CN1067411C - 全氟化聚合物在超临界co2中的溶液 - Google Patents

全氟化聚合物在超临界co2中的溶液 Download PDF

Info

Publication number
CN1067411C
CN1067411C CN94193963A CN94193963A CN1067411C CN 1067411 C CN1067411 C CN 1067411C CN 94193963 A CN94193963 A CN 94193963A CN 94193963 A CN94193963 A CN 94193963A CN 1067411 C CN1067411 C CN 1067411C
Authority
CN
China
Prior art keywords
perfluorination
ethylene polymer
tetrafluoro ethylene
fusing point
polymkeric substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94193963A
Other languages
English (en)
Other versions
CN1134161A (zh
Inventor
G·T·迪伊
W·H·土敏埃洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of CN1134161A publication Critical patent/CN1134161A/zh
Application granted granted Critical
Publication of CN1067411C publication Critical patent/CN1067411C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

在高温和高压下,将高熔点的全氟化四氟乙烯聚合物溶于超临界二氧化碳中。该溶液可用于制造泡沫体、纺粘或类纸纤维网或用于聚合物的提纯。

Description

全氟化聚合物在超临界CO2中的溶液
                发明的领域
本发明涉及含有四氟乙烯重复单元的全氟化聚合物溶解于超临界二氧化碳中的溶液。本发明也涉及备这些溶液的方法。
                技术背景
众所周知,全氟化聚合物、特别是在较高温度下熔融的全氟化聚合物很难溶解在溶剂中。这种全氟化聚合物的溶通常是全卤化的、常常是全氟化的化合物。这种化合物是比较昂贵的,有时是有毒的,并被认为是“温室效应气体”。所以需要寻求更便宜、更安全无害的溶剂。现已发现,这种全氟化聚合物在特定的条件(取决于聚合物的熔点)下可溶解于超临界CO2(二氧化碳)中。
J.M.Desimone等在“科学”,257卷,945-947页(1992)的论文中描述了氢氟碳聚合物在超临界CO2中的溶液,但没有制备全氟聚合物溶液。
M.Mchugh等在“超临界流体萃取的原理和实践”(Butterworths,Boston,1986,第9章,156-163页)一文中报道了低分子量的聚(六氟环氧丙烷)和低分子量的聚(一氯三氟乙烯)溶解于超临界二氧化碳中。这两种都是低分子量的、在室温下是油状(非结晶)的聚合物。
                发明的概述
本发明涉及含有溶解于超临界CO2中的熔点为约175℃或更高的全氟化四氟乙烯聚合物的组合物。
本发明也涉及溶解全氟化四氟乙烯聚合物的方法,该方法包括使全氟化四氟乙烯聚合物与超临界CO2在足以保证所述的全氟化四氟乙烯聚合物和所述的CO2能以任何比例完全相混溶的温度和压力下相接触,条件是所述的全氟化四氟乙烯聚合物的熔点为约175℃或更高。
                本发明的详述
在所有下文中,如果合适,每种优选的条件或组合物既适用于溶解聚合物的方法,也适用于聚合物溶液本身。
本发明所用的聚合物是全氟化四氟乙烯聚合物。这意味着聚合物中至少50%(摩尔)、优选至少75%(摩尔)的重复单元是源出于四氟乙烯(TFE),亦即-CF2CF2-。因而聚合物可以是TFE的均聚物或共聚物。如果聚合物是共聚物,组成共聚物的共聚单体全部是全氟化的,优选的共聚单体是全氟(丙基·乙烯基醚)、六氟丙烯和全氟(甲基·乙烯基醚)。特别优选的共聚单体是六氟丙烯和全氟(丙基·乙烯基醚)。另一种优选的聚合物是TFE均聚物,即聚四氟乙烯(PTFE)。
本发明所用聚合物的熔点为约175℃或更高,优选200℃或更高,更优选250℃或更高。除了下面的一些条件外,本文中的熔点都是根据ASTM方法D3418-82用差示扫描量热仪(DSC)测定的。加热速率是10℃/分。所用的约10mg聚合物已由熔体猝冷。测定熔点是从熔融吸热刚开始的基线处到熔融吸热刚结束的基线处画一条直线。该直线与实验曲线在熔融吸热结束处相交点的温度取作为熔点。所以,本发明所用的熔点是在试验条件下相应于聚合物的最高熔点级分的熔点温度。
将本发明的聚合物溶于超临界CO2中。CO2的临界温度为31℃,但溶解时需要通常在100℃以上的更高的温度。其原因是聚合物的熔点很高,而熔点又是与压力有关的。当压力增大时,聚合物的熔点也升高。所以,溶解时所需要的温度往往随着压力的增大而升高,特别是在混合物中CO2含量较低的情况下。通常,使聚合物溶解时所需要的压力约为80MPa或更高,优选约为90MPa或更高,更优选约为100MPa或更高。
其它的低沸点化合物如SF6、N2O、N2和Ar在类似的超临界条件下也可作为本发明聚合物的溶剂。
本文中所述的“溶解”是指在聚合物和CO2能以任何比例相混溶的条件下溶解聚合物。尽管溶解可以在不足以完全溶解的条件下开始,如在装置加热和加压的起始阶段,但过程应当至少经过CO2和聚合物能以任何比例完全混溶的条件(温度和压力)。在这种条件下保持溶液状态是最为合适的,但是在任何特定的聚合物于特定的浓度下在CO2中保持混溶的条件下也能保持溶液状态。
本发明制备的溶液可用于生产泡沫体(最好通过可控的方式降低溶液压力)和纺粘的或类纸纤维网(见美国专利4,052,625)。聚合物也可以通过将聚合物溶解和在保持聚合物呈溶液状态的条件下过滤的方法进行提纯(与无机物或其它的不溶物分离)。
聚合物溶解时,最好将各组分以某种方式进行搅拌。搅拌将使溶解过程加快。聚合物的溶解速度也取决于CO2溶液中所需要的聚合物浓度以及聚合物的分子量。浓度越高和/或聚合物的分子量越高,聚合物的溶解速度就越低。
本发明的附图1和2是本发明的全氟化四氟乙烯聚合物在超临界CO2中分别于92MPa和100MPa下的相图。这些计算出来的相图是按下列方法确定的。用Flory-Huggins理论(参见P.J.Flory的“聚合物化学的原理”,Cornell大学出版社,Ithaca,NY,1953,第568页)预测液相线(熔点下降)。计算中,当CO2的摩尔体积小于约55cm3/摩尔时,应用聚合物-溶剂相互作用参数的最小值0.34。
根据Sanchez(参见I.C.Sanchez在R.A.Meyers编的“物理科学技术大全”11卷第1-18页(1987)中的内容)提出的方法学应用了Sanchez和Lacombe状态方程理论(I.C.Sanchez等,J.Phys.Chem.,80卷,2352页(1976))。用PTFE的PVT数据(见P.Zoller,J.Appl.Ploym.Sci.,22卷,633页(1978))得出用于所有温度和所有聚合物的适当的压缩因子。对于PTFE本身和其它相图如图1和图2所示的聚合物,应用PTFE的PVT数据,因为假定全氟化共聚物的常压密度和PVT关系与PTFE基本相同。所有其它所需的数据(如CO2的数据)均取自文献。
所有这些计算都是用于绘出图1和2。这些图是相图,区别仅在于图1是CO2-全氟化四氟乙烯聚合物体系在92MPa压力下的相图,而图2是在100MPa下的相图。如图所示,横轴代表CO2的重量分数,纵轴代表温度(℃)。图中四条从左上角至右下角的大致呈对角连接的近直线各自代表一个聚合物(共聚物),亦即PTFE(最上面一条线)或共聚物(四条线中最低一条线代表实施例1和2所用的聚合物)的熔点。这些线的每一条的上方区域代表CO2和该聚合物呈单一的液相(溶液),而每条线的下方区域代表着两相,即固相(聚合物)和液相(CO2加聚合物)。在图1中,出现液-液相的圆形区代表存在两个液相的条件。在这个圆形区内以及每个聚合物的对角线以下的区域内代表每种聚合物不都是以任何比例与CO2完全混溶的条件。
全氟化四氟乙烯聚合物在92MPa和100MPa下完全混溶所需要的温度和压力的近似组合示于这两个图中。这些都是溶解任何特定聚合物所需条件的近似值(因为在计算时作了一些假定和近似),可以此作为参考,只需很少量的试验就可确定溶解任何特定聚合物所需的温度和压力条件。通过这些图可预测溶解实施例1和2的聚合物的近似修正条件。
一般方法
实施例中所用的是含19.3%(摩尔)六氟丙烯的四氟乙烯共聚物,因为设备不能加热到250℃以上。测得这个聚合物熔体在372℃和44,800Pa剪切应力下的剪切粘度为1200Pa·s。它的熔点用DSC(如上所述)测定为约200℃。
溶解研究中所用的可变容积容器和辅助设备的示意图见图3所示。它能在250℃下保持276MPa(40,000psi)压力,同时又能观察溶解情况。用电磁搅拌器进行搅拌。该设备及其操作方法可参看Meilchen等,Macromolecules,24卷,4874页(1991)。将聚合物和CO2在室温下加入设备中。环绕活塞-容器配置的加热带是主要的供热源。当设备从室温开始加热时就进行全面观察。
实施例1
将0.2g共聚物和15.98克CO2加入上述的设备中。在室温附近,蓬松的聚合物粉末清楚可见,它们在搅拌以后迅速沉降。在约125℃和121MPa下,观察到溶胀的最初迹象,此时颗粒沉降明显变慢。在215-225℃,除了少量混浊外,聚合物已完全溶解。所用的EPDM“O”形圈在接近225℃时失效,使水进入了容器。
实施例2
将1.022g共聚物和17.034克CO2加到上述的设备中。在室温附近,蓬松的聚合物粉末清楚可见,它们在搅拌以后迅速沉降。在约146℃和110MPa下,观察到溶胀的最初迹象,此时颗粒仍然悬浮在液体中。当在165℃和110MPa下搅拌时,可以看到溶胀和聚结以及随后聚合物富集相延伸的现象。这些长束状的溶胀聚合物随后看来溶于更易流动的富CO2相中。实际上已发生溶解的证据是当将压力降至约90MPa时观察到富CO2相的浊点。这个浊点代表溶液完全变为不透明时的压力。在从约110-90MPa的很宽的压力范围内,溶液从完全透明逐渐变成不透明。在约215℃,得到均相、低粘度但略有混浊的液体。浊点现在是约131MPa 。混浊的出现可能是由于存在少量需要更高溶解温度的高TFE含量均聚物成分。也可能是由于从“O”形密封圈中渗出少量不溶物。本实施例所用的Viton“O”形圈在CO2中溶胀很大。在这要使液体完全透明的不成功的努力中,曾用的压力和温度高达193MPa和225℃。
开始观察到聚合物溶于CO2中的温度是165℃,和我们预测的约170℃非常接近。在这个温度下察到的浊点为约90MPa,也和预测值相近。在宽的温度和压力的范围内观察到可溶性表明聚合物组合物的范围很宽。

Claims (17)

1.一种含有全氟化四氟乙烯聚合物的组合物,所述聚合物的熔点为175℃或更高,溶于超临界CO2中,所述的熔点是用ASTM方法D3418-82,在加热速率为10℃/分下,测量10mg由熔体猝冷的聚合物而得到的。
2.权利要求1所述的组合物,其中全氟化四氟乙烯聚合物是聚四氟乙烯。
3.权利要求1所述的组合物,其中全氟化四氟乙烯聚合物是一种共聚物。
4.权利要求3所述的组合物,其中一种或多种共聚单体选自全氟(丙基·乙烯基醚)、六氟丙烯和全氟(甲基·乙烯基醚)。
5.权利要求4所述的组合物,其中一种或多种共聚单体选自六氟丙烯和全氟(丙基·乙烯基醚)。
6.权利要求1所述的组合物,其中所述的全氟化四氟乙烯聚合物的熔点为200℃或更高。
7.权利要求6所述的组合物,其中所述的全氟化四氟乙烯聚合物的熔点为250℃或更高。
8.一种溶解全氟化四氟乙烯聚合物的方法,该方法包括将全氟化四氟乙烯聚合物与超临界CO2在足以保证所述的全氟化四氟乙烯聚合物和所述的CO2能以任何比例完全混溶的混度和压力下相接触,条件是所述的全氟化四氟乙烯聚合物的熔点为175℃或更高,所述的熔点是用ASTM方法D3418-82,在加热速率为10℃/分下,测量10mg由熔体猝冷的聚合物而得到的。
9.权利要求8所述的方法,其中所述的压力为80Mpa或更高。
10.权利要求9所述的方法,其中所述的压力为90Mpa或更高。
11.权利要求10所述的方法,其中所述的压力为100Mpa或更高。
12.权利要求8所述的方法,其中所述的全氟化四氟乙烯聚合物的熔点为200℃或更高。
13.权利要求12所述的方法,其中所述的全氟化四氟乙烯聚合物的熔点为250℃或更高。
14.权利要求8所述的组合物,其中全氟化四氟乙烯聚合物是聚四氟乙烯。
15.权利要求8所述的组合物,其中全氟化四氟乙烯聚合物是一种共聚物。
16.权利要求15所述的组合物,其中一种或多种共聚单体选自全氟(丙基·乙烯基醚)、六氟丙烯和全氟(甲基·乙烯基醚)。
17.权利要求16所述的组合物,其中一种或多种共聚单体选自六氟丙烯和全氟(丙基·乙烯基醚)。
CN94193963A 1993-10-29 1994-10-20 全氟化聚合物在超临界co2中的溶液 Expired - Fee Related CN1067411C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14536693A 1993-10-29 1993-10-29
US08/145,366 1993-10-29

Publications (2)

Publication Number Publication Date
CN1134161A CN1134161A (zh) 1996-10-23
CN1067411C true CN1067411C (zh) 2001-06-20

Family

ID=22512779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94193963A Expired - Fee Related CN1067411C (zh) 1993-10-29 1994-10-20 全氟化聚合物在超临界co2中的溶液

Country Status (6)

Country Link
US (1) US5530049A (zh)
EP (1) EP0725804B1 (zh)
JP (1) JP3564136B2 (zh)
CN (1) CN1067411C (zh)
DE (1) DE69415992T2 (zh)
WO (1) WO1995011935A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012161A1 (en) * 1991-12-18 1993-06-24 Schering Corporation Method for removing residual additives from elastomeric articles
US5863612A (en) * 1992-03-27 1999-01-26 University North Carolina--Chapel Hill Method of making fluoropolymers
CA2192187A1 (en) * 1994-07-08 1996-01-25 Robert S. Clough Superatmospheric reaction
US5618894A (en) * 1995-03-10 1997-04-08 The University Of North Carolina Nonaqueous polymerization of fluoromonomers
US5674957A (en) * 1995-03-10 1997-10-07 The University Of North Carolina At Chapel Hill Nonaqueous polymerization of fluoromonomers
US5645894A (en) * 1996-01-17 1997-07-08 The Gillette Company Method of treating razor blade cutting edges
US5821273A (en) * 1996-05-22 1998-10-13 E. I. Du Pont De Nemours And Company Extrusion foaming of fluoropolymers
US5830923A (en) * 1996-05-22 1998-11-03 E. I. Du Pont De Nemours And Company Foamed fluoropolymer
US5885494A (en) * 1996-05-22 1999-03-23 E. I. Du Pont De Nemours And Company Method of forming foamed fluoropolymer composites
US5696195A (en) * 1996-06-04 1997-12-09 E. I. Du Pont De Nemours And Company Solutions of perfluorinated polymers in SF6 with or without CO2
US6344243B1 (en) 1997-05-30 2002-02-05 Micell Technologies, Inc. Surface treatment
ATE420239T1 (de) 1997-05-30 2009-01-15 Micell Integrated Systems Inc Oberflächebehandlung
US6287640B1 (en) 1997-05-30 2001-09-11 Micell Technologies, Inc. Surface treatment of substrates with compounds that bind thereto
US6165560A (en) * 1997-05-30 2000-12-26 Micell Technologies Surface treatment
US6034170A (en) * 1997-10-17 2000-03-07 E. I. Du Pont De Nemours And Company Solutions of fluoropolymers in carbon dioxide
JP4797216B2 (ja) * 1999-03-05 2011-10-19 コニカミノルタホールディングス株式会社 ポリマー溶液の調製方法、ポリマーフィルムの製造方法及びポリマーフィルム
US6429284B2 (en) * 2000-05-18 2002-08-06 Matsushita Electric Industrial Co., Ltd. Method for treating flame retardant resin composition
US6960633B2 (en) * 2001-10-25 2005-11-01 Virginia Commonwealth University Fluoropolymer-carbon dioxide compositions and methods of processing fluoropolymers
AR082900A1 (es) 2010-09-10 2013-01-16 Green Source Energy Llc Composiciones y metodos para reciclar plasticos que comprenden polimeros mediante el tratamiento de solvente

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549806A (ja) * 1991-08-15 1993-03-02 Chlorine Eng Corp Ltd ポリ(パーフルオロアルキルエーテル)の分子量による分画化方法
DE4204176A1 (de) * 1992-02-13 1993-08-19 Deutsches Textilforschzentrum Verfahren zur aufarbeitung von polyurethanhaltigen werkstoffen
DE69334213T2 (de) * 1992-03-27 2009-06-18 University Of North Carolina At Chapel Hill Verfahren zur Herstellung von Fluoropolymeren

Also Published As

Publication number Publication date
CN1134161A (zh) 1996-10-23
DE69415992T2 (de) 1999-08-12
JPH09504326A (ja) 1997-04-28
DE69415992D1 (de) 1999-02-25
EP0725804B1 (en) 1999-01-13
WO1995011935A1 (en) 1995-05-04
US5530049A (en) 1996-06-25
JP3564136B2 (ja) 2004-09-08
EP0725804A1 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
CN1067411C (zh) 全氟化聚合物在超临界co2中的溶液
Yang et al. Control of dynamics in polyelectrolyte complexes by temperature and salt
Tuminello et al. Dissolving perfluoropolymers in supercritical carbon dioxide
US5696195A (en) Solutions of perfluorinated polymers in SF6 with or without CO2
Berek Liquid chromatography of macromolecules at the point of exclusion—Adsorption transition. Principle, experimental procedures and queries concerning feasibility of method
Ait Ali et al. Effect of organic salts on micellar growth and structure studied by rheology
Saien et al. Interfacial tension of toluene+ water+ sodium dodecyl sulfate from (20 to 50) C and pH between 4 and 9
PT84793B (pt) Processo para a preparacao de micro-emulsoes contendo perfluoropolieteres
Kumar et al. Studies on the triton X-100: alcohol: water reverse micelles in cyclohexane
Biswas et al. From polymerizable ionic liquids to poly (ionic liquid) s: structure-dependent thermal, crystalline, conductivity, and solution thermoresponsive behaviors
Monduzzi Self-assembly in fluorocarbon surfactant systems
Cowie et al. Polymer cosolvent systems—I. Selective adsorption in methyl cyclohexane (1), acetone (2), polystyrene (3)
Rak et al. Solvophobicity-driven mesoscale structures: stabilizer-free nanodispersions
Lee et al. Complex coacervation of polymerized ionic liquids in non-aqueous solvents
Lambert et al. Gel permeation chromatography of the xanthan gum using a light scattering detector
JPH01304040A (ja) ペルフルオルポリエーテルを基材とする導電性マイクロエマルジョン
Tingey et al. Micellar and bicontinuous microemulsions formed in both near-critical and supercritical propane with didodecyldimethylammonium bromide and water
Ping et al. Investigation of poly (vinyl alcohol)/poly (N‐vinyl‐2‐pyrrolidone) blends, 3. Permeation properties of polymer blend membranes
Tauer et al. Equilibrium swelling of colloidal polymeric particles with water-insoluble organic solvents
Xu et al. Synthesis and application of amphiphilic copolymer as demulsifier for super heavy oil emulsions
Filali et al. L3 (sponge) phase in the very dilute regime: spontaneous tearing of the membrane?
Costa et al. Complex formation between a fluorescently-labeled polyelectrolyte and a triblock copolymer
Staal et al. Monitoring of originated polymer in pure monomer with gradient polymer elution chromatography (GPEC)®
Qutubuddin et al. Novel polymeric composites from microemulsions
Dee et al. Solutions of perfluorinated polymers in CO 2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1019683

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010620

Termination date: 20131020