CN106745707A - 一种污水处理污泥物料平衡的控制系统及控制方法 - Google Patents

一种污水处理污泥物料平衡的控制系统及控制方法 Download PDF

Info

Publication number
CN106745707A
CN106745707A CN201611265460.2A CN201611265460A CN106745707A CN 106745707 A CN106745707 A CN 106745707A CN 201611265460 A CN201611265460 A CN 201611265460A CN 106745707 A CN106745707 A CN 106745707A
Authority
CN
China
Prior art keywords
sludge
control
plc
sewage disposal
material balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611265460.2A
Other languages
English (en)
Inventor
赵曦
赵令
佟达志
曹勇
郭贺
崔军虎
杨成玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN CAPITAL ENVIRONMENTAL PROTECTION GROUP CO Ltd
Original Assignee
TIANJIN CAPITAL ENVIRONMENTAL PROTECTION GROUP CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN CAPITAL ENVIRONMENTAL PROTECTION GROUP CO Ltd filed Critical TIANJIN CAPITAL ENVIRONMENTAL PROTECTION GROUP CO Ltd
Priority to CN201611265460.2A priority Critical patent/CN106745707A/zh
Publication of CN106745707A publication Critical patent/CN106745707A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/26H2S
    • C02F2209/265H2S in the gas phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明提供了一种污水处理污泥物料平衡的控制系统及控制方法,包括通过现场调整层精确控制各工艺段污泥的排放;所述现场调整层将数据上传至智能控制层,所述智能控制层根据数据计算智能策略、确定各工艺段的流量限值、发出预警信号,控制全厂污泥的动态平衡;所述智能控制层将信息通过人工干预层的人机界面显示,方便工作人员进行数据和参数的调整,以及修正所述智能策略。本发明所述的污水处理污泥物料平衡的控制系统及控制方法,改变靠经验、人工操作的工作模式,提升了污水处理的稳定性和控制精度,降低了工作强度,节约了污水处理成本;自动化程度高,实现了污泥处理全过程的按需供给,避免了过度排泥,节约资源和能源。

Description

一种污水处理污泥物料平衡的控制系统及控制方法
技术领域
本发明创造属于污水处理领域,尤其是涉及一种污污水处理污泥物料平衡的控制系统及控制方法。
背景技术
近年以来,城市污水处理厂污泥处理逐渐成为行业内和市场的热点方向。污泥的全过程控制的研究也逐步深入,各种减量化、资源化方案不断被设计、应用。但是,针对污泥的产生环节,即污水处理厂现有工艺的过程优化基本还是需要依靠人工干预控制。污泥产生和处理的各个工艺段中普遍存在以下部分或全部问题:
(1)生物污泥龄、食微比的控制依靠人工经验,控制排泥时间,没有实现自动化。污水厂在运行中,需要根据不同季节、进水水质变化下的经验进行调整,其变化过程直接影响生物群落变化,对出水指标、污泥减量具有长时间持续性影响。
(2)浓缩水解池一般受生物处理工艺的影响需要经常改变排泥量,需要人工控制。其浓度、流量变化会造成浓缩和水解发酵效果不稳定,培养和维持困难。排泥量的不均衡间接对初沉池运行控制提出更高要求。
(3)除臭系统没有实现自动化的精确最小化排泥。人工操作较多;浓度不稳定,影响脱水机效率;过度排泥,耗能。
(4)污泥消化控制依赖人工经验控制,消化系统进泥一般为混合污泥,其浓度、成分等性质的不断变化使得投配量需要动态调整。
(5)深度处理工艺中的化学污泥,一般存在铝盐或铁盐,在与其他污泥混合脱水过程中,如果不规则的排放混合,会造成脱水效果的不稳定,加大絮凝剂的消耗量。
(6)脱水系统需泥量和供泥量不平衡,需要大量人工操作,供泥过多容易造成高浓度污泥回流,影响预处理区功能;过少造成生物处理系统运行异常。
综上,在污泥处理的各个工艺段中,需要在包括生物泥龄控制、浓缩水解池运行控制、除臭污泥量控制、污泥消化泥量控制、脱水机泥量供给控制等方面综合考虑,做到精确的、自动化的物料平衡控制,改变目前靠经验、人工操作的工作模式。
发明内容
有鉴于此,本发明创造旨在提出一种污水处理污泥物料平衡的控制系统,以提供一种易于改造、节能、稳定性高,自动化程度强的污水处理污泥物料平衡的控制系统。
为达到上述目的,本发明创造的技术方案是这样实现的:
一种污水处理污泥物料平衡的控制系统,包括人工干预层、智能控制层和现场调整层,所述人工干预层包括人机界面,所述现场调整层包括物料平衡控制系统,所述智能控制层包括数据服务器和智能控制主机,所述智能控制主机信号连接至所述人机界面、所述物料平衡控制系统和所述数据服务器,所述物料平衡控制系统的主控制器为物料平衡控制PLC。
进一步的,所述物料平衡控制系统包括分别独立设置的生物池系统、除臭系统和污泥处理区系统,
所述生物池系统包括生物池PLC、温度计、剩余污泥变频泵、污泥浓度计、溶氧仪和进水流量计,所述生物池PLC分别信号连接至所述物料平衡控制PLC、所述温度计、所述剩余污泥变频泵、所述污泥浓度计、所述溶氧仪和所述进水流量计;
所述除臭系统包括除臭PLC、浊度计、H2S浓度计、电动调节阀、变频泵和污泥流量计,所述除臭PLC分别信号连接至所述物料平衡控制PLC、所述浊度计、所述H2S浓度计、所述电动调节阀、所述变频泵和所述污泥流量计;
所述污泥处理系统包括污泥处理PLC、化学污泥流量计、浓缩污泥流量计、消化污泥流量计和脱水污泥流量计,所述污泥处理PLC分别信号连接至所述物料平衡控制PLC、所述化学污泥流量计、所述浓缩污泥流量计、所述消化污泥流量计和所述脱水污泥流量计。
进一步的,所述生物池PLC、所述除臭PLC和所述污泥处理PLC信号连接的方式可为有线连接或无线连接。
进一步的,所述生物池PLC、所述除臭PLC和所述污泥处理PLC输出电流信号的范围均为4-20mA。
进一步的,所述智能控制主机和所述人机界面通过以太网信号连接。
相对于现有技术,本发明创造所述的污水处理污泥物料平衡的控制系统具有以下优势:
(1)本发明创造所述的污水处理污泥物料平衡的控制系统,易于改造,现有污水厂通过增加相关的传感器、智能控制设备,即可以实现,方便简单,推广性强。
本发明创造的另一目的在于提出一种污水处理污泥物料平衡的控制方法,以解决目前污泥处理过程中依靠经验进行人工操作,造成工作效率低下、控制精度不够的问题。
为达到上述目的,本发明创造的技术方案是这样实现的:
一种污水处理污泥物料平衡的控制方法,包括
步骤一:通过现场调整层精确控制各工艺段污泥的排放量;
步骤二:所述现场调整层将数据上传至智能控制层,所述智能控制层根据数据计算智能策略、确定各工艺段的流量限值、发出预警信号,控制控制全厂污泥的动态平衡;
步骤三:所述智能控制层将信息通过人工干预层的人机界面显示,方便工作人员进行数据和参数的调整,以及修正所述智能策略。
进一步的,所述现场调整层控制的工艺段包括控制剩余污泥量、污泥浓缩水解量、除臭污泥量、消化污泥量、化学污泥量和脱水污泥量,所述现场调整层包括若干安装在现场的仪表。
进一步的,所述剩余污泥量的控制方式为模型控制,所述模型控制通过所述现场调整层的仪表采集进水量、进出水的悬浮物、进出水的COD、进出水的氨氮、污泥浓度、水温、历史剩余污泥有效污泥排放量及剩余污泥浓度的数据,且数据值均为日均值,所述模型控制采用五日动态泥龄控制法,
其中,泥龄公式为:
上式中θc为泥龄;V为曝气池体积;X为污泥浓度;Qd为日进水量;S0为进水BOD;
Se为出水BOD,X0为进水悬浮物;Qs为剩余污泥排放量,Xs为剩余污泥浓度,n为天数,n为大于4的整数;
第n+1天的泥龄可以通过上述公式得出,当泥龄为定值时,进而推导出第n+1天的剩余污泥排放量为:
当在线数据出现较大波动、造成日排泥量变化较大时,可增加累积泥龄时间段到4天以上;
泥龄的微调则根据所述SVI的值和所述进出水的氨氮值计算,计算公式为:
θc(n+1)=θc(n)*KSVI*KNH3
其中,KSVI为污泥指数系数,为模糊控制经验参数值,KSVI的范围为0.5-1;
KNH3为氨氮系数,为模糊控制经验参数值,KNH3的范围为1-1.2。
进一步的,所述污泥浓缩水解量和所述消化污泥量的控制方式均为负荷控制,
负荷控制的计算公式为:
实际进泥负荷率=Q*(1-P进含水)/[Q设计进*(1-P设计进含水)]
实际出泥负荷率=Q*(1-P出含水)/[Q设计进*(1-P设计出含水)]
采用负荷控制方式时,第n+1天的进泥量为:
其中:Q为进泥量,Q为出泥量,P进含水为进泥含水率,P出含水为出泥含水率。进一步的,所述除臭污泥量的控制通过PID、模糊控制和神经网络算法结合实现按需供给。
相对于现有技术,本发明创造所述的污水处理污泥物料平衡的控制方法具有以下优势:
(1)本发明创造所述的污水处理污泥物料平衡的控制方法,改变靠经验、人工操作的工作模式,提升了污水处理的稳定性和控制精度,降低了工作强度,节约了污水处理成本。
(2)本发明创造所述的污水处理污泥物料平衡的控制方法,自动化程度高,实现了污泥处理全过程的按需供给,避免了过度排泥,节约资源和能源。
附图说明
构成本发明创造的一部分的附图用来提供对本发明创造的进一步理解,本发明创造的示意性实施例及其说明用于解释本发明创造,并不构成对本发明创造的不当限定。在附图中:
图1为本发明创造实施例所述的污水处理污泥物料平衡的控制系统结构框图;
图2为本发明创造实施例所述的除臭系统控制框图;
图3为本发明创造实施例所述的除臭系统除臭污泥流量控制框图;
图4为本发明创造实施例所述的除臭系统除臭进泥流量控制框图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明创造中的实施例及实施例中的特征可以相互组合。
在本发明创造的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明创造的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明创造的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明创造中的具体含义。
下面将参考附图并结合实施例来详细说明本发明创造。
一种污水处理污泥物料平衡的控制系统,如图1至图4所示,包括人工干预层、智能控制层和现场调整层,所述人工干预层包括人机界面,所述现场调整层包括物料平衡控制系统,所述智能控制层包括数据服务器和智能控制主机,所述智能控制主机信号连接至所述人机界面、所述物料平衡控制系统和所述数据服务器,所述物料平衡控制系统的主控制器为物料平衡控制PLC,
所述智能控制主机负责全厂污泥的动态平衡控制,主要方法包括:采集所述数据服务器中保存的历史数据(包括化验数据和在线仪表数据),建立各个工艺段的公式模型,计算各个工艺段日总污泥量,根据各个工艺段的污泥量计算排泥时间;达到的功能包括:平衡浓缩水解池和消化池污泥负荷,控制消化混合污泥比例,控制化学污泥与脱水污泥的混合比例;在脱水机故障期间自动降低各工艺段污泥量。
所述物料平衡控制系统包括分别独立设置的生物池系统、除臭系统和污泥处理区系统,
所述生物池系统包括生物池PLC、温度计、剩余污泥变频泵、污泥浓度计、溶氧仪和进水流量计,所述生物池PLC分别信号连接至所述物料平衡控制PLC、所述温度计、所述剩余污泥变频泵、所述污泥浓度计、所述溶氧仪和所述进水流量计,接收所述物料平衡控制PLC的控制信号,并控制所述剩余污泥变频泵的频率,达到设定的污泥处理量,所述生物池系统采集生物池进水量、进出水的悬浮物、进出水的COD、进出水的氨氮、MLSS、MLVSS、SVI、水温、历史剩余污泥有效污泥排放量及污泥浓度的数据,通过模型计算实现剩余污泥量的精确排放;其中进出水的悬浮物、进出水的COD、进出水的氨氮、MLSS、MLVSS、SVI为存储在数据服务器中的每日常规化验室的数据;
所述除臭系统包括除臭PLC、浊度计、H2S浓度计、电动调节阀、变频泵和污泥流量计,所述除臭PLC分别信号连接至所述物料平衡控制PLC、所述浊度计、所述H2S浓度计、所述电动调节阀、所述变频泵和所述污泥流量计,接收所述物料平衡控制PLC的控制信号,并控制所述电动调节阀的开度,达到设定的污泥处理量,通过对除臭污泥的进泥、投配流量、污泥浓度进行控制实现臭气的稳定控制;
所述污泥处理系统包括污泥处理PLC、化学污泥流量计、浓缩污泥流量计、消化污泥流量计和脱水污泥流量计,所述污泥处理PLC分别信号连接至所述物料平衡控制PLC、所述化学污泥流量计、所述浓缩污泥流量计、所述消化污泥流量计和所述脱水污泥流量计,所述污泥处理系统通过模型控制和匹配剩余污泥、化学污泥、浓缩污泥、消化污泥和脱水污泥的流量,实现各类型工况下的污泥排放稳定控制;
所述物料平衡控制PLC负责全厂污泥的动态平衡控制,主要接收现场仪表设备参数和所述智能控制主机的控制信号,控制所述生物池PLC、所述除臭PLC和所述污泥处理PLC的污泥处理量;平衡下属设备的台时;在所述智能控制主机离线时,按照设定的基本流量参数和负荷算法进行污泥物料分配。
所述生物池PLC、所述除臭PLC和所述污泥处理PLC信号连接的方式可为有线连接或无线连接。
所述生物池PLC、所述除臭PLC和所述污泥处理PLC输出电流信号的范围均为4-20mA。
所述智能控制主机和所述人机界面通过以太网信号连接。
所述智能控制层中接收上述分布控制区域的相关仪表的数据及所述数据服务器中的化验室手工电子数据,由所述智能控制主机判断数据准确性、根据不同工艺段的模型控制算法和专家系统逻辑实现智能策略的计算、分区域流量给定、发出预报警信息。
所述人工干预层负责对运行策略进行修正、对所述智能控制层提供控制要求,由所述人机界面对超出范围的工艺参数进行调整。
一种污水处理污泥物料平衡的控制系统的工作过程为:
本实施例的城市污水厂污泥物料平衡控制系统,应用于污水处理厂污泥产生与处理过程中,其主要实现了精准化、智能化的污泥排放与处理。
生物池PLC分别采集温度计、剩余污泥变频泵、污泥浓度计、溶氧仪和进水流量计的值并传递给物料平衡控制PLC,并接收物料平衡控制PLC的控制;除臭PLC分别采集浊度计、H2S浓度计、电动调节阀、变频泵和污泥流量计的值并传递给物料平衡控制PLC,并接收物料平衡控制PLC的控制;污泥处理PLC分别采集化学污泥流量计、浓缩污泥流量计、消化污泥流量计和脱水污泥流量计的值并传递给物料平衡控制PLC,并接收物料平衡控制PLC的控制。物料平衡控制PLC将采集到的数据传递给智能控制主机,智能控制主机根据数据对物料平衡控制PLC控制,并将数据储存到数据服务器。
系统运行中,根据各个工艺段的污泥量计算排泥时间、平衡浓缩水解池和消化池污泥负荷,控制消化混合污泥比例,控制化学污泥与脱水污泥的混合比例;在脱水机故障期间自动降低各工艺段污泥量。
除臭进泥进入除臭污泥培养池,进泥量由后续除臭污泥投加量的30分钟累积量确定,其流量调节为PID闭环控制,经过填料培养或活性恢复培养的除臭污泥经过管道平均分配到除臭投加点进行充分混合,其投加量由服务器神经网络算法和除臭PLC设定的模糊控制程序根据H2S浓度程序确定,并通过调节变频污泥泵的频率进行控制,其流量调节为PID闭环控制。
流量调节为PID闭环控制,智能控制层部分采用了神经网络算法,物料平衡控制PLC部分采用了模糊控制程序。在实际操作中,人机界面负责将控制范围、控制经验数据进行输入,制定初始化的模糊控制参数,物料平衡控制系统调节污泥量,服务器经过一段时间正确的数据积累和神经网络算法的计算,对模糊控制参数进行自修正,同时也对PID闭环调节参数的快速修正功能,加快调节速度,减少对电动调节阀的调节频次。
一种污水处理污泥物料平衡的控制方法,包括
步骤一:通过现场调整层精确控制各工艺段污泥的排放量;
步骤二:所述现场调整层将数据上传至智能控制层,所述智能控制层根据数据计算智能策略、确定各工艺段的流量限值、发出预警信号,控制全厂污泥的动态平衡;
步骤三:所述智能控制层将信息通过人工干预层的人机界面显示,方便工作人员进行数据和参数的调整,以及修正所述智能策略。
所述现场调整层控制的工艺段包括控制剩余污泥量、污泥浓缩水解量、除臭污泥量、消化污泥量、化学污泥量和脱水污泥量,所述现场调整层包括若干安装在现场的仪表。
所述剩余污泥量的控制方式为模型控制,所述模型控制通过所述现场调整层设置的仪表采集进水量、进出水的悬浮物、进出水的COD、进出水的氨氮、污泥浓度、水温、历史剩余污泥有效污泥排放量及剩余污泥浓度的数据,且数据值均为日均值,所述智能控制层对数据进行分析判断,并进行数据储存,同时取准确值作为计算变量参数,通过对泥龄的动态控制实现剩余污泥物料平衡;
传统的泥龄控制公式为:
其中θc为泥龄;V为曝气池体积;X为污泥浓度;Qd为日进水量;Y为污泥产率;S0为进水BOD;Se为出水BOD。
其中污泥产率:
上式中Y为污泥产率;X0为进水悬浮物;T为水温。
传统公式中,污泥产率存在经验常数范围过宽,实际排泥量不易控制,造成泥龄和污泥负荷的波动较大的缺点;
根据所述现场调整层的仪表数据值及历史日均数据优化后的泥龄公式为:
上式中Qs为剩余污泥排放量,Xs为剩余污泥浓度,n为天数,n为大于4的整数;
第n+1天的泥龄可以通过上述公式得出,当泥龄为定值时,进而推导出第n+1天的剩余污泥排放量为:
上述泥龄控制方式简单归纳为五日动态泥龄控制法;当在线数据出现较大波动、造成日排泥量变化较大时,可增加累积泥龄时间段到4天以上;
泥龄的微调则根据所述SVI的值和所述进出水的氨氮值计算,计算公式为:
θc(n+1)=θc(n)*KSVI*KNH3
其中,KSVI为污泥指数系数,为模糊控制经验参数值,KSVI的范围为0.5-1;
KNH3为氨氮系数,为模糊控制经验参数值,KNH3的范围为1-1.2。
所述污泥浓缩水解量和所述消化污泥量的控制方式均为负荷控制,过程中用到的数据主要为浓缩水解污泥进泥量、出泥量和进泥含水率,消化污泥进泥量和进泥含水率、出泥含水率,上述数值均为时均值;通过上述数据计算负荷控制进泥量,其中流量计数据来自所述现场调整层的仪表,含水率数据来自现所述现场调整层的仪表或所述智能控制层的化验室分析数据,当来自化验室数据时,以日均含水率计算;
负荷控制的计算公式为:
实际进泥负荷率=Q*(1-P进含水)/[Q设计进*(1-P设计进含水)]
实际出泥负荷率=Q*(1-P出含水)/[Q设计进*(1-P设计出含水)]
采用负荷控制方式时,第n+1天的进泥量为:
其中:Q为进泥量,Q为出泥量,P进含水为进泥含水率,P出含水为出泥含水率。
所述除臭污泥量的控制通过PID、模糊控制和神经网络算法结合实现按需供给;其中PID实现了定量投加功能,模糊控制实现了臭气浓度大幅度不规则变化时的迅速响应,神经网络算法以硫化氢浓度、污泥浓度和除臭污泥量为输入层,模糊控制参数阈值为输出层,实现模糊控制参数的自整定。
以上所述仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明创造的保护范围之内。

Claims (10)

1.一种污水处理污泥物料平衡的控制系统,其特征在于:包括人工干预层、智能控制层和现场调整层,
所述人工干预层包括人机界面,所述现场调整层包括物料平衡控制系统,所述智能控制层包括数据服务器和智能控制主机,所述智能控制主机信号连接至所述人机界面、所述物料平衡控制系统和所述数据服务器,所述物料平衡控制系统的主控制器为物料平衡控制PLC。
2.根据权利要求1所述的一种污水处理污泥物料平衡的控制系统,其特征在于:所述物料平衡控制系统包括分别独立设置的生物池系统、除臭系统和污泥处理区系统,
所述生物池系统包括生物池PLC、温度计、剩余污泥变频泵、污泥浓度计、溶氧仪和进水流量计,所述生物池PLC分别信号连接至所述物料平衡控制PLC、所述温度计、所述剩余污泥变频泵、所述污泥浓度计、所述溶氧仪和所述进水流量计;所述除臭系统包括除臭PLC、浊度计、H2S浓度计、电动调节阀、变频泵和污泥流量计,所述除臭PLC分别信号连接至所述物料平衡控制PLC、所述浊度计、所述H2S浓度计、所述电动调节阀、所述变频泵和所述污泥流量计;所述污泥处理系统包括污泥处理PLC、化学污泥流量计、浓缩污泥流量计、消化污泥流量计和脱水污泥流量计,所述污泥处理PLC分别信号连接至所述物料平衡控制PLC、所述化学污泥流量计、所述浓缩污泥流量计、所述消化污泥流量计和所述脱水污泥流量计。
3.根据权利要求1所述的一种污水处理污泥物料平衡的控制系统,其特征在于:所述生物池PLC、所述除臭PLC和所述污泥处理PLC信号连接的方式可为有线连接或无线连接。
4.根据权利要求1所述的一种污水处理污泥物料平衡的控制系统,其特征在于:所述生物池PLC、所述除臭PLC和所述污泥处理PLC输出电流信号的范围均为4-20mA。
5.根据权利要求1所述的一种污水处理污泥物料平衡的控制系统,其特征在于:所述智能控制主机和所述人机界面通过以太网信号连接。
6.一种使用权利要求1至5任一所述污水处理污泥物料平衡的控制系统的污水处理污泥物料平衡的控制方法,其特征在于:包括
步骤一:通过现场调整层精确控制各工艺段污泥的排放量;
步骤二:所述现场调整层将数据上传至智能控制层,所述智能控制层根据数据计算智能策略、确定各工艺段的流量限值、发出预警信号,控制全厂污泥的动态平衡;
步骤三:所述智能控制层将信息通过人工干预层的人机界面显示,方便工作人员进行数据和参数的调整,以及修正所述智能策略。
7.根据权利要求6所述的一种污水处理污泥物料平衡的控制方法,其特征在于:所述现场调整层控制的工艺段包括控制剩余污泥量、污泥浓缩水解量、除臭污泥量、消化污泥量、化学污泥量和脱水污泥量,所述现场调整层包括若干安装在现场的仪表。
8.根据权利要求6所述的一种污水处理污泥物料平衡的控制方法,其特征在于:所述剩余污泥量的控制方式为模型控制,所述模型控制通过所述现场调整层的仪表采集进水量、进出水的悬浮物、进出水的COD、进出水的氨氮、污泥浓度、水温、历史剩余污泥有效污泥排放量及剩余污泥浓度的数据,且数据值均为日均值,所述模型控制采用五日动态泥龄控制法,
其中,泥龄公式为:
上式中θc为泥龄;V为曝气池体积;;X为污泥浓度;Qd为日进水量;S0为进水BOD;
Se为出水BOD,X0为进水悬浮物;Qs为剩余污泥排放量,Xs为剩余污泥浓度,n为天数,n为大于4的整数,
第n+1天的泥龄可以通过上述公式得出,当泥龄为定值时,进而推导出第n+1天的剩余污泥排放量为:
当在线数据出现较大波动、造成日排泥量变化较大时,可增加累积泥龄时间段到4天以上;
泥龄的微调则根据所述SVI的值和所述进出水的氨氮值计算,计算公式为:
θc(n+1)=θc(n)*KSVI*KNH3
其中,KSVI为污泥指数系数,为模糊控制经验参数值,KSVI的范围为0.5-1;
KNH3为氨氮系数,为模糊控制经验参数值,KNH3的范围为1-1.2。
9.根据权利要求6所述的一种污水处理污泥物料平衡的控制方法,其特征在于:所述污泥浓缩水解量和所述消化污泥量的控制方式均为负荷控制,
负荷控制的计算公式为:
实际进泥负荷率=Q*(1-P进含水)/[Q设计进*(1-P设计进含水)]
实际出泥负荷率=Q*(1-P出含水)/[Q设计进*(1-P设计出含水)]
采用负荷控制方式时,第n+1天的进泥量为:
其中:Q为进泥量,Q为出泥量,P进含水为进泥含水率,P出含水为出泥含水率。
10.根据权利要求6所述的一种污水处理污泥物料平衡的控制方法,其特征在于:所述除臭污泥量的控制通过PID、模糊控制和神经网络算法结合实现按需供给。
CN201611265460.2A 2016-12-30 2016-12-30 一种污水处理污泥物料平衡的控制系统及控制方法 Pending CN106745707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611265460.2A CN106745707A (zh) 2016-12-30 2016-12-30 一种污水处理污泥物料平衡的控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611265460.2A CN106745707A (zh) 2016-12-30 2016-12-30 一种污水处理污泥物料平衡的控制系统及控制方法

Publications (1)

Publication Number Publication Date
CN106745707A true CN106745707A (zh) 2017-05-31

Family

ID=58952387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611265460.2A Pending CN106745707A (zh) 2016-12-30 2016-12-30 一种污水处理污泥物料平衡的控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN106745707A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344810A (zh) * 2017-09-04 2017-11-14 嘉兴奥拓迈讯自动化控制技术有限公司 全自动智能出泥控制系统
CN107908111A (zh) * 2017-11-27 2018-04-13 北华大学 一种基于bp神经网络的污泥脱水系统的计算机控制方法
CN108751412A (zh) * 2018-06-11 2018-11-06 苏州市易柯露环保科技有限公司 一种污泥超级氧化深度循环减量处理智慧管控系统
CN109836025A (zh) * 2019-03-06 2019-06-04 中原环保股份有限公司 一种污水处理精确排泥系统及方法
CN113024077A (zh) * 2021-03-01 2021-06-25 洛阳中新能再生能源有限公司 一种污泥再生燃料平铺式干化控制系统
CN115504557A (zh) * 2022-10-25 2022-12-23 中冶赛迪技术研究中心有限公司 应用于沉淀池的自动排泥方法
CN116484584A (zh) * 2023-03-24 2023-07-25 青岛思普润水处理股份有限公司 一种两级污水处理系统的智能控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025160A (ja) * 2002-06-21 2004-01-29 H2L Co Ltd 神経回路網及び逆転波アルゴリズムによる下排水処理人工知能制御システム及び方法
CN101045574A (zh) * 2007-02-14 2007-10-03 南京大学 一种废水生物处理系统工艺的优化调控方法
CN101369135A (zh) * 2007-08-14 2009-02-18 上海大地自动化系统工程有限公司 污水处理智能管理系统
CN102087523A (zh) * 2009-12-08 2011-06-08 机科发展科技股份有限公司 一种生物脱氮除磷中污泥龄的自动控制系统及方法
CN102156406A (zh) * 2011-02-28 2011-08-17 哈尔滨工业大学 基于污水处理厂运行工况诊断的污泥膨胀预防与控制专家系统及方法
CN103399544A (zh) * 2013-07-24 2013-11-20 张运泉 一种城市污水处理自动化控制方法及其控制系统
CN104090488A (zh) * 2014-06-30 2014-10-08 北京清控人居环境研究院有限公司 污水厂自动实时控制溶解氧、污泥负荷和污泥龄的方法
CN204270095U (zh) * 2014-12-17 2015-04-15 天津创业环保集团股份有限公司 一种水质异常短信预报警装置
CN205328705U (zh) * 2016-01-20 2016-06-22 郑永昌 一种基于a2o工艺的生物控制系统
CN206580621U (zh) * 2016-12-30 2017-10-24 天津创业环保集团股份有限公司 一种污水处理污泥物料平衡的控制系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025160A (ja) * 2002-06-21 2004-01-29 H2L Co Ltd 神経回路網及び逆転波アルゴリズムによる下排水処理人工知能制御システム及び方法
CN101045574A (zh) * 2007-02-14 2007-10-03 南京大学 一种废水生物处理系统工艺的优化调控方法
CN101369135A (zh) * 2007-08-14 2009-02-18 上海大地自动化系统工程有限公司 污水处理智能管理系统
CN102087523A (zh) * 2009-12-08 2011-06-08 机科发展科技股份有限公司 一种生物脱氮除磷中污泥龄的自动控制系统及方法
CN102156406A (zh) * 2011-02-28 2011-08-17 哈尔滨工业大学 基于污水处理厂运行工况诊断的污泥膨胀预防与控制专家系统及方法
CN103399544A (zh) * 2013-07-24 2013-11-20 张运泉 一种城市污水处理自动化控制方法及其控制系统
CN104090488A (zh) * 2014-06-30 2014-10-08 北京清控人居环境研究院有限公司 污水厂自动实时控制溶解氧、污泥负荷和污泥龄的方法
CN204270095U (zh) * 2014-12-17 2015-04-15 天津创业环保集团股份有限公司 一种水质异常短信预报警装置
CN205328705U (zh) * 2016-01-20 2016-06-22 郑永昌 一种基于a2o工艺的生物控制系统
CN206580621U (zh) * 2016-12-30 2017-10-24 天津创业环保集团股份有限公司 一种污水处理污泥物料平衡的控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宫洪艳: "活性污泥工艺中控制剩余污泥排放量的工艺分析", 《天津建设科技》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344810A (zh) * 2017-09-04 2017-11-14 嘉兴奥拓迈讯自动化控制技术有限公司 全自动智能出泥控制系统
CN107908111A (zh) * 2017-11-27 2018-04-13 北华大学 一种基于bp神经网络的污泥脱水系统的计算机控制方法
CN108751412A (zh) * 2018-06-11 2018-11-06 苏州市易柯露环保科技有限公司 一种污泥超级氧化深度循环减量处理智慧管控系统
CN109836025A (zh) * 2019-03-06 2019-06-04 中原环保股份有限公司 一种污水处理精确排泥系统及方法
CN113024077A (zh) * 2021-03-01 2021-06-25 洛阳中新能再生能源有限公司 一种污泥再生燃料平铺式干化控制系统
CN115504557A (zh) * 2022-10-25 2022-12-23 中冶赛迪技术研究中心有限公司 应用于沉淀池的自动排泥方法
CN115504557B (zh) * 2022-10-25 2024-02-09 中冶赛迪技术研究中心有限公司 应用于沉淀池的自动排泥方法
CN116484584A (zh) * 2023-03-24 2023-07-25 青岛思普润水处理股份有限公司 一种两级污水处理系统的智能控制方法
CN116484584B (zh) * 2023-03-24 2024-03-29 青岛思普润水处理股份有限公司 一种两级污水处理系统的智能控制方法

Similar Documents

Publication Publication Date Title
CN106745707A (zh) 一种污水处理污泥物料平衡的控制系统及控制方法
CN104238527B (zh) 污水处理厂曝气总量的精确控制方法
CN103197539B (zh) 污水处理智能优化控制曝气量的方法
CN102122134A (zh) 基于模糊神经网络的溶解氧控制的废水处理方法及系统
CN106933099B (zh) 一种选煤厂浓缩机和压滤机药剂添加协同控制系统
CN114230110B (zh) 用于污水处理的短程智能除磷加药控制方法、设备及系统
CN106082430B (zh) 一种曝气控制系统与曝气控制方法
CN106495321B (zh) 生物池工艺优化及运行控制系统及其控制方法
CN105301960B (zh) 一种自来水凝絮剂投加量的控制方法
CN101825870A (zh) 一种控制水处理絮凝剂投放量的方法及系统
CN108569756A (zh) 一种智能化污水处理工艺控制新方法(ebis)
CN108911365A (zh) 一种明胶废水处理工艺
CN115793471A (zh) 一种基于污水处理监测的可调式控制方法及系统
CN103744362B (zh) 一种污水电化处理过程智能控制系统及其智能控制方法
CN211078571U (zh) 一种用于水厂的絮凝沉淀系统
CN114380378B (zh) 智能控磷药品投加方法、装置及存储介质
CN114538612A (zh) 一种外加碳源精确加药系统及其控制方法
CN205665573U (zh) 一种用于aao生物池的精确曝气控制系统
CN111439900A (zh) 本地污水管理系统
CN206580621U (zh) 一种污水处理污泥物料平衡的控制系统
CN107074598A (zh) 废水处理操作方法
CN207845269U (zh) 基于实时our的恒do控制系统
US9725348B2 (en) Method to provide an optimized organic load to a downstream-wastewater treatment process
CN205676222U (zh) 用于Orbal氧化沟的精确曝气控制系统
CN206232585U (zh) 一种污泥浓度控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531