CN106732571B - 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法 - Google Patents

锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法 Download PDF

Info

Publication number
CN106732571B
CN106732571B CN201611056143.XA CN201611056143A CN106732571B CN 106732571 B CN106732571 B CN 106732571B CN 201611056143 A CN201611056143 A CN 201611056143A CN 106732571 B CN106732571 B CN 106732571B
Authority
CN
China
Prior art keywords
nanometer film
gold
titanium dioxide
gold nanometer
anatase titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611056143.XA
Other languages
English (en)
Other versions
CN106732571A (zh
Inventor
杨健男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611056143.XA priority Critical patent/CN106732571B/zh
Publication of CN106732571A publication Critical patent/CN106732571A/zh
Application granted granted Critical
Publication of CN106732571B publication Critical patent/CN106732571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法,所述金纳米薄膜为经紫外线照射过的金纳米薄膜,其上滴有锐钛型二氧化钛分散液。所述金纳米薄膜,具有更好的导热性和导电性,并且具有良好的韧性。并且,二氧化钛粒子与金纳米粒子产生等离子共振,提高了光触媒活性,所以非常适合用于水净化处理,空气净化等。

Description

锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法
技术领域
本发明涉及锐钛型二氧化钛光触媒技术,尤其涉及一种锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法。
背景技术
锐钛型二氧化钛,作为最具有代表性的光触媒材料,是一种具有光催化功能的纳米级的光半导体材料。光触媒涂布于基材表面,在紫外线线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除甲醛、除臭、抗污、净化空气等功能。光触媒是目前国际上最安全和最洁净的环境净化材料,在欧美和日本、韩国等区域广泛运用,美国宇航空间站净化工程、海上油污降解工程和日本公交公司消毒工程均使用光触媒进行处理。
纯净的纳米二氧化钛是单质粉末状的,实用性较小,因为风一吹就没了,所以在使用时往往做成添加有黏合剂的混合液态状。锐钛型二氧化钛粉末的带隙能只有3.2eV,只能吸收400nm以下的紫外线,所以减少了锐钛型二氧化钛的光触媒活性。所以,需要研究配制掺杂其他材料。比如采用固相合成、过渡金属离子和非金属离子掺杂、金属-有机络合物、表面敏化、半导体复合等多种方法,对光触媒进行可见光诱导。有人研究发现纳米贵金属(铂、铑、钯等)与光触媒材料进行配位螯合后,会极大提高光生载流子的分离效率和抑制电子-空穴的重新复合,从而进一步拓宽了二氧化钛的光波吸收范围,这些纳米贵金属也被称为“光触媒的维生素”。还有人研究化学配位键螯合功能元素掺杂技术,使用这种技术可以极大增强光触媒材料的光催化协同效应。
发明内容
本发明的目的在于提供一种新型的锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法。
本发明是通过如下技术方案来实现上述目的的:
一种锐钛型二氧化钛与金纳米薄膜的复合材料,其特征在于,所述金纳米薄膜为经紫外线照射过的金纳米薄膜,其上滴有锐钛型二氧化钛分散液。
进一步,所述金纳米薄膜,是含有金纳米粒子的氯仿溶液滴在水面上自主形成的朗格缪尔薄膜。
进一步,所述金纳米薄膜,是单层的。
进一步,所述紫外线照射金纳米薄膜的时间长度T,为1~10分钟。
进一步,所述锐钛型二氧化钛分散液的浓度为0.01wt%-0.1wt%。
一种锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,包括如下步骤:
第一、制作金纳米薄膜;
第二、对金纳米薄膜用紫外线照射,时间长度为T;
第三、调制锐钛型二氧化钛分散液;
第四、将锐钛型二氧化钛分散液滴在金纳米薄膜上。
进一步,所述制作金纳米薄膜,包括如下步骤:
首先,在水槽中注满蒸馏水,
其次,将金纳米粒子用蒸馏过的氯仿溶解,
然后,将溶解后的含有金纳米粒子的氯仿溶液注入水槽内的蒸馏水中,
最后,水面上的金纳米粒子自主形成朗格缪尔薄膜。
进一步,还包括,在水槽上两边放置方柱,在含有金纳米粒子的氯仿溶液注入到水槽内两方柱之间的水中时,把两方柱向中间推靠,使金纳米粒子更容易自主形成朗格缪尔薄膜。
进一步,所述紫外线照射金纳米薄膜的时间长度T,为1~10分钟。
进一步,所述锐钛型二氧化钛分散液的浓度为0.01wt%-0.1wt%。
与现有技术相比,本发明锐钛型二氧化钛与金纳米薄膜的复合材料,所述金纳米薄膜为经紫外线照射过的金纳米薄膜,其上滴有锐钛型二氧化钛分散液。其中,金纳米薄膜,是经过简单处理的二次元金纳米粒子薄膜,具有表面等离子共振效果,具有超薄膜性,感光,触媒等特性。经过紫外线的照射,金纳米粒子的配位子被氧化而被去除,所以具有更好的导热性和导电性,并且具有良好的韧性。并且,因为金纳米粒子的配位子被氧化而被去除,所以金纳米粒子的表面等离子共振能带提高。而二氧化钛粒子与金纳米粒子产生等离子共振,提高了光触媒活性,所以非常适合用于水净化处理,空气净化等。而且金纳米薄膜是单层的,如果金纳米薄膜太厚,则会影响与二氧化钛粒子的等离子共振。而且紫外线的照射时间不能太长,太长了会使得金纳米粒子由融合状态演变成连续的构造体,甚至凝聚在一起成网状,孔径增大,导致金纳米粒子的表面的等离子共振能带消失。
附图说明
图1为本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法流程图;
图2为本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法中制作金纳米薄膜的流程图;
图3为本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法所制作的金纳米薄膜的结构图;
图4为本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的脱色反应活性图,其中金纳米薄膜用紫外线照射的时间长度不同,以及滴的锐钛型二氧化钛的浓度也不同;
图5为本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的脱色反应活性对比图,其中金纳米薄膜用紫外线照射的时间长度不同,以及滴的锐钛型二氧化钛的浓度也不同;
图6为本发明具体实施方式的金纳米薄膜用紫外线照射不同时间长度的结构状态放大图;
图7为本发明具体实施方式的金纳米薄膜用紫外线照射不同时间长度的表面等离子共振带的变化图;
图8为本发明具体实施方式的金纳米薄膜用紫外线照射不同时间长度的金粒子表面配位子除去量图。
具体实施方式
请参见图1所示,本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,包括如下步骤:
第一、制作金纳米薄膜;
第二、对金纳米薄膜用紫外线照射,时间长度为T;
第三、调制锐钛型二氧化钛分散液;
第四、将锐钛型二氧化钛分散液滴在金纳米薄膜上。
其中,制作金纳米薄膜,是用含有金纳米粒子的氯仿溶液滴在水面上,自主形成朗格缪尔薄膜而制成。具体请参见图2所示。
首先,在水槽中注满蒸馏水,优选的,水槽可先用蒸馏过的氯仿擦拭。
其次,将金纳米粒子用蒸馏过的氯仿溶解,优选的,金纳米粒子在使用前先低温保存,比如冰箱保鲜层。其中蒸馏过的氯仿浓度为99.99%,或一般称为纯氯仿。
然后,将溶解后的含有金纳米粒子的氯仿溶液注入水槽内的蒸馏水中,优选的,使用金属用针管轻轻注入。
最后,水面上的金纳米粒子自主形成朗格缪尔薄膜,此金纳米薄膜是单层的,如图3所示。
进一步,为便于制作,还可在水槽上两边放置方柱,在含有金纳米粒子的氯仿溶液注入到水槽内两方柱之间的水中后,把两方柱向中间推靠,使金纳米粒子更容易自主形成朗格缪尔薄膜。同样,优选的,方柱可先用蒸馏过的氯仿擦拭。另外,因水的表面张力因素,在将方柱放置到水槽上时,会除去部分多余水平面的水。
紫外线照射金纳米薄膜的时间长度T,为1~10分钟,最佳为3分钟,所述紫外线为100%的紫外线。
在对金纳米薄膜用紫外线照射,时间长度为T后,还可以包括,将得到的构造体转录在玻璃基板上。
在将得到的构造体转录在玻璃基板后,还可以包括,室温干燥。
锐钛型二氧化钛分散液的浓度,为0.01-0.1wt%,最佳为0.1wt%。
在将锐钛型二氧化钛分散液滴在经紫外线照射的金纳米薄膜上后,还可以包括,室温干燥。
根据本发明具体实施方式的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法获得的锐钛型二氧化钛与金纳米薄膜的复合材料,所述金纳米薄膜为经紫外线照射过的金纳米薄膜,其上滴有锐钛型二氧化钛分散液。其中,金纳米薄膜,是经过简单处理的二次元金纳米粒子薄膜,具有表面等离子共振效果,具有超薄膜性,感光,触媒等特性。经过紫外线的照射,金纳米粒子的配位子被氧化而被去除,所以具有更好的导热性和导电性,并且具有良好的韧性。并且,因为金纳米粒子的配位子被氧化而被去除,所以金纳米粒子的表面等离子共振能带提高。而二氧化钛粒子与金纳米粒子产生等离子共振,提高了光触媒活性,所以非常适合用于水净化处理,空气净化等。而且金纳米薄膜是单层的,如果金纳米薄膜太厚,则会影响与二氧化钛粒子的等离子共振。而且紫外线的照射时间不能太长,太长了会使得金纳米粒子由融合状态演变成连续的构造体,甚至凝聚在一起成网状,孔径增大,导致金纳米粒子的表面的等离子共振能带消失。
请参见图4和图5所示,将锐钛型二氧化钛与金纳米薄膜的复合材料放入稀释好的甲基橙溶液,以1.2W/cm2的紫外线照射70分钟,进行脱色反应,以检验光触媒活性。使用1.2W/cm2的紫外线,是因为这是模仿太阳的紫外线到达地球表面的最强照射度(一般不超过10%,太阳的紫外线一般为12W/cm2)。对锐钛型二氧化钛与自金纳米薄膜的复合材料进行光触媒活性的检验,可以看到经过紫外线照射3分钟的金纳米薄膜和浓度为0.1wt%的锐钛型二氧化钛分散液的复合材料的除杂效果最好,亦即光触媒活性最高。这是因为,请参见图6到图8所示,金纳米粒子表面存在着配位子,经过紫外线照射后,配位子被除去,金纳米粒子以横毛管力互相牵引,照射3分钟时,变成融合状态,此时的界面能量是最小的。继续照射,金纳米粒子则变成连续的构造体。更进一步照射,金纳米粒子则凝聚在一起成网状,孔径增大,金纳米粒子的表面的等离子共振能带消失,如图6所示。从图7可以看到,金纳米薄膜用紫外线照射3分钟时等离子共振是最大的。从图8可以看到,金纳米薄膜用紫外线照射3分钟时金纳米粒子表面的配位子已全部去除。

Claims (7)

1.一种锐钛型二氧化钛与金纳米薄膜的复合材料,其特征在于,所述金纳米薄膜为经紫外线照射过的金纳米薄膜,其上滴有锐钛型二氧化钛分散液,所述金纳米薄膜,是单层的,所述紫外线照射金纳米薄膜的时间长度T>=1分钟且<5分钟。
2.根据权利要求1所述的锐钛型二氧化钛与金纳米薄膜的复合材料,其特征在于,所述金纳米薄膜,是含有金纳米粒子的氯仿溶液滴在水面上自主形成的朗格缪尔薄膜。
3.根据权利要求1所述的锐钛型二氧化钛与金纳米薄膜的复合材料,其特征在于,所述锐钛型二氧化钛分散液的浓度为0.01wt%-0.1wt%。
4.一种锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,包括如下步骤:
第一、制作金纳米薄膜;
第二、对金纳米薄膜用紫外线照射,时间长度为T;
第三、调制锐钛型二氧化钛分散液;
第四、将锐钛型二氧化钛分散液滴在金纳米薄膜上;
所述金纳米薄膜,是单层的,所述紫外线照射金纳米薄膜的时间长度T>=1分钟且<5分钟。
5.根据权利要求4所述的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,其特征在于,所述制作金纳米薄膜,包括如下步骤:
首先,在水槽中注满蒸馏水,
其次,将金纳米粒子用蒸馏过的氯仿溶解,
然后,将溶解后的含有金纳米粒子的氯仿溶液注入水槽内的蒸馏水中,最后,水面上的金纳米粒子自主形成朗格缪尔薄膜。
6.根据权利要求5所述的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,其特征在于,还包括,在水槽上两边放置方柱,在含有金纳米粒子的氯仿溶液注入到水槽内两方柱之间的水中时,把两方柱向中间推靠,使金纳米粒子自主形成朗格缪尔薄膜。
7.根据权利要求4所述的锐钛型二氧化钛与金纳米薄膜的复合材料的制备方法,其特征在于,所述锐钛型二氧化钛分散液的浓度为0.01wt%-0.1wt%。
CN201611056143.XA 2016-11-24 2016-11-24 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法 Active CN106732571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611056143.XA CN106732571B (zh) 2016-11-24 2016-11-24 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611056143.XA CN106732571B (zh) 2016-11-24 2016-11-24 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106732571A CN106732571A (zh) 2017-05-31
CN106732571B true CN106732571B (zh) 2019-04-19

Family

ID=58910849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611056143.XA Active CN106732571B (zh) 2016-11-24 2016-11-24 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106732571B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068524B (zh) * 2018-10-18 2022-03-22 中国科学院宁波材料技术与工程研究所 一种海水淡化微纳米膜材料、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485975A (zh) * 2009-02-27 2009-07-22 哈尔滨工业大学 钛基纳米薄膜光催化剂的制备方法
CN102294234A (zh) * 2011-07-15 2011-12-28 刘凡新 复合二氧化钛光催化剂及其制备方法
CN104971757A (zh) * 2015-06-05 2015-10-14 山西省分析科学研究院 一种Ag、N共掺杂TiO2纳米薄膜的制备方法及其纳米薄膜的应用
CN105057003A (zh) * 2015-08-22 2015-11-18 北京化工大学 一种二氧化钛纳米复合薄膜制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485975A (zh) * 2009-02-27 2009-07-22 哈尔滨工业大学 钛基纳米薄膜光催化剂的制备方法
CN102294234A (zh) * 2011-07-15 2011-12-28 刘凡新 复合二氧化钛光催化剂及其制备方法
CN104971757A (zh) * 2015-06-05 2015-10-14 山西省分析科学研究院 一种Ag、N共掺杂TiO2纳米薄膜的制备方法及其纳米薄膜的应用
CN105057003A (zh) * 2015-08-22 2015-11-18 北京化工大学 一种二氧化钛纳米复合薄膜制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Amperometric sensing of hydrogen peroxide on a modified electrode with layered Au/TiO2 nanofilms from self-assembly at air/water interface";Xiangle Yin et al.;《Journal of Electroanalytical Chemistry》;20140307;第720-721卷;第19-23页
"不同结构的氧化钛纳米金复合薄膜的光伏特性";苑琪等;《化学学报》;20140515;第72卷(第5期);第624-629页

Also Published As

Publication number Publication date
CN106732571A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Li et al. Polyhedral 30‐faceted BiVO4 microcrystals predominantly enclosed by high‐index planes promoting photocatalytic water‐splitting activity
Gao et al. Strongly coupled g‐C3N4 nanosheets‐Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation
Liu et al. Ag–ZnO submicrometer rod arrays for high-efficiency photocatalytic degradation of Congo red and disinfection
Li et al. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr (VI) and sodium pentachlorophenate removal under visible light
Wang et al. Bioinspired synthesis of photocatalytic nanocomposite membranes based on synergy of Au-TiO2 and polydopamine for degradation of tetracycline under visible light
Ai et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light
Ou et al. Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO) 2CO3–BiOI solid solutions
Wang et al. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device
Zhang et al. In situ growth of g-C3N4 on hexangular flowerlike FeWO4 microcrystals: highly efficient catalyst and the crucial roles of Fe3+/Fe2+ couple in the photoassisted oxidation and reduction reactions
Zhang et al. Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution
Jia et al. Piezoelectricity-enhanced photocatalytic degradation performance of SrBi4Ti4O15/Ag2O pn heterojunction
Liu et al. Preparation of ZnO/Co3O4 hollow microsphere by pollen‐biological template and its application in photocatalytic degradation
Huang et al. Preparation and photocatalytic activity of CuO/ZnO composite nanostructured films
Li et al. TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction with enhanced photocatalytic for NO removal
Kalpana et al. Enhancement of photocatalytic dye degradation efficiency of ZnO/Ag film deposited on flexible stainless steel meshes through g-C3N4 addition
Liu et al. Combining g-C3N4 with CsPbI3 for efficient photocatalysis under visible light
Chen et al. Two-dimensional Ga2S3/g-C3N4 heterojunction composites with highly enhanced photocatalytic activity and stability
Singh et al. Effect of Pd and Au sensitization of bath deposited flowerlike TiO2 thin films on CO sensing and photocatalytic properties
Su et al. Low‐temperature synthesis one‐dimensional Ag2CO3/SnFe2O4 Z‐scheme with excellent visible‐light photoactivity
CN106732571B (zh) 锐钛型二氧化钛与金纳米薄膜的复合材料及其制备方法
Shown et al. Synthesis of-Cyclodextrin-Modified Water-Dispersible Ag-TiO2 Core–Shell Nanoparticles and Their Photocatalytic Activity
Weldegebrieal et al. Photocatalytic activity of CdO/ZnO nanocomposite for methylene blue dye and parameters optimisation using response surface methodology
Tai et al. Photocatalytic and water-splitting properties of TiO2 and Ag–TiO2 films in the visible light region
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
Kumar Metal Oxides‐Based Nano/Microstructures for Photodegradation of Microplastics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant