CN106731488A - 一种纳米材料增强气体在离子液体中溶解的方法 - Google Patents

一种纳米材料增强气体在离子液体中溶解的方法 Download PDF

Info

Publication number
CN106731488A
CN106731488A CN201510827797.7A CN201510827797A CN106731488A CN 106731488 A CN106731488 A CN 106731488A CN 201510827797 A CN201510827797 A CN 201510827797A CN 106731488 A CN106731488 A CN 106731488A
Authority
CN
China
Prior art keywords
nano material
ionic liquid
gas
oxide
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510827797.7A
Other languages
English (en)
Inventor
张宗超
黄婷玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510827797.7A priority Critical patent/CN106731488A/zh
Publication of CN106731488A publication Critical patent/CN106731488A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明一种纳米材料增强气体在离子液体中溶解的方法,该方法溶解过程采用高压装置操作,在高压装置中加入离子液体和纳米材料,充入待溶解气体,实现气体溶解。纳米材料可为金属单质、金属合金、氧化物或者单质碳材料。所提供离子液体物理化学性质稳定,是优良的分离气体的试剂,同时离子液体中可以原位合成纳米材料并稳定纳米材料,体系物理化学性质稳定可以长期使用。与纯粹的离子液体吸收相比,加入纳米材料后,气体的溶解能够显著提升,有益于气体的分离提纯和储存运输。

Description

一种纳米材料增强气体在离子液体中溶解的方法
技术领域
本发明属于化工溶解技术领域,具体涉及一种纳米材料增强气体在离子液体中溶解的方法。
背景技术
气态碳氢化合物,是化石能源的主要气相成分,氧气、氢气、氮气等更是合成氨工艺以及各类氧化还原反应的基本原料,以上气体的在反应转化之前纯度都有一定要求,但是气体制备和收齐过程中总是伴有各种各样的杂质,所以气体的分离是十分必须和重要的。
离子液体是一种由阴阳离子组成的特殊溶剂,不仅具有盐的性质,同时通过调变阴阳离子的结构可以使其具有不同的酸碱性、粘度、密度、表面张力及亲水疏水性等。而且离子液体几乎没有蒸汽压,不可燃,物理化学性质稳定等等,已经广泛用于气体分离提纯,气体存储运输等方面。
以甲烷乙烷等气态碳氢化合物为例,在页岩气的开采过程中,总伴有部分杂质二氧化碳、氮气、硫化物等,对碳氢化合物的利用造成了困扰。离子液体已经被发现可以用于碳氢化合物产品中二氧化碳,硫化物等的分离。2014年,Thijs J.H.Vlugt等对一系列离子液体进行了二氧化碳和甲烷的溶解测试,并发现1-丙烯基-3-甲基咪唑二氰胺盐能够较好的分离甲烷中的二氧化碳,在303K可达到26.4的CO2/CH4的溶解比。唐飞等人利用离子液体和醇胺化合物为吸收剂,发明了一种用于高含硫天然气脱硫的离子液体配方。Joan F.Brannecke用质子惰性的杂化阴离子类离子液体,进行二氧化碳的化学和物理吸附,捕获能力达到CO2/IL摩尔比为1:1。离子液体还可以通过制成分离膜等方式广泛用于气体分离提纯。John M.Prausnitz等发现了离子液体[P(16)444][TMPP]对甲烷、乙烷、乙烯、丙烯具有较高的吸收能力,所以离子液体也是一种潜在的储存运输页岩气的溶剂。
纳米材料由其尺寸而呈现独特的小尺寸效应,表面张力和表面能减少等特征,使其在溶解中具有强大的应用前景。2013年,Mostafa Keshavarz Moraveji等人于3℃,10bar下,在水溶液中加入12nm的银纳米材料,使甲烷溶解提高了182.32%。在十二烷基硫酸钠和40nm氧化铜的纳米流中,同样证明了甲烷的溶解相对于水和十二烷基硫酸钠溶液中有所提高。在水相体系中,纳米材料容易不稳定而团聚,而在离子液体中可以直接合成各种纳米材料并稳定存在,是一个更加稳定长久的体系,但是纳米材料应用于离子液体体系促进气体溶解至今没有人报道。
发明内容
本发明的目的是提供一种纳米材料增强气体在离子液体中溶解的方法,该方法中体系性质稳定,操作灵活,不限于某一种离子液体或者纳米材料,能够显著地提高气体在离子液体中的吸收,如Cu2O纳米材料加入到[Bmim][NTf2]中,4MPa下,能够使溶解体系的甲烷摩尔分数从12.1%提高到16%,提高了32%。,是一种有效的气体分离提纯和储存运输的方法。
本发明提供了一种纳米材料增强气体在离子液体中溶解的方法,该方法溶解过程采用高压装置操作,在高压装置中加入离子液体、纳米材料,充入待溶解气体,实现气体高效溶解。
所述纳米材料为金属单质、金属合金、氧化物或者单质碳材料。
所述的气体为碳氢化合物、稀有气体、氧气、氮气、氢气、硫化物、氮化物或碳化物。
所述的离子液体阳离子类型为咪唑类、吡啶类、呱啶类、吡咯类、三唑类、嘧啶类、官能化咪唑类、季铵盐类、季磷盐类,锍盐类、胆碱类、官能化季磷盐类,其结构如下:
其中,R为H、烷基链或者含氟改性的烷基链和芳基链,X为OH、HSO3
所述的离子液体阴离子类型如下:HSO4 、H2PO4 、BF4 、PF6 、Cl、Br、NTf2 、TFA、Ac、(CN)2N或CF3(CF2)nSO3 ,n为0~12。
所述金属单质纳米材料为纳米铱、铂、金、铷、铑、钯、银、铁、钴、镍、铜或锌;
所述金属合金纳米材料为过渡元素的2种或者3种金属的合金。
所述氧化物纳米材料有纳米氧化铂、氧化银、氧化钯、氧化铁、四氧化三铁、氧化钴,氧化镍、氧化铜、氧化亚铜、氧化锆、氧化铝或氧化硅。
所述单质碳纳米材料为碳纳米管、石墨烯。
所述的碳氢化合物为甲烷,乙烷,乙烯,乙炔或丙烷。
所述的硫化物为二氧化硫,硫化氢或三氧化硫。
所述的氮化物为一氧化氮或二氧化氮。
所述的碳化物为一氧化碳或二氧化碳。
所述纳米材料的形状可以为球状、棒状、片状、管状,所述纳米材料的粒径小于1000纳米。
溶解气体后的离子液体和纳米材料混合液和气体通过卸压或加热方式分离和再生。
所述溶解过程纳米材料量为离子液体摩尔量的0.01%~1%,气体压力为0.5~15MPa,控温-10~180℃。
本发明采用亨利定律计算气体在离子液体中的溶解度。
H=P·x
其中H为亨利常数,单位MPa,P为气态碳氢化合物的平衡分压MPa,x为碳氢化合物在液相中的摩尔分率。
本发明提出了一种纳米材料提高气体在离子液体溶解的方法,用来选择性吸收气体组分,从而实现气体分离提纯或者提高溶解供储存运输,实验初步证明加入纳米材料后实现了比纯离子液体提高5%~24%的吸收效果,提高潜力仍然待不断挖掘。
本发明的优点:本发明提供的一种纳米材料增强气体在离子液体中溶解的方法。离子液体物理化学性质稳定,是优良的分离气体的试剂,同时离子液体中可以原位合成纳米材料并稳定纳米材料,体系物理化学性质稳定可以长期使用。与纯粹的离子液体吸收相比,加入纳米材料后,气体的溶解能够显著提升,有益于气体的分离提纯和储存运输。
附图说明
图1为本发明溶解设备示意图,其中1气瓶,2储气罐(V1),3溶解高压釜(V2),4压力传感器,5无纸记录仪,6温度传感器,7油浴加热。
具体实施方式
以甲烷,氧气溶解为例,通过实施例和对比例子进一步说明本发明实施方式和所产生的效果,但本发明的保护范围并不限于实施例所列的内容。
实施例1
说明单质纳米材料促进甲烷在离子液体[Bmim][NO3]中溶解的效果
称取15ml 1-丁基-3-甲基咪唑硝酸盐离子液体[Bmim][NO3]于55ml反应釜中,加入铂金属单质纳米材料10mg,真空下搅拌10min,往储气罐里充4MPa,3MPa,2MPa,1MPa CH4,待压力和温度稳定后,将储气罐中气体充入反应器中,控温到指定温度,搅拌,待甲烷吸收平衡实现压力温度稳定(溶解设备见说明书图例)。
通过各个釜的体积压力温度计算吸收甲烷量,由四组不同压力下的吸收量进一步换算成亨利常数。得到结果如表1所示:
表1 Pt纳米粒子促进甲烷在25℃,[Bmim][NO3]中的溶解度
实施例2
对比实施例,不加纳米材料时甲烷在离子液体[Bmim][NO3]中的溶解效果
实验方法同实施例1,不同之处在于不加纳米材料。得到结果如表2所示:
表2 不加纳米材料时甲烷在25℃,[Bmim][NO3]中的溶解度
实施例1和2说明:与不加纳米材料相比,加入纳米材料后能够提高甲烷在离子液体中的溶解度。
实施例3
说明金属单质镍纳米材料促进甲烷在离子液体[Bmim][NO3]中溶解效果
实验方法同实施例1和2,不同之处在于加入的金单质纳米材料为镍单质纳米粒子。得到结果如表3所示:
表3 Ni纳米材料促进甲烷在25℃,[Bmim][NO3]中甲烷的溶解度
由实施例1-3可以看出,纳米粒子对气体的促溶作用不限于某一种纳米粒子,此法发明方法具有适用的普遍性,是一个有效提高气体在离子中溶解吸收的方法。
实施例4,
说明氧化物纳米材料促进甲烷在离子液体[Bmim][NTf2]中的溶解效果
实验方法同实施例1,不同之处在于加入的离子液体为1-丁基-3-甲基咪唑三氟甲基磺酰亚胺盐[Bmim][NTf2],加入的纳米材料为氧化亚铜。得到结果如表4所示:
表4 Cu2O纳米粒子促进甲烷在140℃,[Bmim][NTf2]中的溶解度
从实施例1,4可以看出,纳米粒子促进气体在离子液体中的溶解,不限于某一种离子液体和某一种纳米材料。同时其促进气体溶解的优势随温度影响小,操作温度范围广。4MPa时,此条件下,溶解体系甲烷摩尔百分数为16%。
实施例5,
对比实施例,说明不加纳米材料甲烷在离子液体[Bmim][NTf2]中的溶解效果
实验方法同实施例1,不同之处在于加入离子液体为1-丁基-3-甲基咪唑三氟甲基磺酰亚胺盐[Bmim][NTf2],不加纳米材料。得到结果如表5所示:
表5 不加纳米材料甲烷在140℃,[Bmim][NTf2]中的溶解度
4MPa,此条件下,溶解体系的甲烷摩尔分数为12.1%,从实施列4和5可以看出,加入Cu2O后,甲烷的溶解明显增强,溶解摩尔分数增加了32%。
实施例6
说明氧化物纳米材料对氧气在离子液中溶解效果
实验方法同实施例1,不同之处在于采用的离子液体为1-丁基-3-甲基咪唑三氟甲基磺酰亚胺盐[Bmim][NTf2],加入纳米材料为氧化铁,溶解气体为氧气。得到结果如表6所示:
表6 Fe2O3纳米粒子促进甲烷在136℃,[Bmim][NTf2]中的溶解度
实施例7
对比实施例,说明不加纳米材料氧气在离子液体[Bmim][NTf2]中的溶解效果
实验方法同实施例1,不同之处在于加入离子液体为1-丁基-3-甲基咪唑三氟甲基磺酰亚胺盐[Bmim][NTf2],不加纳米材料,溶解气体为氧气。得到结果如表7所示:
表7 不加纳米材料氧气在136℃,[Bmim][NTf2]中的溶解度
实施例6-7说明,此纳米材料促进溶解的方法不局限于烃类气体,对于氧气等气体同样适用。

Claims (10)

1.一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:该方法溶解过程采用高压装置操作,在高压装置中加入离子液体,加入纳米材料,充入待溶解气体,实现气体高效溶解。
2.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于纳米材料为金属单质、金属合金、氧化物或者单质碳材料。
3.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:所述的气体为碳氢化合物、稀有气体、氧气、氮气、氢气、硫化物、氮化物或碳化物。
4.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于所述的离子液体阳离子类型为咪唑类、吡啶类、呱啶类、吡咯类、三唑类、嘧啶类、官能化咪唑类、季铵盐类、季磷盐类,锍盐类、胆碱类、官能化季磷盐类,其结构如下:
其中,R为H、烷基链或者含氟改性的烷基链和芳基链,X为OH、HSO3
5.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于所述的离子液体阴离子类型如下:HSO4 、H2PO4 ,BF4 、PF6 、Cl、Br、NTf2 、TFA、Ac、(CN)2N或CF3(CF2)nSO3 ,n为0~12。
6.按照权利要求2所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:
所述金属单质纳米材料为纳米铱、铂、金、铷、铑、钯、银、铁、钴、镍、铜或锌;
所述金属合金纳米材料为过渡元素的2种或者3种金属的合金;
所述氧化物纳米材料有纳米氧化铂、氧化银、氧化钯、氧化铁、四氧化三铁、氧化钴,氧化镍、氧化铜、氧化亚铜、氧化锆、氧化铝或氧化硅;
所述单质碳纳米材料为碳纳米管、石墨烯。
7.按照权利要求3所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:
所述的碳氢化合物为甲烷,乙烷,乙烯,乙炔或丙烷;
所述的硫化物为二氧化硫,硫化氢或三氧化硫;
所述的氮化物为一氧化氮或二氧化氮;
所述的碳化物为一氧化碳或二氧化碳。
8.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:纳米材料的形状可以为球状、棒状、片状、管状,所述的纳米材料为的粒径小于1000纳米的各种纳米材料。
9.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:溶解气体后的离子液体和纳米材料混合液和气体通过卸压或加热方式分离和再生。
10.按照权利要求1所述的一种纳米材料增强气体在离子液体中溶解的方法,其特征在于:溶解过程纳米材料加入量为离子液体摩尔量的0.01%~1%,气体压力为0.5~15MPa,控温-10~180℃。
CN201510827797.7A 2015-11-24 2015-11-24 一种纳米材料增强气体在离子液体中溶解的方法 Pending CN106731488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510827797.7A CN106731488A (zh) 2015-11-24 2015-11-24 一种纳米材料增强气体在离子液体中溶解的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510827797.7A CN106731488A (zh) 2015-11-24 2015-11-24 一种纳米材料增强气体在离子液体中溶解的方法

Publications (1)

Publication Number Publication Date
CN106731488A true CN106731488A (zh) 2017-05-31

Family

ID=58963695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510827797.7A Pending CN106731488A (zh) 2015-11-24 2015-11-24 一种纳米材料增强气体在离子液体中溶解的方法

Country Status (1)

Country Link
CN (1) CN106731488A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107569969A (zh) * 2017-08-31 2018-01-12 昆明理工大学 一种高毒气态污染物高效净化材料及使用装置
CN113975940A (zh) * 2021-09-30 2022-01-28 浙江工业大学 双功能离子液体联合无机碱液的复合吸收剂及其应用
CN114950073A (zh) * 2021-07-14 2022-08-30 上海宜室建筑环境工程有限公司 一种提高舒适性的离子复配液及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123535A (ja) * 1991-11-07 1993-05-21 Mitsubishi Heavy Ind Ltd 炭酸ガス用吸収液の劣化防止方法
JPH08257353A (ja) * 1995-03-23 1996-10-08 Kansai Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素を除去する方法
CN102218254A (zh) * 2011-04-14 2011-10-19 重庆大学 捕集二氧化碳气体的复合胺及复合胺吸收剂
CN102600716A (zh) * 2012-03-30 2012-07-25 北京化工大学 一种低温下咪唑类离子液体吸收co2气体的方法
CN104017144A (zh) * 2014-06-10 2014-09-03 上海交通大学 一种纳米复合材料及其制备方法
CN204051381U (zh) * 2014-07-30 2014-12-31 新特能源股份有限公司 一种尾气回收装置清洗系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123535A (ja) * 1991-11-07 1993-05-21 Mitsubishi Heavy Ind Ltd 炭酸ガス用吸収液の劣化防止方法
JPH08257353A (ja) * 1995-03-23 1996-10-08 Kansai Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素を除去する方法
CN102218254A (zh) * 2011-04-14 2011-10-19 重庆大学 捕集二氧化碳气体的复合胺及复合胺吸收剂
CN102600716A (zh) * 2012-03-30 2012-07-25 北京化工大学 一种低温下咪唑类离子液体吸收co2气体的方法
CN104017144A (zh) * 2014-06-10 2014-09-03 上海交通大学 一种纳米复合材料及其制备方法
CN204051381U (zh) * 2014-07-30 2014-12-31 新特能源股份有限公司 一种尾气回收装置清洗系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAZONG JIANG等: "Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles", 《INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL》 *
JOHAN JACQUEMIN等: "Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric", 《THE JOURNAL OF CHEMICAL THERMODYNAMICS》 *
MOSTAFA KESHAVARZ MORAVEJI等: "Effect of CuO nanoparticle on dissolution of methane in water", 《JOURNAL OF MOLECULAR LIQUIDS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107569969A (zh) * 2017-08-31 2018-01-12 昆明理工大学 一种高毒气态污染物高效净化材料及使用装置
CN114950073A (zh) * 2021-07-14 2022-08-30 上海宜室建筑环境工程有限公司 一种提高舒适性的离子复配液及其制备方法和应用
CN114950073B (zh) * 2021-07-14 2023-10-20 上海宜室建筑环境工程有限公司 一种提高舒适性的离子复配液及其制备方法和应用
CN113975940A (zh) * 2021-09-30 2022-01-28 浙江工业大学 双功能离子液体联合无机碱液的复合吸收剂及其应用

Similar Documents

Publication Publication Date Title
Lu et al. Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions
Irani et al. Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption
Hu et al. Modulated hydrothermal synthesis of UiO-66 (Hf)-type metal–organic frameworks for optimal carbon dioxide separation
Qiu et al. A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers
Liu et al. Enhanced removal of hydrogen sulfide using novel nanofluid system composed of deep eutectic solvent and Cu nanoparticles
CN106731488A (zh) 一种纳米材料增强气体在离子液体中溶解的方法
Hafizi et al. Enhanced CO2 absorption and desorption efficiency using DETA functionalized nanomagnetite/water nano-fluid
Xu et al. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent
US20160074804A1 (en) Absorption medium, process for producing an absorption medium, and also process and apparatus for separating hydrogen sulfide from an acidic gas
CN105709690A (zh) 一种选择性吸附金的吸附剂及其制备方法和应用
Zaheri et al. Supported liquid membrane incorporated with carbon nanotubes for the extraction of Europium using Cyanex272 as carrier
BR112019003192B1 (pt) Extração de íon metálico a partir de salmouras
CN114146688B (zh) 一种抗水性MOFs基材料的制备方法及其应用
EP2016991A1 (en) Processes for separation of gases using ionic liquids
Shyam Sunder et al. Synthesis and characterization of poly (pyrrole-1-carboxylic acid) for preconcentration and determination of rare earth elements and heavy metals in water matrices
Liu et al. Enhancement effect of nanofluids on the desulfurization and regeneration performance of ionic liquid-based system
He et al. Synergy of imidazolium ionic liquids and flexible anionic polymer for controlling facilely montmorillonite swelling in water
CN114870818A (zh) 一种利用聚离子液体凝胶吸附剂吸附分离金、铂、钯的方法
Yue et al. Novel CS2 storage materials from ion-like liquids for one-step synthesis of active nano-metal sulfides in the photocatalytic reduction of CO2
Soomro et al. Highly efficient arginine intercalated graphene oxide composite membranes for water desalination
Mota-Lima et al. high-pressure carbon dioxide separation using ionic liquids: a CO2-electrocatalysis perspective
Wan et al. Enhanced removal thallium from rinsing wastewater by poly aluminum chloride: Experimental and theoretical studies
Ghalkhani et al. Environmental applications of nanographitic carbon nitride
Zhang et al. Bis-terpyridine imprinted nanocage in the confined two-dimensional lamellar membrane for selective adsorption of Nd (III)
CN109550367B (zh) 一种离子液体脱硫系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication