CN1067354C - Semi-rigidity bituminous concrete material composition and manufacturing method thereof - Google Patents

Semi-rigidity bituminous concrete material composition and manufacturing method thereof Download PDF

Info

Publication number
CN1067354C
CN1067354C CN97102289A CN97102289A CN1067354C CN 1067354 C CN1067354 C CN 1067354C CN 97102289 A CN97102289 A CN 97102289A CN 97102289 A CN97102289 A CN 97102289A CN 1067354 C CN1067354 C CN 1067354C
Authority
CN
China
Prior art keywords
weight
type
cement
grating
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97102289A
Other languages
Chinese (zh)
Other versions
CN1188089A (en
Inventor
沈得县
吕正宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN97102289A priority Critical patent/CN1067354C/en
Publication of CN1188089A publication Critical patent/CN1188089A/en
Application granted granted Critical
Publication of CN1067354C publication Critical patent/CN1067354C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/36Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Road Paving Structures (AREA)

Abstract

The present invention discloses semi-rigidity bituminous concrete and a making method thereof. The concrete has raw materials composed of cation emulsified bitumen, Type-I cement, an F-type plasticizer, carboxymethylcellulose sodium, calcium chloride, stone powder and gritting material with the codes of an IIId grade, an IVb grade and a VII grade. The raw materials are mixed, cast and maintained according to the making method of cement concrete to form paving material. The bituminous concrete can be easily mixed and has the advantages of easy construction and reduction of waste gas public nuisance. Material manufacture and construction can be implemented by using the existing devices in cement concrete mortar mills and rigid pavement construction machines. In addition, the construction environment of the bituminous concrete is not limited by terrains and landforms, and the construction is not influenced by weathers and climates.

Description

Semi-rigidity bituminous concrete material composition and manufacture method thereof
The present invention relates to a kind of semi-rigidity bituminous concrete material composition and manufacture method thereof.
Country often drives increase of goods traffic flow and vehicle load and strengthens in process of economic development along with industrial development, the load that covering of roadway bore also strengthens thereupon.Past, the bituminous (bitumen)concrete pavement was to adopt hot-mixed asphaltic concrete in pavement engineering construction, and by the mode of gravity stratification spreading, and the bituminous concrete spreading is closely knit and reach the design strength of expection.The asphalt pavement of laying through mode thus is called Flexible Pavement, and Flexible Pavement has preferable flexibility, can obtain more comfortable road sense.But because the inborn restriction of material, the hot asphalt paving easily produces phenomenons such as rutting deformation, crack and surface slip because of wheel weight destroy pavement structure.
Because of cement concrete is used in road pavement, this kind cement concrete paving was called the rigid pavement afterwards, and the mechanical failure of covering of roadway reduces thereupon.But because the intensity and the rigidity of cement concrete are higher, vehicle travels on the rigid pavement and jolts greatlyyer, and the comfortableness of travelling is relatively poor, and the higher and required operating technique of engineering cost is difficult, and the maintenance work in paving is difficult, therefore becomes the shortcoming that cement concrete is used in the paving.
Traditional hot-mixed asphaltic concrete has interpolation cement occasionally, but be to use mostly as stopping composition, cement there is no the agglutinating function in bituminous concrete, and its addition upper limit is about 10-15%, adds that the mechanical strength to bituminous concrete there is no significant lifting after the cement.In the known technology, once used and accounted for the addition material of the cement of pellet weight ratio 0.5-2%, found increase in the test-results, bituminous concrete parcel property reduction and stationary value increases and fluidity value becomes big with the cement addition as emulsified bitulith.
Hence one can see that, if with the stopping composition of cement as emulsified bitulith, though can increase a little stationary value or intensity, but generally speaking to bituminous concrete, add cement will make fine granules in the bituminous concrete as stopping composition filling effect, because of cement is reduced by the moisture aquation, its hole is increased, and the ability of erosion of opposing moisture and paving displacement is reduced.Therefore with regard to bituminous concrete improves material, still have improved necessity.
In above-mentioned background of invention, all there are some problems in traditional Flexible Pavement and rigid pavement material, therefore the present invention proposes improvement at its shortcoming, cement is combined the sandstone pellet again through special processing with emulsified bitumen, and develop the Flexible Pavement material that can be used on the normal temperature construction and have higher-strength, and with this surfacing material called after semi-rigidity bituminous concrete (Semi-Rigid Asphalt Concrete).
Another object of the present invention is to be to disclose a kind of existing cement concrete mix plant that utilizes, and reaches the method that the rigid pavement construction machinery carries out material manufacturing and construction.
According to above-described purpose, the present invention provides a kind of employing cationic emulsified bitumen, Type-I cement, F-Type and moulds agent (Superplasticizer), Xylo-Mucine (Na-CMC by force, Na-Carboxymethyl Cellulose), the sandstone pellet of calcium chloride, stone flour and code name III d, IV b and VII a grating is raw material, carries out material mix, cast and maintenance and the semi-rigidity bituminous concrete that forms according to the method for cement concrete manufacturing.
This semi-rigidity bituminous concrete is earlier F-Type to be moulded agent by force to inject emulsified bitumen stirring formation one mixed solution, after the solution of calcium chloride that will mix up in advance and Na-CMC is poured into and is continued stirring until evenly then, pour cement, stone flour and fine granules into mix in regular turn again, then pour Coarse Aggregate again into, when mix can discharging after evenly pour into a mould and maintenance after open the use, needn't be again through manufacturing processedes such as high temperature mix and roll extrusion.
The present invention changes the traditional asphalt concrete fully and must utilize the manufacture of high temperature mix and compaction in layers and heat to mix the kenel that worker's method is constructed.
In addition, the semi-rigidity bituminous concrete that the present invention discloses, not only mix and construction easily, and can replace traditional asphalt concrete heat and mix worker's method, also the waste gas public hazards be can reduce, more can utilize existing cement concrete mix plant, and the rigid pavement construction machinery material manufacturing and construction carried out.
Because semi-rigidity bituminous concrete has factory's manufacturing or job mix, pours into a mould and exempt from the characteristic of compacting, therefore construction more is not subjected to the restriction of landform and landforms, also is not subjected to the influence of weather during construction.And on the Ordinary Rd road surface, pavement, paving, parking lot, basic unit's soil ground improvement, roof water-proof shop layer, cover worker's version non-skid finish, paving, sports center, with pavement engineering maintenance or the like, all can utilize this semi-rigidity bituminous concrete to lay.Therefore, semi-rigidity bituminous concrete is an invention of very having practicality and a commercial value in fact.
The key that semi-rigidity bituminous concrete can be stablized mixing, produce and construct in the mix stage, be to be to use F-Type to mould the buffer reagent of agent by force as emulsified bitumen and cement and pellet, make emulsified bitumen after ease is lost the part free-water, can not make suspension be reduced into asphalt cement and water at once; And when utilizing cement asphalt mastic dehydration degree high more, the high more characteristic of viscosity then, rheological (Rheological properties) with control sandstone pellet can not isolated it, and then make the viscosity of semi-rigidity bituminous concrete can when mix, not produce obstruction, the present invention all can fully grasp because of material physical properties and chemical property relevant in the semi-rigidity bituminous concrete, and the mix technology also can obtain control, so semi-rigidity bituminous concrete can enter and produces in batches and stage that practice is utilized.
Preferred embodiment of the present invention will be aided with following figure and do more detailed elaboration in comment backward:
Fig. 1 describes the design flow diagram that semi-rigidity bituminous concrete of the present invention is sought the preferred materials proportioning;
Fig. 2 describes in the preferred embodiment fabrication process flow figure of semi-rigidity bituminous concrete.
The disclosed semi-rigidity bituminous concrete of the present invention, its employed raw material comprises that cationic emulsified bitumen, Type-I cement, F-Type mould agent (Superplasticizer), Xylo-Mucine (Na-CMC), calcium chloride by force, stone flour, and the sandstone pellet of code name III d, IV b and VII a grating etc.
Employed Type-I cement in preferred embodiment, except the agglutinate that can be used as semi-rigidity bituminous concrete intensity main source, the function of regulating viscosity is also arranged, sandstone composition such as the listed data of table 1 that III d, IV b and VII a grating pellet are comprised, stone flour then is that rock crushing plant or mix factory are in production process, the fines residue that is produced, according to the convention of traditional hot-mixed asphaltic concrete, the present invention replaces by the fine granules below the No.100 screen size with stone flour.
Table 1
Screen size (particle diameter) Each screen size stop amount (%)
Ⅲd Ⅳb Ⅶa
Coarse Aggregate 3/4”(19.0mm) 7.5 0.0 0.0
1/2”(12.7mm) 17.5 7.5 0.0
3/8”(9.5mm) 17.5 12.5 0.0
No.4(4.76mm) 17.5 20.0 7.5
No.8(2.38mm) 12.5 17.5 5.0
Fine granules No.16(1.19mm) 7.5 9.5 8.0
No.30(0.59mm) 7.5 9.5 17.0
No.50(0.30mm) 5.0 5.5 27.5
No.100(0.15mm) 2.5 6.0 20.0
Stone flour No.200(0.07mm) 5.0 12.0 15.0
Wherein III d grating is meant the coarse grading that is applicable to road surface binder course and bottom, in the ASTMD3515 standard of the similar U.S. 3/4 " grating, IV b grating then is applicable to the close-graded of top course, is similar in the ASRM D3515 standard of the U.S. 1/2 " grating; VII a grating is applicable to the tar sand grating in street surface layer and paving, parking lot, the thick sheet tar sand grating of similar U.S. pitch association.
F-Type moulds agent by force in semi-rigidity bituminous concrete mix process in addition, play very crucial interfacial agent role, because it is buffer reagent between emulsified bitumen and cement and pellet that F-Type moulds agent by force, can make emulsified bitumen after ease is lost the part free-water suspension be reduced at once becomes asphalt cement and water.Because the discovery of this crucial mechanism, and make the emulsified bitumen suspension of handling, be able to mat show external force and make cement and pellet reach even mix, and then produce colory semi-rigidity bituminous concrete.
Moreover, the high more characteristic of its viscosity when utilizing cement asphalt mastic dehydration degree high more, the may command pellet can not isolated it, and then makes the viscosity of semi-rigidity bituminous concrete can not produce obstruction when mix, and this also is that the present invention is in the technical resulting breakthrough of mix.
Fig. 1 describes the process that semi-rigidity bituminous concrete of the present invention is sought the preferred materials proportioning, after being ready to all material (step 201), at first control the proportioning that cationic emulsified bitumen and F-Type mould agent by force, be poured into and carry out mix (step 202) in the whipping device, pour calcium chloride and the Na-CMC solution (step 203) that modulates proportioning in advance into after evenly at mix.After stirring, pour cement and stone flour (step 204) again into, make to form the cement asphalt mastic.The proportioning of cationic emulsified bitumen and cement, and can determine according to the flowability and the hard ultimate compression strength demand of trying body admittedly of cement asphalt mastic.Add grating fine granules (step 206) again after mix is even, and make bituminous mortar examination body, to find out the content range (step 205) of fine granules with reference to Marshall proportion design legal system.Then add the grating Coarse Aggregate and make bituminous concrete examination body (step 208), and cooperate Marshall proportion design method, obtain the optimal components ratio point (step 207) of Coarse Aggregate.Carry out engineering quality estimating (step 209) at last, when by assessment, then become the ratio range (step 210) of semi-rigidity bituminous concrete; And, then prepare material recast experiment (getting back to step 201) by when assessment.
Above-mentioned engineering quality estimating utilization degree of collapsing is obtained with ultimate compression strength and is moulded agent, stone flour by force, reaches the optimal components ratio of cement, and is aided with the mechanical property test subject, such as compression tests.Marshall Test, indirectly tensile test, run through shear test.Proof bend test, shear test, wheel tracking test, the test of bounce-back hammer index, nine kinds of mechanical property tests such as immersion residual strength test; And endurance test, carry out total evaluation such as three kinds of burin-in process such as baking oven for heating, freeze-thaw cycle and drying and watering cycle and test, and with selected raw material, and the weight combinations that can use is recited in table 2A, table 2B, shows 2C, and show among the 2D.Wherein showing 2A is the feasible material mixture ratio weight tabulation of III d grating semi-rigidity bituminous concrete; Table 2B is the feasible material mixture ratio weight tabulation of IV b grating semi-rigidity bituminous concrete; Table 2C then is the feasible material mixture ratio weight tabulation of VII a grating semi-rigidity bituminous concrete.Right basis test-results repeatedly shows that above-mentioned material mixture ratio weight tabulation still has its best proportioning, the material mixture ratio tabulation shown in table 2D, and its general performance in above-mentioned various tests is a best.
Table 2A
Cement Emulsified bitumen Mould agent by force Fine granules Coarse Aggregate Na-CMC CaCl 2
1.0 0.9 0.03 0.933 1.4 0.09 0.01
1.0 1.0 0.03 0.933 1.4 0.10 0.01
1.0 1.1 0.03 0.933 1.4 0.11 0.01
Table 2B
Cement Emulsified bitumen Mould agent by force Fine granules Coarse Aggregate Na-CMC CaCl 2
1.0 0.9 0.03 1.4 0.933 0.09 0.01
1.0 1.0 0.03 1.4 0.933 0.10 0.01
1.0 1.1 0.03 1.4 0.933 0.11 0.01
1.0 1.2 0.03 1.4 0.933 0.12 0.01
Table 2C
Cement Emulsified bitumen Mould agent by force Fine granules Coarse Aggregate Na-CMC CaCl 2
1.0 1.2 0.03 2.15 0.175 0.12 0.01
1.0 1.3 0.03 2.15 0.175 0.13 0.01
1.0 1.4 0.03 2.15 0.175 0.14 0.01
Table 2D
Material Cement Emulsified bitumen Mould agent by force Fine granules Coarse Aggregate Na-CMC CaCl 2
Ⅲd 1.0 0.9 0.03 0.933 1.4 0.09 0.01
Ⅳb 1.0 1.0 0.03 1.4 0.933 0.10 0.01
Ⅶa 1.0 1.3 0.03 2.15 0.175 0.13 0.01
Table 2A is that to utilize the Type-I cement weight be 1.0 o'clock to the material weight ratio of showing among the 2D, the ratio of all the other raw materials and cement weight.For example show in the 2D code name III d grating, the usage quantity of emulsified bitumen is 0.9 times of Type-I cement weight, and the usage quantity that F-Type moulds agent by force then is 0.03 times of cement weight or the like.In addition, when III d, IV b and VII a level fit over best proportioning (showing the proportioning of 2D), required stone flour weight account for respectively grating Coarse Aggregate, fine granules, with 0.05,0.12 and 0.15 times of stone flour weight summation.
Fig. 2 describes in the preferred embodiment of the present invention, the fabrication process flow figure of semi-rigidity bituminous concrete.At first need the mixed solution that cationic emulsified bitumen and F-Type mould agent by force stir (step 41), if in the process that stirs, produce some milks, then must proceed the action of mix, till this milk all disappears (step 42), then pour the calcium chloride Na-CMC solution that modulates in advance again into, allow mix equipment proceed mix (step 43) then.And calcium chloride Na-CMC solution is that calcium chloride is dissolved in the Na-CMC solution of concentration 1%, more even mix and getting.
Mix evenly back adds Type-I cement and stone flour, make mix equipment continue mix action (step 44), add fine granules after stirring again and continue mix (step 45), just pour Coarse Aggregate at last into and stir (step 46), by the time can discharging pour into a mould and maintenance after stirring, after solid firmly, can provide use, needn't be through the manufacturing processed of high temperature and compacting.The process of semi-rigidity bituminous concrete manufacturing and construction can be carried out in normal temperature, but the order of spice then can not exchange with the proportioning of material, otherwise is difficult to obtain colory semi-rigidity bituminous concrete.
Table 3 is described the comparison aspect stable of semi-rigidity bituminous concrete and hot-mixed asphaltic concrete.Newly mix semi-rigidity bituminous concrete because of having quite good denseness, so the homogeneity of material and stability are all good after cast.In hard part admittedly, be engaged in the test of immersion residual strength at semi-rigidity bituminous concrete with 60 ℃ hot water.Can learn that by table 3 semi-rigidity bituminous concrete of three kinds of gratings still keep about 90% ultimate compression strength, yet hot-mixed asphaltic concrete is lower than 75% after corroding through rigorous environment.
Table 3
Material The immersion residual strength The rutting deformation amount
Semi-rigidity bituminous concrete III d grating 89.24% 0.43mm
Semi-rigidity bituminous concrete IV b grating 88.78% 1.12mm
Semi-rigidity bituminous concrete VII a grating 97.12% 1.36mm
Hot-mixed asphaltic concrete IV b grating 75% 7.25mm
*Remarks Soak 60 ℃ with the ratio that does not soak The 7 day length of time is with 60 ℃ of temperature and 19.4kg/cm 2Pressure, pressure testing 2000 times
Aspect stable, also can utilize the rutting deformation amount of table 3 to represent.Learn by table 3, at 60 ℃ and 19.4kg/cm 2Pressure condition under, the rutting deformation amount of hot-mixed asphaltic concrete is about 7.25mm during the 7 days length of time; But semi-rigidity bituminous concrete III d, IV b under the similarity condition and VII a grating only have respectively 0.43mm, 1.12mm, with the rutting deformation amount of 1.36mm.The stability of hence one can see that semi-rigidity bituminous concrete be higher than hot-mixed asphaltic concrete really.
Table 4 is testing datas of utilizing degree of collapsing, is doing one aspect the workability relatively at semi-rigidity bituminous concrete and cement concrete.Semi-rigidity bituminous concrete is because of adopting the rigid surface construction equipment, so degree of collapsing must be controlled at 10cm or be lower than 10cm.If desired degree of the collapsing 3-8cm of construction compares with the rigid surface, semi-rigidity bituminous concrete of the present invention as can be known is good than the cement concrete workability of rigid surface.Again because semi-rigidity bituminous concrete is after adding Na-CMC, can cause the delayed coagulation of cement, so the presetting period of semi-rigidity bituminous concrete may be longer slightly than cement concrete, is about 3.5-4 hour, so when construction, apart from bigger elasticity is arranged, its degree of collapsing loss was also less during the transporting of material.Therefore semi-rigidity bituminous concrete has convenience in the work than hot-mixed asphaltic concrete and cement concrete aspect the workability.
Table 4
Material Semi-rigidity bituminous concrete Cement concrete
Grating Ⅲd Ⅳb Ⅶa The rigid surface
Degree of collapsing (centimetre) 4-9 6-12 8-13 3-8
Table 5 is at semi-rigidity bituminous concrete and cement concrete, and hot-mixed asphaltic concrete does one relatively aspect intensity.Semi-rigidity bituminous concrete is because of adding cement in material, and the decorating film that hydrated cementitious produces also can increase and sandstone pellet agglutinating effect except that bearing the loading.As shown in Table 5, its strength ratio hot-mixed asphaltic concrete of semi-rigidity bituminous concrete can exceed about 2-3 doubly, and that modulus of elasticity is desired only to exceed is about about 20%, so semi-rigidity bituminous concrete is one to have and can bear traffic loading, and has the surfacing material with the close flexibility of bituminous concrete.
Table 5
Material Cement concrete Semi-rigidity bituminous concrete Hot-mixed asphaltic concrete
Grating Ⅲd Ⅳb Ⅶa Ⅲd Ⅳb Ⅲd Ⅳb Ⅶa
7 days kg of stationary value - - - 2716 2528 1934 1075 1724 1357
28 days kg/cm of ultimate compression strength 2 424 437 393 414 293 342 76 107 70 76 62 70 20-28
7 days kg/cm of tensile strength 2 29 27 21 8.47 9.62 5.45 2.82
7 days kg/cm of bending strength 2 48 45 35 21.66 21.78 14.29 12.27
7 days 0.01mm of the rut degree of depth (loading: 19.4kg/cm 2 60℃) 43 112 136 725
28 days kg/cm of modulus of elasticity 2 21100 5734 - 7753 7033 - 7661 5734 - 7753 4500-5500
Bounce-back hammer index 28 days 24-34 18-24 12-20
In addition,, freeze-thaw cycle aging by baking oven for heating is aging to be known with test-results such as drying and watering cycle are aging, warm and humid, the moisture of environment and heat energy, not high for binding material in the semi-rigidity bituminous concrete and sandstone pellet interface agglutinating injury ratio, reason is that semi-rigidity bituminous concrete is the high and flexible good many concrete grouts of intensity, its watertightness is high than hot-mixed asphaltic concrete, so have higher wear properties.
Moreover, characteristic and the cement concrete of newly mixing semi-rigidity bituminous concrete are comparatively close, maintenance method and intensity producing method after its construction are all comparatively close with cement concrete, need to produce intensity by hydrated cementitious, this and hot-mixed asphaltic concrete need by the mode of compacting and cooling generation intensity completely different, therefore semi-rigidity bituminous concrete is being made production, and the construction aspect can utilize cement concrete mix factory to make production, and utilize the rigid surface automaticmachines to construct, therefore construction operation more is not subjected to the restriction of landform and landforms, also is not subjected to the influence of weather during construction.No matter be the Ordinary Rd road surface.Pavement, paving, parking lot, basic unit's soil ground improvement.Roof water-proof shop layer, cover worker's version non-skid finish, paving, sports center, with paving maintenance or the like, all can utilize this semi-rigidity bituminous concrete to lay.
In sum, the disclosed semi-rigidity bituminous concrete of the present invention can utilize the manufacture of cement concrete to carry out the material mix.Cast and maintenance and form, not only mix and construction easily also can reduce the waste gas public hazards, more can utilize existing cement concrete mix plant, and the rigid pavement construction machinery carries out material manufacturing and construction.In addition, the construction environment of semi-rigidity bituminous concrete more is not subjected to the restriction of landform and landforms, also is not subjected to the influence of weather during construction.No matter be Ordinary Rd road surface, pavement, paving, parking lot, basic unit's soil ground improvement, roof water-proof shop layer, cover worker's version non-skid finish, paving, sports center, keep in repair or the like, all can utilize this semi-rigidity bituminous concrete to lay with the paving.Therefore, semi-rigidity bituminous concrete is an invention of very having practicality and a commercial value in fact.
The above is preferred embodiment of the present invention only, is not in order to limit claim of the present invention; Every other do not break away from the equivalence of being finished under the disclosed spirit and changes or modification, all should be included in following claims.

Claims (10)

1. semi-rigidity bituminous concrete material composition is characterized in that this semi-rigidity bituminous concrete comprises following material at least:
Type-I cement, this Type-I cement system meets Type-I cement standard or the Chinese GB175 Portland cement standard of U.S. ASTM C150;
Cationic emulsified bitumen, this cationic emulsified bitumen meet the CRS-1 standard of U.S. ASTM D2397 or the CR standard of Chinese GJJ 42, and the weight of this cationic emulsified bitumen is 0.9 to 1.4 times of this Type-I cement weight;
F-type moulds agent by force, and this F-type moulds agent by force and meets the F type high-performance water reducing agent standard of U.S. ASTM C494 or the high efficiency water reducing agent standard of Chinese GB 8076, and the weight that this F-Type moulds agent by force is 0.03 times of this Type-I cement weight;
Carboxymethylcellulose sodium solution, concentration is about 1%, and the weight of this carboxymethylcellulose sodium solution is 0.09 to 0.14 times of this Type-I cement weight;
Calcium chloride, the weight of this calcium chloride are 0.01 times of this Type-I cement weight;
Fine granules, the weight of this fine granules are 0.933 to 2.15 times of this Type-I cement weight;
Coarse Aggregate, the weight of this Coarse Aggregate are 0.175 to 1.4 times of this Type-I cement weight; And
Stone flour is the sandstone powder that the rock crushing plant produced, the weight of this stone flour be this Coarse Aggregate, this fine granules, with 0.05 to 0.15 times of the weight summation of this stone flour.
2. semi-rigidity bituminous concrete material composition as claimed in claim 1 is characterized in that, the sandstone pellet of above-mentioned pavement engineering is one of following grating;
III d grating meets in the ASRM D3515 standard of the U.S. 3/4 " grating, this III d grating comprises plural groups III d grating Coarse Aggregate, with plural groups III d grating fine granules, is applicable to the coarse grading of road surface binder course and bottom;
IV b grating meets in the ASTM D3515 standard of the U.S. 1/2 " grating, this IV b grating comprises plural groups IV b grating Coarse Aggregate, with plural groups IV b grating fine granules, is applicable to the close-graded of top course; And
VII a grating meets the thick sheet tar sand grating of Asphalt Institute, and this VII a grating comprises plural groups VII a grating Coarse Aggregate, with plural groups IV b grating fine granules, is applicable to the tar sand grating in street surface layer and paving, parking lot.
3. semi-rigidity bituminous concrete material composition as claimed in claim 2 is characterized in that, the part by weight that the optimum feed stock of above-mentioned III d grating is formed is that the weight with this Type-I cement is benchmark, and other this raw material is to distribute in following mode:
The weight of this cationic emulsified bitumen is about 0.9 times of this Type-I cement weight;
The weight that this F-Type moulds agent by force is about 0.03 times of this Type-I cement weight;
The weight of this carboxymethylcellulose sodium solution is about 0.09 times of this Type-I cement weight;
The weight of this calcium chloride is about 0.01 times of this Type-I cement weight;
The weight of this III d grating Coarse Aggregate is about 1.4 times of this Type-I cement weight;
The weight of this III d grating fine granules is about 0.933 times of this Type-I cement weight; And
Should be about this Coarse Aggregate, this fine granules of this III d grating for the weight of stone flour, add up with the weight of this stone flour 0.05 times.
4. semi-rigidity bituminous concrete material compound as claimed in claim 2 is characterized in that the part by weight that the optimum feed stock of above-mentioned IV b grating is formed, and is that the weight with this Type-I cement is benchmark, and other this raw material is to distribute in the following manner:
The weight of this cationic emulsified bitumen is about 1.0 times of this Type-I cement weight;
The weight that this F-Type moulds agent by force is about 0.03 times of this Type-I cement weight;
The weight of this carboxymethylcellulose sodium solution is about 0.10 times of this Type-I cement weight;
The weight of this calcium chloride is about 0.01 times of this Type-I cement weight;
The weight of this IV b grating Coarse Aggregate is about 0.933 times of this Type-I cement weight;
The weight of this IV b grating fine granules is about 1.4 times of this Type-I cement weight; And
Should be about this Coarse Aggregate, this fine granules of this IV b grating for the weight of stone flour, add up with the weight of this stone flour 0.12 times.
5. semi-rigidity bituminous concrete material compound as claimed in claim 2 is characterized in that the part by weight that the optimum feed stock of above-mentioned VII a grating is formed, and is that the weight with this Type-I cement is benchmark, and other this raw material is to distribute in the following manner:
The weight of this cationic emulsified bitumen is about 1.3 times of this Type-I cement weight;
The weight that this F-Type moulds agent by force is about 0.03 times of this Type-I cement weight;
The weight of this carboxymethylcellulose sodium solution is about 0.13 times of this Type-I cement weight;
The weight of this calcium chloride is about 0.01 times of this Type-I cement weight;
The weight of this VII a grating Coarse Aggregate is about 0.175 times of this Type-I cement weight;
The weight of this VII a grating fine granules is about 2.15 times of this Type-I cement weight; And
The weight of this stone flour is about this Coarse Aggregate, this fine granules of this IV b grating, add up with the weight of this stone flour 0.15 times.
6. semi-rigidity bituminous concrete as claimed in claim 1 is characterized in that, above-mentioned calcium chloride is to be dissolved in the aqueous solution of this Xylo-Mucine, to form an interfacial agent.
7. a method of making semi-rigidity bituminous concrete material composition is characterized in that, this method comprises the following step at least:
Cationic emulsified bitumen is injected mix equipment, and the weight of this cationic emulsified bitumen is 0.9 to 1.4 times of this Type-I cement weight;
F-type is moulded agent by force inject this cationic emulsified bitumen and produce a kind of pitch mixed solution, the weight that this F-type moulds agent by force is 0.03 times of this Type-I cement weight;
Start this pitch mixed solution of mix equipment mix; If produce milk in the mix process, then continue mix till this milk disappears;
Carboxymethylcellulose sodium solution is injected container, and the weight of this carboxymethylcellulose sodium solution is 0.09 to 0.14 times of this Type-I cement weight;
Pour in the carboxymethylcellulose sodium solution calcium chloride evenly that mix produces a kind of interfacial activity agent solution into, the weight of this calcium chloride is 0.01 times of this Type-I cement weight;
Pour this interfacial activity agent solution in this pitch mixed solution even mix;
Pour in this pitch mixed solution Type-I cement and this stone flour into evenly mix, the weight of this stone flour be this Coarse Aggregate, this fine granules, and 0.05 to 0.15 times of the weight summation of this stone flour;
Pour in this pitch mixed solution this fine granules evenly that mix becomes a kind of bituminous mortar into, the weight of this fine granules is 0.933 to 2.15 times of this Type-I cement weight;
Pour in this bituminous mortar this Coarse Aggregate evenly that mix becomes a kind of semi-rigidity bituminous concrete of newly mixing into, the weight of this Coarse Aggregate is 0.175 to 1.4 times of this Type-I cement weight;
This is newly mixed the semi-rigidity bituminous concrete discharging and waters and put and maintenance; And
Hard solid back forms a kind of semi-rigidity bituminous concrete provides use.
8. method as claimed in claim 7 is characterized in that, be weight percentage 1% the aqueous solution of above-mentioned carboxymethyl cellulose sodium solution.
9. method as claimed in claim 7 is characterized in that, the equipment of making above-mentioned semi-rigidity bituminous concrete is cement concrete premixing plant.
10. method as claimed in claim 7 is characterized in that, the equipment of the above-mentioned semi-rigidity bituminous concrete of casting is the construction machinery of rigid pavement construction machinery and traditional water cement concrete.
CN97102289A 1997-01-16 1997-01-16 Semi-rigidity bituminous concrete material composition and manufacturing method thereof Expired - Fee Related CN1067354C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN97102289A CN1067354C (en) 1997-01-16 1997-01-16 Semi-rigidity bituminous concrete material composition and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97102289A CN1067354C (en) 1997-01-16 1997-01-16 Semi-rigidity bituminous concrete material composition and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN1188089A CN1188089A (en) 1998-07-22
CN1067354C true CN1067354C (en) 2001-06-20

Family

ID=5166227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97102289A Expired - Fee Related CN1067354C (en) 1997-01-16 1997-01-16 Semi-rigidity bituminous concrete material composition and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN1067354C (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389944C (en) * 2004-09-15 2008-05-28 常崇义 Intelligent method for regulating concrete grading and concrete grading intelligent system
US8038364B2 (en) * 2007-08-07 2011-10-18 Saint-Gobain Technical Fabrics America, Inc. Reinforcement for asphaltic paving, method of paving, and process for making a grid with the coating for asphaltic paving
CN101967047B (en) * 2009-07-28 2013-01-30 交通部公路科学研究所 Steel slag and rubber asphalt concrete and preparation method thereof
EP2834421A4 (en) * 2012-02-28 2016-07-06 Safety Tek Inc Stabilizing agents and methods of use thereof
CN106149500B (en) * 2015-04-16 2018-06-29 王海有 A kind of construction method of cement emulsified asphalt mortar penetration type half-flexible pavement
CN105367022A (en) * 2015-11-05 2016-03-02 广西巨邦科技有限公司 Concrete for ground plane pouring and preparation method thereof
CN106007597A (en) * 2016-05-25 2016-10-12 贵州省交通规划勘察设计研究院股份有限公司 Material for quickly repairing semi-rigid base of asphalt pavement and preparation method thereof
CN111549607A (en) * 2020-04-21 2020-08-18 北京智华通科技有限公司 Environment-friendly high-performance long-life pavement structure and construction method
CN111484299A (en) * 2020-06-11 2020-08-04 陈谓清 Stone powder regenerated asphalt cement and preparation method thereof
CN114656196A (en) * 2022-03-28 2022-06-24 广东宏骏建筑工程有限公司 Flexible base asphalt pavement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058415A (en) * 1990-06-28 1992-02-05 罗姆和哈斯公司 The agate  grease coating material system that has the bitumen emulsion adhesive linkage of improveing latex
CN1111654A (en) * 1994-05-07 1995-11-15 范新宁 Manufacturing method of amines asphaltum additive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058415A (en) * 1990-06-28 1992-02-05 罗姆和哈斯公司 The agate  grease coating material system that has the bitumen emulsion adhesive linkage of improveing latex
CN1111654A (en) * 1994-05-07 1995-11-15 范新宁 Manufacturing method of amines asphaltum additive

Also Published As

Publication number Publication date
CN1188089A (en) 1998-07-22

Similar Documents

Publication Publication Date Title
CN103864374B (en) Semi-flexible pavement base material and preparation method thereof
CN103866667B (en) Semi-flexible heavy-load pavement paving structure
CN104496393A (en) Multipurpose concrete cementing agent and preparation method thereof
CN1067354C (en) Semi-rigidity bituminous concrete material composition and manufacturing method thereof
CN106587835A (en) Cold-mixed cement-emulsified asphalt concrete and pavement method thereof
CN104003661A (en) Water-permeable reclaimed asphalt mixture paving brick and preparation method thereof
Dhandapani et al. Design and performance characteristics of cement grouted bituminous mixtures-a review
CN106149500A (en) A kind of construction method of cement emulsified asphalt mortar penetration type half-flexible pavement
CN111118999A (en) Road structure of urban intersection, bus station and bus lane
CN104594151A (en) Water drainage anti-cracking type cold-recycling pavement structure
CZ20002731A3 (en) Chemical agent for enhancing technical properties of soil
CN212000441U (en) Novel road surface structure of urban heavy-load traffic
RU2389844C1 (en) Reinforced ground for arrangement of motor road carpets and crossing type surfaces foundations
JPH07300358A (en) Hydraulic grout material for paving and grout
Whiting et al. Synthesis of current and projected concrete highway technology
US20220064065A1 (en) Hybrid structural polymer-binder composite construction and paving material
Malaiskiene et al. The impact of bitumen roofing production waste (BTw) on cement mortar properties
TW408089B (en) Content and production method for semi-rigid asphalt concrete
CN1119173A (en) Manufacture of desert sand concrete and use
US20210388597A1 (en) Construction block comprising petroleum coke
Paige-Green Considerations for ensuring the durability of chemically stabilised road materials
RU2343129C1 (en) Method of receiving of rock material for device of rough surface treatment of asphalt coats, pelleted with petrolium bitumen and amended with rubber crumbs
CN215668815U (en) Novel composite road structure capable of reducing cracks
CN103936314A (en) Reactive organic modified active mineral and gap-graded asphalt mixture and preparation method thereof
KR20030003965A (en) Manufacturing methods of permeable pavement and block using the water-quenched blast furnace slag, pavement method using the same

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1043034

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010620

Termination date: 20130116

CF01 Termination of patent right due to non-payment of annual fee