efficiency bioimaging
Barman et al. Transparent hard coatings with SiON-encapsulated N-doped carbon dots for complete UV blocking and white light emission
Ge et al. Luminescent materials derived from biomass resources
Umar et al. Random lasing and amplified spontaneous emission from silk inverse opals: Optical gain enhancement via protein scatterers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Quan Li

Inventor after: Tong Jie

Inventor after: Ding Hongyan

Inventor before: Quan Li

Inventor before: Ding Hongyan

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication