CN106732794A - 一种紫膜-金属氧化物纳米复合材料的制备方法及其应用 - Google Patents

一种紫膜-金属氧化物纳米复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN106732794A
CN106732794A CN201610271357.2A CN201610271357A CN106732794A CN 106732794 A CN106732794 A CN 106732794A CN 201610271357 A CN201610271357 A CN 201610271357A CN 106732794 A CN106732794 A CN 106732794A
Authority
CN
China
Prior art keywords
purple membrane
metal oxide
purple
membrane
oxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610271357.2A
Other languages
English (en)
Inventor
刘爱骅
韩磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610271357.2A priority Critical patent/CN106732794A/zh
Publication of CN106732794A publication Critical patent/CN106732794A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及纳米材料和光催化领域,具体包括紫膜‑金属氧化物复合材料及其在光催化方面的应用。紫膜‑金属氧化物纳米复合材料是以紫膜紫膜作生物模板通过一步法合成的紫膜‑四氧化三钴纳米球复合材料。其具有光催化活性,可实现光催化降解有机物。本发明材料由于制备条件温和,保持了紫膜的原有紫膜结构,在紫膜上的视紫红质蛋白可作为成核位点促使小尺寸的四氧化三钴纳米球的形成。本发明制备得到的紫膜‑金属氧化物纳米复合材料可应用于有机物的光降解。该发明提供了一种紫膜‑金属氧化物纳米复合材料的制备方法,其材料具有催化活性,可用于工业废水或空气中有机物的降解、光催化等领域。

Description

一种紫膜-金属氧化物纳米复合材料的制备方法及其应用
技术领域
本发明涉及纳米材料和光催化领域,具体包括一种紫膜-金属氧化物纳米复合材料的合成及其应用。
背景技术
纳米技术是指在1−100纳米的尺度内,研究功能性材料的性质和应用、设备系统的制造的技术。纳米技术是现代科学和现代技术结合的产物,纳米技术又将引发一系列新的交叉学科或技术,如纳米物理学、纳米生物学、纳米化学和微纳加工技术等。纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1−100 nm)或由它们作为基本单元构成的各种固体超细材料。由于它具有表面效应、界面效应和小尺寸效应等,从而呈现出传统材料所没有的性能和独特的光、电、磁和化学特性,在催化、电化学及光电化学、分析化学、环境治理等领域得到了广泛的应用。
众所周知,很多生命现象发生在纳米水平。例如,核酸与蛋白质就是执行生物功能的重要纳米元件,是优异的天然的生物纳米材料。紫膜(purple membrane,简称PM)为盐生盐杆菌(Halobacterium halobium)和红皮盐杆菌(Halobacterium cutirubrum)等嗜盐菌在光照下在细胞膜上形成的斑状紫色膜。紫膜在嗜盐菌原生质膜上以碎片形式存在,形成紫膜的唯一蛋白质细菌视紫红质(bacteriorhodopsin,简称bR)以三聚体形式的二维六角形晶格排列在天然紫膜中,蛋白占紫膜干重的75%,其余25%为类脂。细菌视紫红质是一种248个氨基酸残基组成的光敏蛋白, 其分子量为26 kDa。bR以紫色的视黄醛作辅基,在光诱导下吸收光子后产生一系列的光循环中间体,最后又回到原始状态。在bR的光循环过程中发现了紫膜的光电转换过程,这种独特的光驱色变和光电响应特性使bR成为光学研究中的理想材料。
生物模板纳米材料,属于生物纳米材料,即以各种天然的生物材料(蛋白质、DNA、细胞、噬菌体、紫膜)为模板(成核位点),模拟生物矿化过程,生成纳米尺寸的材料或具有纳米结构的材料。生物模板合成技术源于人们对自然现象的理解,其生物原型有铁蛋白、驱磁细菌的磁小体、骨骼及鸡蛋壳等生物矿化材料,此方法避免了有机溶剂的使用、不温和的合成条件及复杂的合成步骤。充满魅力的大自然给人们提供了丰富的天然生物模板,促使人们对多种多样的生物模板成生了浓厚的兴趣。经对现有文献的检索发现,科研人员利用紫膜紫膜作模板合成了紫膜-贵金属纳米球复合材料。Zhao等人在《Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H2 Evolution from Water》(Journal of the American Chemical Society,2015,137,2840−2843)一文中利用紫膜作模板合成了紫膜-银纳米球复合材料并将其用作电化学催化剂。Mo等人在《Directed Synthesis and Assembly of Nanoparticles Using Purple Membrane》(Small,2006,2,526−529)一文中利用紫膜作模板合成了紫膜-金纳米球复合材料和紫膜-硫化银纳米球复合材料并研究了不同紫膜的蛋白工程突变体对材料合成的影响。Ron等人在《Enhanced Electronic Conductance across Bacteriorhodopsin, Induced by Coupling to Pt Nanoparticles》(The Journal of Physical Chemistry Letters,2010,1,3072−3077)一文中利用紫膜作模板合成了紫膜-铂纳米球复合材料。然而,这些研究仅限于贵金属纳米材料,而过渡金属氧化物在光、电、磁及化学等方面有着异于贵金属的优势。目前基于紫膜紫膜作模板的金属氧化物材料研究尚待发展。
全球经济高速发展的同时带来了严重的环境污染问题,有机物作为重点污染物遍布于水体、空气和土壤中,对生态环境和人类的身体健康造成了巨大危害。研究发现,TiO2、ZnO、Co3O4等过渡金属氧化物由于其在光辐射下会引起电子由价带向导带跃迁通常可作为半导体光催化剂。当用一定波长的光照射时,电子从价带激发到导带上,在价带上留下空穴,形成光生电子-空穴对,光生电子和空穴具有强还原性和强氧化性,光生电子能和氧结合形成超氧化物自由基•O-2,空穴能与OH-和H2O结合形成羟基自由基OH•,OH•和•O-2具有很强的氧化能力,能降解有机污染物而最终生成CO2和H2O。然而,传统方法合成的Co3O4纳米材料存在着合成方法不绿色环保、反应条件不温和、所得的材料颗粒不均一、在溶液中分散性不好等缺点,极大地限制了Co3O4纳米材料的应用。
发明内容
本发明的目的是提供一种紫膜-金属氧化物复合材料的制备方法及其应用。
为实现上述目的,本发明采用的技术方案为:
一种紫膜-金属氧化物复合材料的制备方法,其特征在于该方法为:以紫膜作为金属氧化物合成的模板,通过温和的化学反应生成金属氧化物,在紫膜上的蛋白质可作为金属氧化物固体的成核位点,实现小尺寸金属氧化物纳米球在紫膜上的自发形成。
优选是,所述的紫膜-金属氧化物复合材料,其特征在于:所属紫膜为紫膜,所述的金属氧化物为四氧化三钴,所述的蛋白质为细菌视紫红。
所述制备方法包括如下步骤:
(1) 将紫膜加到氯化钴水溶液里并混匀,静置一段时间;
(2) 向上述混合溶液中加入硼氢化钠并混匀,此时钴离子Co2+被硼氢化钠还原成0价的Co,放置一段时间以使Co自发地被氧化成四氧化三钴,反应过程如下:Co2++ NaBH4→ Co → Co3O4
(3) 将上述反应液离心,去除含有未反应成分的上清液,收集沉淀。
上述的紫膜-金属氧化物纳米复合材料的应用,其特征在于:所述紫膜-四氧化三钴纳米球复合物具有光催化的特性,可实现光催化及其他方面的应用。
优选是,所述紫膜-四氧化三钴纳米球复合物可作为光催化剂以用于有机物的光降解。
具体的光降解实验:
在暗处将光催化剂紫膜-四氧化三钴纳米球复合物、有机物混合于水中。给予反应液照射可见光,在室温下静置,一段时间后观察反应液中加入的有机物的量的变化。
所述有机物为苯酚、硝基苯酚、罗丹明B、甲基红、甲基橙等。
所述紫膜由嗜盐菌Halobacterium halobiumR1制得。嗜盐菌的制备过程及紫膜的提纯方法见参考文献:徐冰,陈亮,胡坤生,嗜盐菌的培养及紫膜分离了纯化方法的改进,生物化学与生物物理进展,2012. 29(5):827。
本发明的效果是:
1.本发明利用生物模板法及一步法合成了紫膜-四氧化三钴纳米球复合物,合成方法简单、温和、环保,得到的四氧化三钴纳米球尺度小(10 nm左右),且均匀附着在紫膜上,在溶液中的分散性好并且有利于四氧化三钴纳米球的回收,解决了小尺度四氧化三钴纳米球难经离心收集的缺点。
2. 本发明中的紫膜-四氧化三钴纳米球复合物具有光催化活性,由于四氧化三钴纳米球的尺寸效应、紫膜的光催化协同性能,在可见光下具有光催化活性并且明显高于无紫膜条件下合成的四氧化三钴纳米球,从而解决了许多过渡金属氧化物只在紫外光下具有光催化效果的难题。
3. 本发明将紫膜-四氧化三钴纳米球复合物应用于有机物的光降解,实现了染料、有机污染物等的可见光降解。
4.本发明提供一种紫膜-金属氧化物纳米复合材料的合成方法,制备的金属氧化物纳米复合材料可根据其特性作为催化剂应用于生物医药、化工、环境、分析检测等领域。
附图说明
图1为本发明实施例提供的材料合成时的混合液结束反应后的照片。左管(Co3O4),无紫膜作模板的条件下合成四氧化三钴的反应混合液;右管(PM-Co3O4),紫膜作模板的条件下合成四氧化三钴的反应混合液。
图2为本发明实施例提供的紫膜-四氧化三钴纳米球复合物的透射电镜照片;
图3为本发明实施例提供的有机染料罗丹明B的光降解的反应照片。左图(PM-Co3O4),以紫膜-四氧化三钴纳米球复合物作催化剂的反应液;中图(Co3O4),以无紫膜作模板的条件下合成的四氧化三钴作催化剂的反应液;右图(PM),以紫膜作催化剂的反应液。
图4为本发明实施例提供的有机染料罗丹明B的光降解的光谱效果图。
具体实施方式
为了深入地说明本发明的内容,下面将进一步列举一些实施例,但本发明不局限于所列举的实施例。下列实施例中具体实验条件或方法如未注明,均按本领域的常规条件或方法进行。
实施例1
紫膜的制备:
将嗜盐菌Halobacterium halobiumR1接种于5 mL的蛋白胨加盐培养基,在40°C条件下振荡(110 rpm)培养3天后,离心(1300 g,15 min)收菌,转接在100 mL的蛋白胨加盐培养基中,重复上述培养条件,3天后离心收菌,转接在2 L的蛋白胨加盐培养基中,重复上述培养条件,1周后离心收菌。
蛋白胨加盐培养基(每1 L)成分包括:NaCl(250 g)、MgSO4•7H2O (10 g)、KCl(2 g)、二水合柠檬酸钠(3 g)、Oxoid L-37蛋白胨(10 g)、ZnSO4•7H2O(44 mg)、MnSO4•H2O(33 mg)、FeSO4•7H2O(315 mg)、CuSO4•5H2O(150 mg)、CaCl2(200 mg)。
实施例2
紫膜的提纯:
(1) 将离心得到的菌体重悬于800 mL的超纯水中,搅拌过夜以使菌体彻底破碎。
(2) 离心(10000 g,7 min)后弃掉沉淀,取上清液。
(3) 将上清经高速离心(40000 g,35 min)后弃掉浅红色上清液,将紫红色沉淀重悬于200 mL NaCl溶液(0.1 M)中。
(4) 将重悬液再次离心,重复步骤(2)、(3)三次直至上清无色。
(5) 将最终的紫红色沉淀重悬于0.1 MNaCl溶液中,保存在4°C冰箱中备用。
实施例3
紫膜-四氧化三钴纳米球复合物的制备:
(1) 将紫膜加到氯化钴水溶液里并混匀,静置一段时间;
(2) 向上述混合溶液中加入硼氢化钠并混匀,反应一段时间以使四氧化三钴生成;
(3) 将上述反应液离心,去除含有未反应成分的上清液,收集获得制备的材料沉淀,离心洗涤沉淀,用水将其重悬,保存在4°C冰箱中备用。
另做一对照实验:在无紫膜作模板的条件下合成四氧化三钴,其他实验条件及步骤与上述实验相同。
如图1所示,紫膜和氯化钴水溶液的混合反应液经硼氢化钠作用后无沉淀产生,而对照实验出现大量四氧化三钴固体沉淀,说明在没有紫膜模板的条件下,四氧化三钴自身大量团聚而形成大块沉淀;在紫膜模板的条件下,四氧化三钴因结合在紫膜上,其分散性由于紫膜的良好的水溶性而得到大幅改善,从而解决了四氧化三钴颗粒分散性不好的难题。
实施例4
紫膜-四氧化三钴纳米球复合物的形貌分析:
将紫膜-四氧化三钴纳米球复合物的悬浮液滴于铜网上,室温晾干后利用透射电子显微镜分析其形貌。
如图2所示,四氧化三钴纳米球均匀分散于紫膜之上,四氧化三钴纳米球的粒径为10 nm左右,紫膜本身的膜结构保持完好。
实施例5
紫膜-四氧化三钴纳米球复合物的光催化活性:
在暗处将光催化剂紫膜-四氧化三钴纳米球复合物、有机染料罗丹明B混合于水中;经可见光照射,在室温下(25 °C)观察反应液颜色随时间的变化。
另做两个对照实验:采用无紫膜模板条件下合成的四氧化三钴、不含四氧化三钴的天然紫膜分别作为光催化剂,其他实验条件及步骤与上述实验相同。
如图3所示,光照前后对照组的反应液颜色没有明显变化,而含有光催化剂紫膜-四氧化三钴纳米球复合物的反应液的颜色明显变淡。反应体系中的罗丹明B本身呈红色,当其被降解后红色消失。
另外,针对含有膜-四氧化三钴纳米球复合物的反应液(10 mL),反应期间每隔6小时取出200 µL反应液,离心后测定其紫外-可见吸收光谱,如图4所示,随着反应时间的延长,553 nm处的吸收峰(罗丹明B的最大吸收波长)逐渐减小至消失,说明罗丹明B逐渐降解,24 h后全部降解。
实验表明本发明制备的紫膜-四氧化三钴纳米球复合物具有良好的光催化活性,可应用于有机物的光降解处理。

Claims (7)

1.一种紫膜-金属氧化物纳米复合材料的制备方法,其特征在于:以紫膜作为金属氧化物合成的模板,通过温和的化学反应生成金属氧化物,在紫膜上的蛋白可作为金属氧化物固体的成核位点,实现小尺寸金属氧化物纳米球在紫膜上的自发形成。
2.按权利要求1所述的紫膜-金属氧化物纳米复合材料,其特征在于:所属紫膜为紫膜,所述的金属氧化物为四氧化三钴,所属的蛋白为细菌视紫红。
3.按权利要求1或2所述的紫膜-金属氧化物纳米复合材料的制备方法,其特征在于,该方法包括如下步骤:
(1) 将紫膜加到氯化钴水溶液并混匀,静置一段时间;
(2) 向上述混合溶液中加入硼氢化钠并混匀,反应一段时间后生成四氧化三钴;
(3) 将上述反应液离心,去除含有未反应成分的上清液,收集沉淀,4°C保存备用。
4.按权利要求1−3所述的紫膜-金属氧化物复合材料,其特征在于:所述紫膜-金属氧化物复合材料中金属氧化物是粒径5−50 nm的纳米球,颗粒大小均匀。
5.按权利要求1−4所述的紫膜-金属氧化物复合材料,其特征在于:所述紫膜-金属氧化物复合材料具有光催化的特性,可实现光催化及其他方面的应用。
6.按权利要求5所述的紫膜-金属氧化物复合材料的应用,其特征在于:所述紫膜-金属氧化物复合材料可作为光催化剂以用于有机物的光降解。
7.按权利要求5或6所述的紫膜-金属氧化物复合材料的应用,其特征在于:光源为可见光或紫外光,所述有机物为苯酚、硝基苯酚、罗丹明B、甲基红、甲基橙等。
CN201610271357.2A 2016-04-28 2016-04-28 一种紫膜-金属氧化物纳米复合材料的制备方法及其应用 Withdrawn CN106732794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610271357.2A CN106732794A (zh) 2016-04-28 2016-04-28 一种紫膜-金属氧化物纳米复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610271357.2A CN106732794A (zh) 2016-04-28 2016-04-28 一种紫膜-金属氧化物纳米复合材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN106732794A true CN106732794A (zh) 2017-05-31

Family

ID=58972099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610271357.2A Withdrawn CN106732794A (zh) 2016-04-28 2016-04-28 一种紫膜-金属氧化物纳米复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106732794A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231483A (zh) * 2018-09-29 2019-01-18 黑龙江大学 一种光催化耦合微生物过滤一体化工艺处理含酚废水的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203360A1 (en) * 2009-02-12 2010-08-12 Kim Dong-Wan Bacteria/transition metal oxides organic-inorganic composite and method for manufacturing the same
CN102515276A (zh) * 2011-12-30 2012-06-27 四川大学 一种基于牛血清蛋白为模板制备二氧化锰纳米粒子的方法
CN103118777A (zh) * 2010-05-24 2013-05-22 希路瑞亚技术公司 纳米线催化剂
CN104209126A (zh) * 2014-09-25 2014-12-17 四川理工学院 一种束状棱柱四氧化三钴的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203360A1 (en) * 2009-02-12 2010-08-12 Kim Dong-Wan Bacteria/transition metal oxides organic-inorganic composite and method for manufacturing the same
CN103118777A (zh) * 2010-05-24 2013-05-22 希路瑞亚技术公司 纳米线催化剂
CN102515276A (zh) * 2011-12-30 2012-06-27 四川大学 一种基于牛血清蛋白为模板制备二氧化锰纳米粒子的方法
CN104209126A (zh) * 2014-09-25 2014-12-17 四川理工学院 一种束状棱柱四氧化三钴的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IZHAR RON, ET AL: "Enhanced Electronic Conductance across Bacteriorhodopsin, Induced by Coupling to Pt Nanoparticles", 《J. PHYS. CHEM. LETT.》 *
KI TAE NAM, ET AL: "Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes", 《SCIENCE》 *
XIAO MO, ET AL: "Directed Synthesis and Assembly of Nanoparticles Using Purple Membrane", 《SMALL》 *
ZHENLU ZHAO, ET AL: "Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H2 Evolution from Water", 《J. AM. CHEM. SOC.》 *
黄鑫,等: "生物模板法制备纳米材料", 《四川师范大学学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231483A (zh) * 2018-09-29 2019-01-18 黑龙江大学 一种光催化耦合微生物过滤一体化工艺处理含酚废水的方法

Similar Documents

Publication Publication Date Title
Guo et al. Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation
Nabi et al. Application of titanium dioxide for the photocatalytic degradation of macro-and micro-plastics: a review
Zhang et al. NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites
Wu et al. Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices
Nahyoon et al. Synthesis of novel visible light driven MgO@ GO nanocomposite photocatalyst for degradation of Rhodamine 6G
Zhang et al. Fe3O4@ MIL-100 (Fe) modified ZnS nanoparticles with enhanced sonocatalytic degradation of tetracycline antibiotic in water
Sun et al. Effective removal of nanoplastics from water by cellulose/MgAl layered double hydroxides composite beads
Jabbar et al. Design and construction of a robust ternary Bi5O7I/Cd0. 5Zn0. 5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: environmental factors and degradation intermediates
Zhao et al. Photocatalytic degradation of antibacterials using BixOyXz with optimized morphologies and adjusted structures-A review
Wang et al. The generation of lattice oxygen defects enhanced by β particles: Layered microsphere-like Bi2WO6 as a template leads to Bix@ Bi2− xWOn for the efficient removal of oxytetracycline
Mahmoud et al. Adsorption behavior of silver quantum dots by a novel super magnetic CoFe2O4-biochar-polymeric nanocomposite
CN113731395B (zh) 一种富含氧空位的锡酸锌光催化剂、制备方法及应用
Ma et al. Self-assembled Co-doped β-Bi2O3 flower-like structure for enhanced photocatalytic antibacterial effect under visible light
Li et al. Visible light photocatalytic abatement of tetracycline over unique Z-scheme ZnS/PI composites
Wang et al. MOF-templated core–shell CoSx@ BiOBr Z-type heterojunction degradation of multiple antibiotics
Wang et al. Facile synthesis of porous ZnO nanoparticles efficient for photocatalytic degradation of biomass-derived bisphenol A under simulated sunlight irradiation
Fu et al. Preparation of rambutan-shaped hollow ZnFe2O4 sphere photocatalyst for the degradation of tetracycline by visible-light photocatalytic persulfate activation
Li et al. Synthesis of flower-like AgI/BiOCOOH pn heterojunctions with enhanced visible-light photocatalytic performance for the removal of toxic pollutants
Chen et al. Synthesis of halloysite nanotubes supported Bi-modified BaSnO3 photocatalysts for the enhanced degradation of methylene blue under visible light
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
Zhu et al. Heterogeneous activation of persulfate by Bi2MoO6–CuS composite for efficient degradation of orange II under visible light
Liu et al. NaBiS2 decorated polysaccharide sponges for adsorption–photocatalytic degradation of dye under visible light illumination
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
De et al. Water purification by green synthesized nanomaterials
Dai et al. Efficient degradation of tetracycline in aqueous solution by Ag/AgBr catalyst under solar irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 266071 Shandong city of Qingdao province Ningxia City Road No. 308

Applicant after: QINGDAO University

Address before: 266071 Ningxia Road, Shandong, China, No. 308, No.

Applicant before: QINGDAO University

WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170531