CN106742061A - 一种小行星微重力表面巡视机构 - Google Patents

一种小行星微重力表面巡视机构 Download PDF

Info

Publication number
CN106742061A
CN106742061A CN201611066875.7A CN201611066875A CN106742061A CN 106742061 A CN106742061 A CN 106742061A CN 201611066875 A CN201611066875 A CN 201611066875A CN 106742061 A CN106742061 A CN 106742061A
Authority
CN
China
Prior art keywords
pawl
asteroid
rotary drill
microgravity
inspection tour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611066875.7A
Other languages
English (en)
Other versions
CN106742061B (zh
Inventor
蒋万松
陈书通
周朋
霍东阳
冯蕊
朱谦
武士轻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Space Research Mechanical and Electricity
Original Assignee
Beijing Institute of Space Research Mechanical and Electricity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Space Research Mechanical and Electricity filed Critical Beijing Institute of Space Research Mechanical and Electricity
Priority to CN201611066875.7A priority Critical patent/CN106742061B/zh
Publication of CN106742061A publication Critical patent/CN106742061A/zh
Application granted granted Critical
Publication of CN106742061B publication Critical patent/CN106742061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

一种小行星微重力表面巡视机构,包括爪刺附着装置(5)、旋钻装置(6)、爬行装置(7),安装在着陆器主体(4)上。爬行装置(7)为6自由度机械臂,相间隔的3个为同一组,2组交替附着和移动,实现巡视器的转向和整体平移运动;爪刺附着装置(5)基于仿生甲虫微刺抓附技术,采用环形阵列布局,用于提供地面法向附着力,实现在粗糙硬质小行星表面附着;旋钻装置(6)安装在机械臂的末端臂,一组旋钻装置(6)以向内斜旋入方式提供地面法向附着力。本发明解决在小行星微重力环境和表面地形地质特性不确定的条件下实现小行星探测器的可靠附着和对多目标点的连续移动勘测的微重力表面巡视系统机构实现问题。

Description

一种小行星微重力表面巡视机构
技术领域
本专利属于小行星着陆探测微重力表面巡视技术领域,涉及一种基于仿生爬行和抓附技术的微重力表面巡视系统机构。
背景技术
我国已经在月球探测方面取得了举世瞩目的成就,火星和小行星探测正在成为研究热点。表面着陆巡视探测作为最有效的探测方式,是行星和小行星探测的主要技术手段,国内外已开发出多种月球和行星探测巡视平台,但小行星探测多采用观测方式,目前实现小行星表面采样探测的只有日本的隼鸟号探测器和欧空局的罗塞塔菲莱着陆器,且仅后者实现了真正的着陆和就位探测,但由于采用了锚定附着方式,采样只能在着陆处进行,不能实现多地点多目标探测。美国于2016年发射的OSIRIS探测器采用了类似隼鸟号的瞬时接触式而非着陆式采样。
小行星表面探测比月球和行星表面探测更加困难,主要在于其表面微重力环境和非结构化的表层结构,使得探测器着陆后极易受扰动而漂移,就位甚至多目标点采样任务面临巨大的技术挑战,目前尚无公认可行的技术途径。
国内外有关爬壁机器人附着技术研究可为小天体附着问题提供解决思路,包括斯坦福大学和JPL开发的微刺式爬壁机器人RISE、SpinyBot和爪刺钻采样装置、小天体捕获机器人等,以及基于仿生刚毛干粘附技术的仿生壁虎附着技术等。国内多家机构和大学也进行了相关技术的研究。
对于微重力小天体附着的具体实现技术形式还在探索中,现已逐渐聚焦到基于仿生方法的技术方向上。其中基于仿生甲虫微刺和刚毛干粘附的抓附技术能够在微重力和真空条件下使用,基本符合小行星表面附着的环境条件要求,是小行星表面附着技术的重要发展方向。
发明内容
本发明所解决的技术问题是:克服现有技术的不足,本发明提供了一种小行星微重力表面巡视机构,解决在小行星微重力环境和表面地形地质特性不确定的条件下实现小行星探测器的可靠附着和对多目标点的连续移动勘测的微重力表面巡视系统机构实现问题。
本发明所采用的技术解决方案是:一种小行星微重力表面巡视机构,包括:爪刺附着装置、旋钻装置、爬行装置;爬行装置为自由度机械臂,一端沿周向安装在着陆器主体上,另一端安装旋钻装置;旋钻装置末端安装爪刺附着装置;爪刺附着装置为仿生甲虫壁面抓附机构;相间隔的各爬行装置组成一组,其余组成另一组,控制器控制各组爬行装置、旋钻装置、爪刺附着装置完成交替移动、附着动作;同组的旋钻装置同时工作并旋入外部环境表层结构,旋钻装置与爪刺附着装置共同提供表面附着力。
所述爬行装置包括股节、胫节、关节电机,着陆器主体与股节之间、股节与胫节之间通过双十字轴万向节机构连接,关节电机驱动各双十字轴万向节运动。
所述旋钻装置包括驱动电机、导向装置、多级旋钻、万向机构,多级旋钻采用多级深矩形螺纹型旋转钻头,螺距和螺纹直径从尖部到尾部渐进增大,安装在导向装置内;安装在导向装置上的驱动电机驱动多级旋钻沿导向装置的导向杆伸缩、旋转;导向装置一端与爬行装置通过双十字轴万向节连接,另一端与万向机构的连接。
所述爪刺附着装置包括抓附电机装置、固定安装架、抓附拉线环、爪刺附着单元、绕线柱、柔性缆绳,抓附电机装置安装在固定安装架环形端面上,抓附拉线环、绕线柱均沿固定安装架周向分布且位于固定安装架环形端面底部;柔性缆绳绕过绕线柱分别与爪刺附着单元、抓附拉线环连接;各爪刺附着单元沿周向安装在固定安装架环形侧壁上,具有转动和平移自由度;抓附电机装置驱动各爪刺附着单元对外部环境表层结构进行抓附;多级旋钻尖部穿过固定安装架端面中部,万向机构安装在固定安装架上。
所述爪刺附着单元包括连接座、扭簧、滑块、直簧、套筒、爪掌组件、板簧、指节、爪刺;连接座一端安装在固定安装架上,另一端通过扭簧和转轴与滑块连接,滑块通过导向杆与套筒连接,滑块在导向杆上滑动,套筒固定在爪掌组件上,滑块与爪掌组件通过直簧连接,柔性缆绳连接滑块;爪掌组件通过板簧和转轴与指节端部连接,具有转动自由度,各指节并排安装在爪掌组件上;指节为套筒结构,爪刺安装在套筒内通过压缩直簧实现伸缩。
所述股节或胫节为杆件。
所述万向机构为陀螺架式结构,中空的双十字轴位于环形框中部,与环形框相连。
所述连接座为中部弯曲的杆件。
所述爬行装置有六个。
本发明与现有技术相比的优点在于:
(1)本发明融合仿生甲虫微爪刺抓附机理和旋钻技术,提出了一种在微重力环境和表面地形地质不确定条件下,实现小行星探测器表面巡视的一种巡视系统机构,为小行星微重力表面巡视提供了一种新型技术途径,突破了目前国内外在此技术领域的技术空白,区别于国外固定式锚定附着技术。
(2)本发明提出了将多个旋钻斜向内旋入而实现附着的技术方法,并提出了多级钻技术,为硬质光滑、松散和软质小行星表面的附着问题提供了新的技术解决途径。
(3)本发明采用了仿生六足爬行装置机构技术,每个爬行装置机构具有6个自由度,通过稳定的三足附着-三足爬行移动交替工作,实现对整个巡视器的水平移动和转向,从而支撑巡视器的多地点多目标移动勘测任务。
附图说明
图1(a)为本发明小行星微重力表面巡视机构组成图轴侧图;
图1(b)为本发明小行星微重力表面巡视机构组成图正视图;
图2为本发明单组爬行装置、旋钻装置、爪刺附着装置组合体;
图3为本发明爬行装置;
图4为本发明旋钻装置;
图5(a)为本发明爪刺附着装置正视图;
图5(b)为本发明爪刺附着装置轴侧图;
图6为本发明爪刺附着单元。
具体实施方式
如图1(a)、图1(b)所示,一种小行星微重力表面巡视机构包括:爪刺附着装置5、旋钻装置6、爬行装置7;布置在着陆器主体4上,与视觉相机2、传感器3及系统控制器协同工作,组成小行星微重力表面巡视系统。爬行装置采用6个相同的6自由度机械臂,相间隔的3个为同一组,通过系统控制器控制两组爬行装置7、旋钻装置6和爪刺附着装置5交替附着-移动循环动作,实现小行星探测器转向和整体平移运动。太阳能电池板1、视觉相机2和传感器3均安装在着陆器主体4上。视觉相机2和传感器3用于获取着陆器周围地形、障碍物或凹坑的距离和大小等环境信息。
如图3所示,爬行装置7包括股节9、胫节10、关节电机11,着陆器主体4与股节9之间、股节9与胫节10之间通过双十字轴万向节机构连接,关节电机11驱动各双十字轴万向节运动,末端安装旋钻装置6,如图2所示,爬行装置7、旋钻装置6、爪刺附着装置5共有6组,每个具有6自由度,均由关节电机11驱动运动,受控于系统控制器。爬行装置7一端沿周向安装在着陆器主体4上,另一端安装旋钻装置6,股节9、胫节10均为杆件。
如图4所示,旋钻装置6安装在爬行装置7的末端,主要由驱动电机12,导向装置13、多级旋钻14和万向机构15组成,多级旋钻14旋转钻头采用多级深矩形螺纹型,螺距和螺纹直径从尖部到尾部渐进增大,以适应于硬质光滑、软质或松散地质小行星表层结构,采用力矩电机类驱动装置驱动旋转,多级旋钻14安装在导向装置13内;安装在导向装置13上的驱动电机12驱动多级旋钻14沿导向装置13的导向杆伸缩、旋转;导向装置13一端与爬行装置7通过双十字轴万向节连接,另一端与万向机构15连接。同组3个旋钻装置6同时工作且斜向内旋入表层结构提供附着表面附着力。万向机构15用于连接爪刺附着装置5,采用两自由度的双十字陀螺架式结构形式,以使其能够适应凹凸不平的表面地形,并保证多级旋钻14能够从关节中心通过。万向机构15为陀螺架式结构,双十字轴位于环形框中部,与环形框相连,万向机构15与导向装置13端部连接。
爪刺附着装置5,如图5(a)、图5(b)所示,包括抓附电机装置16,固定安装架17,抓附拉线环18,爪刺附着单元19,绕线柱20、柔性缆绳等几部分组成,抓附电机装置16安装在固定安装架17环形端面上,抓附拉线环18、绕线柱20均沿固定安装架17周向分布且位于固定安装架17环形端面底部;柔性缆绳绕过绕线柱20分别与爪刺附着单元19、抓附拉线环18连接;各爪刺附着单元19沿周向安装在固定安装架17环形侧壁上,具有转动和平移自由度;抓附动作由系统控制器控制抓附电机装置16实现,通过齿轮带动抓附拉线环18拉动柔性缆绳驱动爪刺附着单元19,实现对所有爪刺单元的抓附动作控制。
爪刺附着单元19,如图6所示,主要包括:连接座21,扭簧22,滑块23,直簧24,套筒25,爪掌组件26,板簧27,指节28,爪刺29等。连接座21为中部弯曲的杆件,一端安装在固定安装架17上,另一端通过扭簧22和转轴与滑块23连接,滑块23通过导向杆与套筒25连接,滑块23在导向杆上滑动,套筒25固定在爪掌组件26上,滑块23与爪掌组件26通过直簧24连接,柔性缆绳连接滑块23;连接座21环形阵列安装于爪刺附着机构5的固定安装架17上,连接座21与滑块23通过扭簧22-轴连接,形成一级转动自由度,以使爪刺附着单元适应表面地形,滑块23与爪掌组件26通过直簧24连接,形成一级平动自由度,起到柔性连接的作用,直簧24起到将爪掌组件26向外伸展的作用。爪掌组件26与指节28间通过板簧27-轴形成二级转动自由度,以使各指节28适应凹凸不平的表面地形。指节28与爪刺29间通过压缩直簧-套筒形成平动自由度,起到柔性连接的作用,避免使抓附表面损坏。指节28为套筒结构,爪刺29安装在套筒内通过压缩直簧实现伸缩,爪刺29端部为钩状尖刺,便于实现抓附。
小行星表面巡视系统机构在起飞发射和在轨飞行期间处于紧凑折叠状态,通过机构关节位置调整,收拢在六棱柱型着陆器的底面。着陆时底部包覆缓冲材料实现着陆过程的缓冲吸能;着陆稳定后,系统启动准备工作,驱动巡视系统的巡视移动机构运动,将巡视系统机构对称展开。
由于小行星表面重力场极弱,巡视系统第一次附着必须借助于发动机推力。巡视系统机构将旋钻装置6向巡视器的内侧弯曲,在发动机按压力作用下,系统控制器首先驱动爪刺附着装置5的抓附电机装置16对小行星表面实行抓附。
在抓附过程中,通过对抓附力值的反馈,系统控制器得出是否抓附成功,同时对表层结构的软硬程度做出判断。若抓附成功,则说明小行星表层地质较硬,可以实施勘测任务;若均未抓附成功,则说明小行星表层地质较软或为散体,此时系统控制器驱动旋钻装置6旋入小行星表层。由于多个旋钻装置6斜插进入小行星表层,向内合抱即可形成附着力。
当巡视器需要移动时,将巡视移动机构分成两组,即相间隔的巡视移动机构3个分成一组,这样可以使一组机构的抓附力或钻附力向内合抱而不至脱附。两组巡视移动机构交互附着和运动:附着组维持附着状态,运动组则首先将钻旋出或爪刺复位,使该组巡视移动机构脱附并离开表面;附着组协调各机构关节状态,使其与前进方向一致,然后驱动运动组关节,将巡视器向前移动并达到预定位置;运动组巡视移动机构以首次附着工作程序将3个爪刺-钻装置附着到小行星表面,一次移动循环结束;以此类推,两组巡视移动机构交互附着运动,使巡视器步态向前移动。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (9)

1.一种小行星微重力表面巡视机构,其特征在于,包括:爪刺附着装置(5)、旋钻装置(6)、爬行装置(7);爬行装置(7)为6自由度机械臂,一端沿周向安装在着陆器主体(4)上,另一端安装旋钻装置(6);旋钻装置(6)末端安装爪刺附着装置(5);爪刺附着装置(5)为仿生甲虫壁面抓附机构;相间隔的各爬行装置(7)组成一组,其余组成另一组,控制器控制各组爬行装置(7)、旋钻装置(6)、爪刺附着装置(5)完成交替移动、附着动作;同组的旋钻装置(6)同时工作并旋入外部环境表层结构,旋钻装置(6)与爪刺附着装置(5)共同提供表面附着力。
2.根据权利要求1所述的一种小行星微重力表面巡视机构,其特征在于:所述爬行装置(7)包括股节(9)、胫节(10)、关节电机(11),着陆器主体(4)与股节(9)之间、股节(9)与胫节(10)之间通过双十字轴万向节机构连接,关节电机(11)驱动各双十字轴万向节运动。
3.根据权利要求1或2所述的一种小行星微重力表面巡视机构,其特征在于:所述旋钻装置(6)包括驱动电机(12)、导向装置(13)、多级旋钻(14)、万向机构(15),多级旋钻(14)采用多级深矩形螺纹型旋转钻头,螺距和螺纹直径从尖部到尾部渐进增大,安装在导向装置(13)内;安装在导向装置(13)上的驱动电机(12)驱动多级旋钻(14)沿导向装置(13)的导向杆伸缩、旋转;导向装置(13)一端与爬行装置(7)通过双十字轴万向节连接,另一端与万向机构(15)的连接。
4.根据权利要求3所述的一种小行星微重力表面巡视机构,其特征在于:所述爪刺附着装置(5)包括抓附电机装置(16)、固定安装架(17)、抓附拉线环(18)、爪刺附着单元(19)、绕线柱(20)、柔性缆绳,抓附电机装置(16)安装在固定安装架(17)环形端面上,抓附拉线环(18)、绕线柱(20)均沿固定安装架(17)周向分布且位于固定安装架(17)环形端面底部;柔性缆绳绕过绕线柱(20)分别与爪刺附着单元(19)、抓附拉线环(18)连接;各爪刺附着单元(19)沿周向安装在固定安装架(17)环形侧壁上,具有转动和平移自由度;抓附电机装置(16)驱动各爪刺附着单元(19)对外部环境表层结构进行抓附;多级旋钻(14)尖部穿过固定安装架(17)端面中部,万向机构(15)安装在固定安装架(17)上。
5.根据权利要求4所述的一种小行星微重力表面巡视机构,其特征在于:所述爪刺附着单元(19)包括连接座(21)、扭簧(22)、滑块(23)、直簧(24)、套筒(25)、爪掌组件(26)、板簧(27)、指节(28)、爪刺(29);连接座(21)一端安装在固定安装架(17)上,另一端通过扭簧(22)和转轴与滑块(23)连接,滑块(23)通过导向杆与套筒(25)连接,滑块(23)在导向杆上滑动,套筒(25)固定在爪掌组件(26)上,滑块(23)与爪掌组件(26)通过直簧(24)连接,柔性缆绳连接滑块(23);爪掌组件(26)通过板簧(27)和转轴与指节(28)端部连接,具有转动自由度,各指节(28)并排安装在爪掌组件(26)上;指节(28)为套筒结构,爪刺(29)安装在套筒内通过压缩直簧实现伸缩。
6.根据权利要求3所述的一种小行星微重力表面巡视机构,其特征在于:所述股节(9)或胫节(10)为杆件。
7.根据权利要求3所述的一种小行星微重力表面巡视机构,其特征在于:所述万向机构(15)为陀螺架式结构,中空的双十字轴位于环形框中部,与环形框相连。
8.根据权利要求5所述的一种小行星微重力表面巡视机构,其特征在于:所述连接座(21)为中部弯曲的杆件。
9.根据权利要求1或2所述的一种小行星微重力表面巡视机构,其特征在于:所述爬行装置(7)有六个。
CN201611066875.7A 2016-11-25 2016-11-25 一种小行星微重力表面巡视机构 Active CN106742061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611066875.7A CN106742061B (zh) 2016-11-25 2016-11-25 一种小行星微重力表面巡视机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611066875.7A CN106742061B (zh) 2016-11-25 2016-11-25 一种小行星微重力表面巡视机构

Publications (2)

Publication Number Publication Date
CN106742061A true CN106742061A (zh) 2017-05-31
CN106742061B CN106742061B (zh) 2019-04-09

Family

ID=58904776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611066875.7A Active CN106742061B (zh) 2016-11-25 2016-11-25 一种小行星微重力表面巡视机构

Country Status (1)

Country Link
CN (1) CN106742061B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108357582A (zh) * 2018-04-11 2018-08-03 中国科学院合肥物质科学研究院 一种仿生柔性爪刺足结构
CN108414175A (zh) * 2018-02-06 2018-08-17 南京航空航天大学 模拟微重力下弹性平面上粘附运动的振动测试与方法
CN108487858A (zh) * 2018-03-06 2018-09-04 哈尔滨工业大学 一种基于多机械臂着陆、超声波钻进的小行星表面附着锚定机构
CN108708673A (zh) * 2018-04-04 2018-10-26 哈尔滨工业大学 基于多机械臂着陆及叉形超声波钻进的小行星表面附着锚定装置
CN110920939A (zh) * 2019-11-29 2020-03-27 北京空间技术研制试验中心 助力装置
CN111077688A (zh) * 2019-12-25 2020-04-28 惠州市华星光电技术有限公司 一种承载框及显示装置
CN111086659A (zh) * 2019-12-31 2020-05-01 中国科学院空间应用工程与技术中心 一种材料舱外环形巡检驱动机构以及环形巡检机构
CN111114844A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 一种基于环式阻尼和刺入锚固的小行星表面附着装置
CN111591368A (zh) * 2020-05-06 2020-08-28 江苏警官学院 基于钩爪连续旋转抓附的机械脚掌及腿及机器人与方法
CN111596569A (zh) * 2020-05-22 2020-08-28 上海交通大学 多功能巡视器半物理仿真系统及方法
CN112249367A (zh) * 2020-10-13 2021-01-22 哈尔滨工业大学 一种小行星探测机动巡视装置
CN112440235A (zh) * 2019-09-02 2021-03-05 富智康精密电子(廊坊)有限公司 电动螺丝刀及其角度调整方法
CN113060307A (zh) * 2021-03-11 2021-07-02 哈尔滨工业大学 一种星表固定用多指自适应柔性抓附机构及其抓附方法
CN113075743A (zh) * 2021-03-11 2021-07-06 哈尔滨工业大学 一种星表探测用攀爬机器人及其使用方法
CN113664849A (zh) * 2021-02-23 2021-11-19 米其林集团总公司 配备有夹持器的用于执行拣选处理的机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2026243C1 (ru) * 1987-06-10 1995-01-09 Шота Николаевич Хуцишвили Способ доставки небесного тела к планете назначения и космическое транспортное средство для его осуществления
CN101786504A (zh) * 2010-02-25 2010-07-28 哈尔滨工业大学 用于小行星着陆器探测的锚定位系统
CN102501986A (zh) * 2011-09-27 2012-06-20 南京航空航天大学 一种行星探测器的锚定采样机构
CN102866036A (zh) * 2012-09-14 2013-01-09 东南大学 小行星取样器的自嵌入式锚固装置
CN103144785A (zh) * 2013-03-29 2013-06-12 哈尔滨工业大学 用于微重力环境下着陆器及仪器设备锚固系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2026243C1 (ru) * 1987-06-10 1995-01-09 Шота Николаевич Хуцишвили Способ доставки небесного тела к планете назначения и космическое транспортное средство для его осуществления
CN101786504A (zh) * 2010-02-25 2010-07-28 哈尔滨工业大学 用于小行星着陆器探测的锚定位系统
CN102501986A (zh) * 2011-09-27 2012-06-20 南京航空航天大学 一种行星探测器的锚定采样机构
CN102866036A (zh) * 2012-09-14 2013-01-09 东南大学 小行星取样器的自嵌入式锚固装置
CN103144785A (zh) * 2013-03-29 2013-06-12 哈尔滨工业大学 用于微重力环境下着陆器及仪器设备锚固系统

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414175A (zh) * 2018-02-06 2018-08-17 南京航空航天大学 模拟微重力下弹性平面上粘附运动的振动测试与方法
CN108487858A (zh) * 2018-03-06 2018-09-04 哈尔滨工业大学 一种基于多机械臂着陆、超声波钻进的小行星表面附着锚定机构
CN108487858B (zh) * 2018-03-06 2020-04-07 哈尔滨工业大学 一种基于多机械臂着陆、超声波钻进的小行星表面附着锚定机构
CN108708673A (zh) * 2018-04-04 2018-10-26 哈尔滨工业大学 基于多机械臂着陆及叉形超声波钻进的小行星表面附着锚定装置
CN108357582B (zh) * 2018-04-11 2023-10-13 中国科学院合肥物质科学研究院 一种仿生柔性爪刺足结构
CN108357582A (zh) * 2018-04-11 2018-08-03 中国科学院合肥物质科学研究院 一种仿生柔性爪刺足结构
CN111114844B (zh) * 2018-10-30 2022-09-13 哈尔滨工业大学 一种基于环式阻尼和刺入锚固的小行星表面附着装置
CN111114844A (zh) * 2018-10-30 2020-05-08 哈尔滨工业大学 一种基于环式阻尼和刺入锚固的小行星表面附着装置
CN112440235A (zh) * 2019-09-02 2021-03-05 富智康精密电子(廊坊)有限公司 电动螺丝刀及其角度调整方法
CN110920939A (zh) * 2019-11-29 2020-03-27 北京空间技术研制试验中心 助力装置
CN110920939B (zh) * 2019-11-29 2021-06-18 北京空间技术研制试验中心 助力装置
CN111077688A (zh) * 2019-12-25 2020-04-28 惠州市华星光电技术有限公司 一种承载框及显示装置
CN111086659A (zh) * 2019-12-31 2020-05-01 中国科学院空间应用工程与技术中心 一种材料舱外环形巡检驱动机构以及环形巡检机构
CN111591368A (zh) * 2020-05-06 2020-08-28 江苏警官学院 基于钩爪连续旋转抓附的机械脚掌及腿及机器人与方法
CN111591368B (zh) * 2020-05-06 2021-05-07 江苏警官学院 基于钩爪连续旋转抓附的机械脚掌及腿及机器人与方法
CN111596569A (zh) * 2020-05-22 2020-08-28 上海交通大学 多功能巡视器半物理仿真系统及方法
CN111596569B (zh) * 2020-05-22 2021-08-17 上海交通大学 多功能巡视器半物理仿真系统及方法
CN112249367A (zh) * 2020-10-13 2021-01-22 哈尔滨工业大学 一种小行星探测机动巡视装置
CN113664849A (zh) * 2021-02-23 2021-11-19 米其林集团总公司 配备有夹持器的用于执行拣选处理的机器人
US11820609B2 (en) 2021-02-23 2023-11-21 Compagnie Generale Des Etablissements Michelin Robot equipped with a gripper for performing a picking process
CN113075743A (zh) * 2021-03-11 2021-07-06 哈尔滨工业大学 一种星表探测用攀爬机器人及其使用方法
CN113060307A (zh) * 2021-03-11 2021-07-02 哈尔滨工业大学 一种星表固定用多指自适应柔性抓附机构及其抓附方法
CN113075743B (zh) * 2021-03-11 2023-12-22 哈尔滨工业大学 一种星表探测用攀爬机器人及其使用方法

Also Published As

Publication number Publication date
CN106742061B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN106742061A (zh) 一种小行星微重力表面巡视机构
Parness et al. LEMUR 3: A limbed climbing robot for extreme terrain mobility in space
US9339945B2 (en) Systems and methods for gravity-independent gripping and drilling
Parness et al. Gravity-independent mobility and drilling on natural rock using microspines
CN110065055B (zh) 实现表层块状样品抓取采样的小行星探测器
Wilcox ATHLETE: A limbed vehicle for solar system exploration
CN104443448A (zh) 一种模拟零重力及低重力环境的索驱动机器人装置
CN103174137B (zh) 具有二次驱动功能的主动式锚固机构
CN104477420A (zh) 一种模拟零重力和低重力的九索驱动机器人装置
Kubota et al. Intelligent rover with hopping mechanism for asteroid exploration
CN108487858A (zh) 一种基于多机械臂着陆、超声波钻进的小行星表面附着锚定机构
Schneider et al. ReachBot: A small robot for large mobile manipulation tasks
Parness et al. A microspine tool: Grabbing and anchoring to boulders on the asteroid redirect mission
CN103419946A (zh) 一种利用双螺母循环机构的冲击贯入式星壤潜入器
Nesnas et al. Axel mobility platform for steep terrain excursions and sampling on planetary surfaces
CN111114841B (zh) 基于气囊缓冲-钻进锚固的小行星表面附着装置
CN114013687B (zh) 一种着陆缓冲与附着固定机器人系统
Wilcox ATHLETE: A cargo-handling vehicle for solar system exploration
Yoshida et al. A novel strategy for asteroid exploration with a surface robot
Nagaoka et al. Ciliary micro-hopping locomotion of an asteroid exploration robot
Zhang et al. Anchoring and sampling processes analysis of a landing robot in asteroid exploration
Abad-Manterola et al. Axel
Nayar et al. Long reach sampling for ocean worlds
Yoshida et al. Sampling and surface exploration strategies in MUSES-C and future asteroid missions
Bornschlegl et al. Space robotics in Europe, a compendium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant