CN106741924A - 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型 - Google Patents

一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型 Download PDF

Info

Publication number
CN106741924A
CN106741924A CN201611032973.9A CN201611032973A CN106741924A CN 106741924 A CN106741924 A CN 106741924A CN 201611032973 A CN201611032973 A CN 201611032973A CN 106741924 A CN106741924 A CN 106741924A
Authority
CN
China
Prior art keywords
rotor
drag ratio
low
blade airfoil
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611032973.9A
Other languages
English (en)
Inventor
宋文萍
卜月鹏
韩忠华
杨旭东
高正红
左英桃
黄明
彭小康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201611032973.9A priority Critical patent/CN106741924A/zh
Publication of CN106741924A publication Critical patent/CN106741924A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features

Abstract

本发明提出一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型。申请人综合利用多种优化策略,弥补了目前优化算法对于多设计点、多约束问题处理的不足,改进了常规的翼型参数化方法,针对不同剖面的工作状态,采用不同气动分析算法,高效、精确地得到气动数值解。在给定的工作状态下,得到全工况条件下高升阻比9%厚度旋翼翼型,并提高了旋翼机动,悬停升阻比,适用于高速旋翼的叶片设计。本发明提出的9%厚度旋翼翼型与现有公开的9%厚度旋翼翼型相比,提高了旋翼机动,悬停升阻比,进而提升了旋翼效率,有着良好的工程实用性。

Description

一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型
技术领域
本发明涉及旋翼翼型设计技术领域,具体为一种应用于高性能直升机旋翼的全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型,以提高旋翼机动,悬停升阻比为目的,适用于高速旋翼的叶片设计。
背景技术
旋翼需要在悬停、前飞和机动等多种复杂运动状态下工作,在桨盘平面内不同方位角位置上,翼型的绕流条件有重大变化,其工作迎角从0°变化到大于160°,甚至靠近桨叶根部的翼型还可能处于反流区中;其工作马赫数从低于0.2直到大于0.8,这就要求旋翼翼型既具有优良的高速超临界性能又具有优良的低速大迎角气动性能,此外,由于旋翼操纵载荷的限制,要求翼型具有接近于零的力矩系数。
直升机性能与先进旋翼翼型设计的密切关系主要体现在如下两方面:(1)旋翼翼型性能的提升能够促进高性能直升机的发展,如自然层流超临界翼型使得翼型在相对厚度不变的条件下,阻力发散马赫数提高0.05~0.12,或使翼型最大相对厚度提高2%~5%,因此,法国的OA5旋翼翼型系列的低阻力、高阻力发散马赫数特性使得直升机的前飞速度、机动性能有明显的提高。(2)直升机由于其不同于固定翼飞行器的特殊飞行机理,对翼型设计提出了特殊指标要求,需要在苛刻俯仰力矩限制条件下满足前飞、机动、悬停等多种飞行状态下对翼型不同性能的要求。
近几十年,各国对旋翼翼型进行了全面的研究,如法国ONERA发展的OA系列翼型;美国Boeing Vertol公司发展的VR系列翼型;德国宇航院发展的DM-H系列翼型等。其中OA3系列的旋翼翼型性能全面,被广泛应用配置于各个直升机旋翼,成熟度较高。这些国外先进翼型数据并不对外公开,处于技术保密状态。
目前国内尚无关于高升阻比旋翼翼型的发明。国外现有公开的9%厚度旋翼翼型OA309在旋翼机动,悬停时的升阻比性能一般,阻碍了旋翼飞行效率的提高,并对发动机性能要求较高,不能适应新型直升机高性能旋翼设计的需求。
发明内容
要解决的技术问题
现有的常规翼型中,例如OA309旋翼翼型,在旋翼机动,悬停时的升阻比性能一般,阻碍了旋翼飞行效率的提高,并对发动机性能要求较高。鉴于以上目的,本发明旨在提出具有高升阻比性能稳定的旋翼翼型,可以提高旋翼的气动效率。
技术方案
申请人综合利用多种优化策略,弥补了目前优化算法对于多设计点、多约束问题处理的不足,改进了常规的翼型参数化方法,针对不同剖面的工作状态,采用不同气动分析算法,高效、精确地得到气动数值解。在给定的工作状态下,得到全工况条件下高升阻比9%厚度旋翼翼型,并提高了旋翼机动,悬停升阻比,适用于高速旋翼的叶片设计。文中提到的全工况,是指直升机旋翼翼型在实际使用时的全部工作条件。
本发明的技术方案为:
所述一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型,其特征在于:所述翼型上下表面几何坐标(x,y)表达式分别为:
其中下标up和low分别表示翼型的上、下表面,C为翼型弦长,系数为:
进一步优选方案,所述一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型,其特征在于:系数优选:
有益效果
现有公开的9%厚度旋翼翼型,在旋翼机动,悬停时的升阻比性能一般,阻碍了旋翼飞行效率的提高,并对发动机性能要求较高。本发明提出的9%厚度旋翼翼型与现有公开的9%厚度旋翼翼型相比,提高了旋翼机动,悬停升阻比,进而提升了旋翼效率,有着良好的工程实用性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明采用结合遗传算法与响应面方法优化策略的流程图;
图2为本发明采用结合遗传算法与Kriging模型优化策略的流程图;
图3为本发明相对厚度9%翼型的示意图;
图4为Ma=0.13时HA309与OA309翼型实验值升阻比特性比较图;
图5为Ma=0.19时HA309与OA309翼型实验值升阻比特性比较图。
具体实施方式
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
由于目前公开的9%厚度旋翼翼型在旋翼机动,悬停时的升阻比性能一般,阻碍了旋翼飞行效率的提高,并对发动机性能要求较高。申请人综合利用多种优化策略,弥补了目前优化算法对于多设计点、多约束问题处理的不足,改进了常规的翼型参数化方法,针对不同剖面的工作状态,采用不同气动分析算法,高效、精确地得到气动数值解。在给定的工作状态下,得到全工况条件下高升阻比9%厚度旋翼翼型,并提高了旋翼机动,悬停升阻比,适用于高速旋翼的叶片设计。
目前有很多成熟的翼型设计方法,如人-机对话修改设计、反设计方法、优化设计方法等。人-机对话修改通过计算机屏幕直接修改翼型的几何外形,通过对修型后翼型的气动特性计算检验修改效果,这种方法费时费力,也不便于考虑粘性、激波等因素的影响;反设计方法是给定目标压力分布进行翼型设计,其难点在于要求设计人员具有丰富的经验和专业知识,设计难度较大;优化设计方法则是是在给定约束条件下,直观的变化翼型气动外形,从而得到最优解,由于优化设计方法优化效果良好,操作方便,近些年来也被广泛应用。申请人便采用优化设计方法对低雷诺数螺旋桨翼型进行多目标,多约束的气动优化设计。为了更全面的得到优化结果,发明采用两种不同的优化方法进行翼型优化设计,其具体分为:
优化方法之一是结合遗传算法(Genetic Algorithms,简称GA)与响应面法的各自特点,利用遗传算法的全局性良好,对于多极值设计对象的优势;应用响应面模型进行目标特性分析,极大地提高了遗传算法的优化效率,是耦合多点气动分析策略和高效优化的算法。优化程序中,首先确定响应面模型的基本形式,均采用不含交叉项的二阶响应面模型。然后采用D优化准则选取合理的实验点数。利用求解器数值解建立高精度的响应面模型,用响应面模型代替经典遗传算法中数量庞大的气动特性分析程序。遗传算法计算适应度时只需调用响应面模型,而响应面模型的计算量非常小,因此使得遗传算法的计算量显著减少,优化效率极大提高。
优化方法之二是Kriging模型与遗传算法向结合的方法,选取Kriging模型作为代理模型,遗传算法作为子优化算法。采用拉丁超立方试验设计方法得到样本点,通过求解气动方程计算样本点的气动特性值,建立Kriging模型来代替优化过程中费时的流动数值模拟,由于最小化响应面准则没有考虑到预测值的不确定性。此优化策略采用ExpectedImprovement(EI)方法代替最小化响应面法以提高模型精度。
对于优化策略,除了以上提到的优化方法,还包括:优化目标及约束、翼型参数化方法、气动力求解等。申请人采用的优化策略的技术特点在于:
(1)优化目标与约束条件的选取。采用的基于代理模型的Pareto多目标优化方法过程如下:首先,在计算样本点的响应值时,将各个目标函数分别作为优化目标;分别建立每个目标函数的代理模型;在子优化过程中,采用多目标遗传算法NSGA-II进行优化,寻找代理模型上的Pareto解集;计算这些Pareto解集中每个点的真实函数值,并作为新的样本点,进入下一步迭代。其中,在每一步迭代结束后,将当前已有的样本点进行非支配排序,获得当前真实的Pareto前沿。
(2)翼型参数化方法的选取。采用CST(Class function/Shape functionTransformation)参数化方法,具体实现方法如下:
采用CST方法对翼型进行参数化可表示为:
yu=C(x)·Su(x)+x·yTEu
yl=C(x)·Sl(x)+x·yTEl
其中,yTEu,yTEl分别为上下表面后缘的y坐标。
类函数定义为:
C(x)=xN1·(1-x)N2
型函数的定义为:
其中,N1和N2分别取0.5和1.0。为待定系数。Si(x)为Bernstein多项式。
与翼型的前缘半径有直接联系:
且有
Su(1)=tanβu+yTEu,Sl(1)=tanβl+yTEl
其中,βu和βl分别为后缘相切角。
通常情况,已知的翼型坐标点数目大于需要确定的系数个数,因此可通过最小二乘法求解如下方程的最小值得到这些系数:
申请人分别采用以上所述的优化策略,将多目标优化问题统一气动函数的极值问题,改进CST参数化方法,针对桨根桨尖不同特点选取合适的求解方法,以OA309翼型为基本翼型,得到相对厚度9%的翼型,命名为HA309旋翼翼型。图3为本发明相对厚度9%的翼型的示意图。
本实施例提出的HA309旋翼翼型,根据上述优化过程得到的翼型族上下表面几何坐标表达式分别为:
其中下标up和low分别表示翼型的上、下表面,C为翼型弦长,系数如下表所示:
NPU-HA309翼型的几何表达式系数表
而且通过数值计算,上述系数在上下浮动不超过0.5%范围内得到的翼型均具有较好的性能。
该翼型的主要特点为:具有高升阻比性能稳定的旋翼翼型,该翼型族具有在设计工况下高升阻比特性,非设计点性能变化平缓的特点,属于高性能的9%厚度旋翼翼型。
为了说明本实施例提出的翼型具有较好的性能,下面以OA309旋翼翼型作为对比翼型,分析比较其气动性能。
相对厚度9%的本发明翼型在西北工业大学低湍流度风洞(Low turbulence windtunnel,简称LTWT风洞)进行了实验,图4为Ma=0.13时HA309与OA309翼型实验值升阻比特性比较图,图5为Ma=0.19时HA309与OA309翼型实验值升阻比特性比较图,可以看出实验结果验证了本专利翼型优化设计的可靠性和有效性。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (2)

1.一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型,其特征在于:所述翼型上下表面几何坐标(x,y)表达式分别为:
y u p C = 0.002 ( x C ) + ( x C ) 0.5 ( 1 - x C ) · Σ i = 0 4 ( A up i · 4 ! i ! ( 4 - i ) ! ( x C ) i ( 1 - x C ) 4 - i )
y l o w C = - 0.002 ( x C ) + ( x C ) 0.5 ( 1 - x C ) · Σ i = 0 4 ( A low i · 4 ! i ! ( 4 - i ) ! ( x C ) i ( 1 - x C ) 4 - i )
其中下标up和low分别表示翼型的上、下表面,C为翼型弦长,系数为:
A up 0 = 0.161 * ( 1 ± 0.5 % ) , A up 1 = 0.185 * ( 1 ± 0.5 % ) , A up 2 = 0.0495 * ( 1 ± 0.5 % ) ,
A up 3 = 0.270 * ( 1 ± 0.5 % ) , A up 4 = 0.00255 * ( 1 ± 0.5 % ) ;
A low 0 = 0.0832 * ( 1 ± 0.5 % ) , A low 1 = 0.0682 * ( 1 ± 0.5 % ) , A low 2 = 0.0701 * ( 1 ± 0.5 % ) ,
A low 3 = 0.161 * ( 1 ± 0.5 % ) , A low 4 = 0.0458 * ( 1 ± 0.5 % ) .
2.根据权利要求1所述一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型,其特征在于:系数优选:
A up 0 = 0.16180854 , A up 1 = 0.18540406 , A up 2 = 0.04953363 , A up 3 = 0.27067157 , A up 4 = 0.00255652 ;
A low 0 = 0.08321562 , A low 1 = 0.06829746 , A low 2 = 0.07012929 , A low 3 = 0.16127591 , A low 4 = 0.04583856.
CN201611032973.9A 2016-11-20 2016-11-20 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型 Pending CN106741924A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611032973.9A CN106741924A (zh) 2016-11-20 2016-11-20 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611032973.9A CN106741924A (zh) 2016-11-20 2016-11-20 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型

Publications (1)

Publication Number Publication Date
CN106741924A true CN106741924A (zh) 2017-05-31

Family

ID=58971876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611032973.9A Pending CN106741924A (zh) 2016-11-20 2016-11-20 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型

Country Status (1)

Country Link
CN (1) CN106741924A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109204777A (zh) * 2018-10-31 2019-01-15 中国空气动力研究与发展中心低速空气动力研究所 一种直升机翼型
CN109783858A (zh) * 2018-12-13 2019-05-21 航天神舟飞行器有限公司 一种用于低雷诺数翼型优化的方法
CN109878721A (zh) * 2019-04-04 2019-06-14 中南大学 一种微小型旋翼无人飞行器旋翼翼型的设计方法及产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104294A (ja) * 2001-09-27 2003-04-09 Univ Of The Ryukyus 翼 形
EP1942053A2 (en) * 2007-01-08 2008-07-09 Israel Aerospace Industries Ltd. Low-drag swept wings
CN102052266A (zh) * 2010-12-29 2011-05-11 南京航空航天大学 基于尖尾缘翼型设计的后加载钝尾缘翼型
CN204916159U (zh) * 2015-06-26 2015-12-30 北京昶远科技有限公司 太阳能飞机翼型及太阳能飞机
CN204937477U (zh) * 2015-05-21 2016-01-06 江西洪都航空工业集团有限责任公司 一种低阻、低俯仰力矩的翼型
CN105752314A (zh) * 2016-03-22 2016-07-13 西北工业大学 一种高空低速自然层流高升力翼型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104294A (ja) * 2001-09-27 2003-04-09 Univ Of The Ryukyus 翼 形
EP1942053A2 (en) * 2007-01-08 2008-07-09 Israel Aerospace Industries Ltd. Low-drag swept wings
CN102052266A (zh) * 2010-12-29 2011-05-11 南京航空航天大学 基于尖尾缘翼型设计的后加载钝尾缘翼型
CN204937477U (zh) * 2015-05-21 2016-01-06 江西洪都航空工业集团有限责任公司 一种低阻、低俯仰力矩的翼型
CN204916159U (zh) * 2015-06-26 2015-12-30 北京昶远科技有限公司 太阳能飞机翼型及太阳能飞机
CN105752314A (zh) * 2016-03-22 2016-07-13 西北工业大学 一种高空低速自然层流高升力翼型

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109204777A (zh) * 2018-10-31 2019-01-15 中国空气动力研究与发展中心低速空气动力研究所 一种直升机翼型
CN109204777B (zh) * 2018-10-31 2023-12-15 中国空气动力研究与发展中心低速空气动力研究所 一种直升机翼型
CN109783858A (zh) * 2018-12-13 2019-05-21 航天神舟飞行器有限公司 一种用于低雷诺数翼型优化的方法
CN109783858B (zh) * 2018-12-13 2023-09-29 航天神舟飞行器有限公司 一种用于低雷诺数翼型优化的方法
CN109878721A (zh) * 2019-04-04 2019-06-14 中南大学 一种微小型旋翼无人飞行器旋翼翼型的设计方法及产品
CN109878721B (zh) * 2019-04-04 2023-11-21 中南大学 一种微小型旋翼无人飞行器旋翼翼型的设计方法及产品

Similar Documents

Publication Publication Date Title
CN105752314B (zh) 一种高空低速自然层流高升力翼型
CN109190283A (zh) 一种考虑高湍流自由来流效应的风力机翼型气动优化方法
CN107609243B (zh) 一种螺旋桨叶片的设计方法
Ceyhan Towards 20MW wind turbine: High Reynolds number effects on rotor design
CN106741924A (zh) 一种全工况条件下的高升阻比低力矩特性9%厚度旋翼翼型
CN103136422A (zh) 翼型集成与b样条结合的中等厚度翼型设计方法
CN101923584A (zh) 风力机专用翼型设计方法及风力机专用翼型
CN106741925A (zh) 一种全工况条件下高升力低力矩特性12%厚度旋翼翼型
Lynde et al. Expanding the natural laminar flow boundary for supersonic transports
CN105404743A (zh) B样条与曲率光滑连续性结合的风力机翼型设计方法
CN110298093B (zh) 一种浮式风机缩比模型性能相似叶片设计方法
CN106828876B (zh) 一种适用于中短程高速民机的前掠自然层流机翼
CN104863799A (zh) 一种利用贝塞尔函数曲线的风力机翼型设计方法
CN106741923A (zh) 一种全工况条件下高升力低力矩特性7%厚度旋翼翼型
CN104018998B (zh) 一种用于兆瓦级风力机叶片的21%厚度主翼型
CN112052528B (zh) 一种直升机新型旋翼桨叶气动外形设计方法
Win Naung et al. Aerodynamic analysis of a wind turbine with elevated inflow turbulence and wake using harmonic method
Koning et al. Using RotCFD to Predict Isolated XV-15 Rotor Performance
CN103133272A (zh) 一种大型风机的薄翼型叶片
Elfarra et al. A parametric CFD study for the effect of spanwise parabolic chord distribution on the thrust of an untwisted helicopter rotor blade
CN112623254A (zh) 一种混合层流机翼吸气能量损耗工程计算方法
Saeed et al. Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications
CN111859545B (zh) 一种考虑升力匹配的宽速域高升阻比机翼优化设计方法
Lee et al. Lift correction model for local shear flow effect on wind turbine airfoils
CN104018999B (zh) 一种用于兆瓦级风力机叶片的25%厚度主翼型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531