CN106712533B - 调制波控制方法及三相三线三电平电路 - Google Patents

调制波控制方法及三相三线三电平电路 Download PDF

Info

Publication number
CN106712533B
CN106712533B CN201510791588.1A CN201510791588A CN106712533B CN 106712533 B CN106712533 B CN 106712533B CN 201510791588 A CN201510791588 A CN 201510791588A CN 106712533 B CN106712533 B CN 106712533B
Authority
CN
China
Prior art keywords
modulating
wave
current
modulating wave
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510791588.1A
Other languages
English (en)
Other versions
CN106712533A (zh
Inventor
陈锋
陆城
张伟强
吴洪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Shanghai Co Ltd
Original Assignee
Delta Electronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Shanghai Co Ltd filed Critical Delta Electronics Shanghai Co Ltd
Priority to CN201510791588.1A priority Critical patent/CN106712533B/zh
Priority to JP2016146290A priority patent/JP6296256B2/ja
Priority to US15/279,446 priority patent/US9859816B2/en
Priority to EP16197431.6A priority patent/EP3171504A1/en
Publication of CN106712533A publication Critical patent/CN106712533A/zh
Application granted granted Critical
Publication of CN106712533B publication Critical patent/CN106712533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Linear Motors (AREA)

Abstract

本发明公开了一种调制波控制方法及三相三线三电平电路,该调制波控制方法用于三相三线三电平电路。三相三线三电平电路的三个桥臂分别对应三个调制波,通过比较三个调制波与载波以对三相三线三电平电路进行控制。调制波控制方法包括:根据三相三线三电平电路的各相分别对应的电流,以由该三个调制波中取得一当前调制波;以及对该三个调制波叠加平移量,使得当前调制波平移至该载波的峰值、谷值或介于峰值与谷值之间的中间值。本发明通过提供一种三相三线三电平电路及调制波控制方法,借以有效降低半导体开关器件的开关损耗,并减小半导体开关器件热应力,且提高整体系统效率。

Description

调制波控制方法及三相三线三电平电路
技术领域
本发明涉及一种波形控制方法及电路,且特别涉及一种调制波控制方法及三相三线三电平电路。
背景技术
随着电力电子技术的发展,应用半导体开关器件的变换器广泛地被业界采用,其中并网、离网式的三相三线变换器应用越来越多,诸如逆变器(Inverter)、整流器(Rectifier)、静止无功发生器(Static Var Generator,SVG)等。
于上述电路中,均使用半导体开关器件,如绝缘栅双极型晶体管(Insulated GateBipolar Transistor,IGBT)、金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、碳化硅(SiC)MOSFET等。当电路工作时,其内的半导体开关器件将会产生开关损耗和导通损耗,上述开关损耗与半导体开关器件本身的特性、驱动电路、直流电压、流过的电流及开关频率有关,而导通损耗与半导体开关器件特性及流过的电流有关。
现阶段为了追求高功率密度、减小滤波器体积等目标,通常会选择更高的开关频率。然而,一旦开关频率提高,半导体开关器件的开关损耗将相应地增加,若开关损耗过大,将直接影响半导体开关器件的工作温度及系统效率。
由此可见,上述现有的方式,显然仍存在不便与缺陷,而有待改进。为了解决上述问题,相关领域莫不费尽心思来谋求解决之道,但长久以来仍未发展出适当的解决方案。
发明内容
发明内容旨在提供本公开内容的简化摘要,以使阅读者对本公开内容具备基本的理解。此发明内容并非本公开内容的完整概述,且其用意并非在指出本发明实施例的重要/关键元件或界定本发明的范围。
本发明内容的一目的是在提供一种三相三线三电平电路及调制波控制方法,借以改善现有技术的问题。
为达上述目的,本发明内容的一方面涉及一种调制波控制方法,用于三相三线三电平电路。三相三线三电平电路的三个桥臂分别对应三个调制波,通过比较三个调制波与载波以对三相三线三电平电路进行控制。调制波控制方法包括:根据三相三线三电平电路的各相分别对应的电流,以由三个调制波中取得当前调制波;以及对三个调制波叠加平移量,使得当前调制波平移至载波的峰值、谷值或介于峰值与谷值之间的中间值。
为达上述目的,本发明内容的另一方面涉及一种调制波控制方法,用于三相三线三电平电路。三相三线三电平电路的三个桥臂分别对应三个调制波,通过比较三个调制波与载波以对三相三线三电平电路进行控制。调制波控制方法包括:根据三相三线三电平电路的各相分别对应的电流,以由三个调制波中取得当前调制波;以及对三个调制波叠加平移量,使得当前调制波平移至载波的高值、低值或介于高值与低值之间的中间值。
为达上述目的,本发明内容的又一方面涉及一种三相三线三电平电路,此三相三线三电平电路采用上述调制波控制方法。
因此,根据本发明的技术内容,本发明实施例通过提供一种三相三线三电平电路及调制波控制方法,借以有效降低半导体开关器件的开关损耗,并减小半导体开关器件热应力,且提高整体系统效率。
在参阅下文实施方式后,本发明所属技术领域中技术人员当可轻易了解本发明的基本精神及其他发明目的,以及本发明所采用的技术手段与实施方式。
附图说明
为让本发明的上述和其他目的、特征、优点与实施例更明显易懂,说明书附图的说明如下:
图1是依照本发明一实施例绘示一种三电平电路的桥臂的示意图。
图2是绘示依照本发明另一实施方式的一种正弦波调制方法的示意图。
图3是绘示依照本发明再一实施方式的一种调制波控制方法的示意图。
图4是绘示依照本发明又一实施方式的一种调制波控制方法的示意图。
图5是绘示依照本发明另一实施方式的一种调制波控制方法的示意图。
图6是绘示依照本发明一实施方式的一种调制波控制方法的流程示意图。
图7是绘示依照本发明另一实施方式的一种调制波控制方法的流程示意图。
图8是绘示依照本发明再一实施方式的一种调制波控制方法的流程示意图。
根据惯常的作业方式,图中各种特征与元件并未依比例绘制,其绘制方式是为了以最佳的方式呈现与本发明相关的具体特征与元件。此外,在不同附图间,以相同或相似的元件符号来指称相似的元件/部件。
其中,附图标记说明如下:
401、403、405、407、409、411、413、415、417、419、421、423、501、503、505、507、509、511、513、515、601、603、605、607、609、611、613、615:步骤
具体实施方式
为了使本公开内容的叙述更加详尽与完备,下文针对了本发明的实施方式与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其他具体实施例来实现相同或均等的功能与步骤顺序。
除非本说明书另有定义,此处所用的科学与技术词汇的含义与本发明所属技术领域中技术人员所理解与惯用的意义相同。此外,在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时亦涵盖该名词的单数型。
另外,关于本文中所使用的「耦接」,可指两个或多个元件相互直接作实体或电性接触,或是相互间接作实体或电性接触,亦可指两个或多个元件相互操作或动作。
图1是依照本发明一实施例绘示一种三电平电路的桥臂的示意图。如图所示,三电平电路的桥臂以输出电平VAN来划分出三种工作状态,其中在该桥臂的各种工作状态下,可能具有不同的开关组合,只要能输出该种工作状态下所要求的电平即可,例如开关管S1和S3互补开通,S2和S4互补开通。上述三种工作状态详述如后:
结合图2,在工作状态P下,开关组合例如开关管S1和S2导通,开关管S3和S4关断,此时输出电平为:
在工作状态O下,开关组合例如开关管S2和S3导通,开关管S1和S4关断,此时输出电平为:
VAN=0
在工作状态N下,开关组合例如开关管S3和S4导通,开关管S1和S2关断,此时输出电平为:
基于上述三种工作状态,图2绘示正弦波调制(Sinusoidal Pulse WidthModulation,SPWM)方式下,一个开关周期内各相的开关动作情况。其中上下两个三角形为载波W1、W2,标号Va~Vc则分别代表三相三线三电平电路的三个桥臂分别对应的调制波。可以以三角载波两个相邻的顶点作为一个开关周期,并且假定在一个开关周期内调制波基本保持不变。此外,调制波与载波比较的一种逻辑为:调制波大于上载波W1时,桥臂工作于P工作状态;调制波小于下载波W2时,桥臂工作于N工作状态;调制波介于上下载波中间时,桥臂工作于O工作状态。由此可以得到一个开关周期内,三相桥臂的动作情况,但本发明并不以此为限。图2中的一个开关周期内,三相三线三电平电路的三个桥臂分别对应的三个调制波Va~Vc均各动作两次。
需先行说明的是,在三相三线三电平电路中,当对三相调制波Va~Vc同时向相同方向移动相同的量,亦即调制波Va~Vc注入零序分量时,不会影响各相的输出电压和电流。依据上述特性,本发明实施例公开一种调制波控制方法,通过对三相调制波Va~Vc同时向相同方向移动相同的量,以使开关管的整体开关次数减少,如此,即可对应降低开关损耗,详细说明如后。
请参阅图3~图5,本实施例的调制波控制方法通过比较三个调制波Va~Vc与载波W1~W2以对三相三线三电平电路进行控制。上述调制波控制方法包含以下步骤:
根据三相三线三电平电路的各相分别对应的电流,以由三个调制波Va~Vc中取得当前调制波;以及
对三个调制波Va~Vc叠加平移量,使得当前调制波平移至载波W1~W2的峰值Pe(如图3所示)、谷值V(如图4所示)或介于峰值与谷值之间的中间值M(如图5所示)。其中,叠加平移量既包含一次叠加单个平移量,也包含对平移量多次调整后一次叠加,还包含多次叠加多个相同或不同的平移量,能满足经过本方法调节后,三个调制波相较于调制前具有相同的平移量即可,本发明并不以此为限。
如此一来,相较于图2的调制波Va~Vc于一个开关周期内会各动作两次,图3~图5的调制波Va~Vc于一个开关周期内皆至少有一相保持在同一种工作状态,诸如图3中A相桥臂一直保持P工作状态,图4中C相桥臂一直保持N工作状态,以及图5中B相桥臂一直保持O工作状态。一旦桥臂于一个开关周期内保持在同一工作状态,则此桥臂没有开关动作,因此,采用本实施例的调制波控制方法,可使开关管的整体开关次数减少,如此,即可有效降低开关损耗,并减小半导体开关器件热应力,且提高整体系统效率。然而,本发明并不以上述实施例为限,本领域技术人员当可视实际电路配置状况,以对三个调制波Va~Vc叠加平移量,使得当前调制波平移至载波W1~W2的载波的高值、低值或介于高值与低值之间的中间值,而不限于载波W1~W2的峰值Pe、谷值V或介于峰值与谷值之间的中间值M,其中,高值例如为0.9~1,低值例如为-1~-0.9。
请参阅图3~图5,在一实施例中,上述由三个调制波Va~Vc中取得当前调制波的步骤包含:
判断三相三线三电平电路的各相分别对应的电流中之电流值最大者;以及
取对应该电流值最大者的调制波为当前调制波。
本发明实施例的调制波控制方法的解决问题的技术手段说明如上,以下举几个实现调制波控制方法的实施例,以使本发明更易于理解,然本发明并不以后续实施例为限,合先叙明。
请参阅图6,其是绘示依照本发明一实施方式的一种调制波控制方法的流程示意图。首先,于步骤401中,采样三相三线三电平电路的各相分别对应的电流ia、ib、ic,例如可以直接采样流经各相电感的电流,或者是采用三相相应桥臂开关管的电流,然后比较三相电流值,但本发明并不以此为限。于步骤403中,找出电流值最大者所对应的相x,取电流值最大者所对应的相x的调制波为当前调制波Vx。其中,所述电流值的比较通常采用绝对值比较,但本发明并不以此为限。随后,于步骤407中,判断当前调制波Vx为三个调制波Va~Vc中的最大者、最小者或介于最大者与最小者之间的中间者。
于步骤407中,若判定当前调制波Vx为三个调制波Va~Vc中的最大者,则执行步骤409,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的峰值Pe。为使本步骤易于理解,请参阅图3,若判定当前调制波为三个调制波Va~Vc中的最大者,如A相调制波,则对三个调制波Va~Vc叠加平移量,使得当前调制波Va平移至载波的峰值Pe,如此,图3中A相桥臂一直保持P工作状态,以降低开关管的整体开关次数,而能有效降低开关损耗。
请继续参阅步骤407,若判定当前调制波Vx为三个调制波Va~Vc中的最小者,则执行步骤413,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的谷值V。为使本步骤易于理解,请参阅图4,若判定当前调制波为该三个调制波Va~Vc中的最小者,如C相调制波,则对三个调制波Va~Vc叠加平移量,使得当前调制波Vc平移至载波的谷值V,如此,图4中C相桥臂一直保持N工作状态,以降低开关管的整体开关次数,而能有效降低开关损耗。
请继续参阅步骤407,若判定当前调制波Vx为三个调制波Va~Vc中的中间者,则执行步骤411,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的中间值M。为使本步骤易于理解,请参阅图5,若判定当前调制波为三个调制波Va~Vc中的中间者,如B相调制波,则对三个调制波Va~Vc叠加平移量,使得当前调制波Vb平移至载波的中间值M,如此,图5中B相桥臂一直保持O工作状态,以降低开关管的整体开关次数,而能有效降低开关损耗。
需说明的是,若采用步骤411,当前调制波Vx虽然可以平移到载波的中间值M,却可能造成其它相调制波超出载波的峰值Pe或谷值V,而发生过调制现象,导致三电平电路产生错误。此时,可以使用一种修正方式,来改善上述状况,说明如后,但本发明并不以此为限。
在步骤411之后,可以执行步骤415,判断当前调制波Vx平移至载波的中间值后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V,但本发明并不以此为限。倘若当前调制波Vx平移至载波的中间值后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例之调制波控制方法在这一开关周期的作用可以结束,并在下一开关周期内继续作用,但本发明并不以此为限。此外,倘若当前调制波Vx平移至载波的中间值后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,亦即发生过调制现象,此时,采用的修正方式可以如后续步骤417、419、421、423所示。
于步骤417中,判断三相三线三电平电路的各相分别对应的电流中的电流值次大者,取对应电流值次大者的调制波为次要调制波Vy。随后,于步骤419中,判断次要调制波Vy为三个调制波Va~Vc中的最大者或最小者。若判定次要调制波Vy为三个调制波Va~Vc中的最大者,则执行步骤421,对三个调制波Va~Vc叠加平移量,使得次要调制波Vy平移至载波的峰值Pe。若判定次要调制波Vy为三个调制波Va~Vc中的最小者,则执行步骤423,对三个调制波Va~Vc叠加平移量,使得次要调制波Vy平移至载波的谷值V。由上述说明可知,采用修正方式,确实可避免过调制现象发生,但本发明并不以此为限,如根据电流值最小者的调制波为次要调制波亦可。
请参阅图7,其是绘示依照本发明另一实施方式的一种调制波控制方法的流程示意图。首先,于步骤501中,根据采样的三相电流信息,以比较出电流最大者所对应的相x,取电流值最大者所对应的相x的调制波为当前调制波Vx。其中,所述电流值的比较通常采用绝对值比较,但有效值或其他能表征电流量的比较方法均可,本发明并不以此为限。于步骤503中,判断当前调制波Vx的极性。若当前调制波Vx大于零,则执行步骤505,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的峰值Pe。若当前调制波Vx小于零,则执行步骤507,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的谷值V。
需说明的是,在执行上述步骤505、507后,有可能产生过调制现象,因此,可以执行步骤509以判断是否产生过调制现象。详细而言,执行步骤509以判断当前调制波Vx平移至载波的峰值Pe或谷值V后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V。倘若当前调制波Vx平移后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例的调制波控制方法在本开关周期内可以结束。此外,若当前调制波平移至载波的峰值Pe或谷值V后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,则执行步骤511,对三个调制波Va~Vc叠加平移量,使得当前调制波平移至载波的中间值M。
需说明的是,在执行上述步骤511后,仍有可能产生过调制现象,因此,可以执行步骤513以判断是否产生过调制现象。详细而言,执行步骤513以判断当前调制波Vx平移至载波的中间值M后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V。倘若当前调制波Vx平移后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例的调制波控制方法在本开关周期的作用可以结束,并在下一开关周期内继续作用,但本发明并不以此为限。此外,若当前调制波Vx平移至载波的中间值M后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,则可以采用步骤515的修正方式。详细而言,执行步骤515以判断三相三线三电平电路的各相分别对应的电流中的电流值次大者,取对应该电流值次大者的调制波为次要调制波Vy。然后,对三个调制波Va~Vc叠加平移量,使得次要调制波平移至载波的峰值Pe或谷值V,例如图6中步骤417、419、421、423所示,本发明并不以此为限。由上述说明可知,采用修正方式,确实可避免过调制现象发生。
请参阅图8,其是绘示依照本发明又一实施方式的一种调制波控制方法的流程示意图。首先,于步骤601中,根据采样的三相电流信息,以比较出电流最大者所对应的相x,取电流值最大者所对应的相x的调制波为当前调制波Vx。其中,所述电流值的比较通常采用绝对值比较,但采用有效值或其他能表征电流量的比较方法均可,本发明并不以此为限。于步骤603中,对三个调制波Va~Vc叠加平移量,使得当前调制波Vx平移至载波的峰值Pe。需说明的是,在执行上述步骤603后,有可能产生过调制现象,因此,执行步骤605以判断是否产生过调制现象。详细而言,执行步骤605以判断当前调制波Vx平移至载波的峰值Pe后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V。倘若当前调制波Vx平移后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例的调制波控制方法在本开关周期的作用可以结束,并在下一开关周期内继续作用,但本发明并不以此为限。此外,若当前调制波平移至载波的峰值Pe后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,则执行步骤607,对三个调制波Va~Vc叠加平移量,使得当前调制波平移至载波的谷值V。
需说明的是,在执行上述步骤607后,有可能产生过调制现象,因此,执行步骤609以判断是否产生过调制现象。详细而言,执行步骤609以判断当前调制波Vx平移至载波的谷值V后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V。倘若当前调制波Vx平移后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例的调制波控制方法在本开关周期的作用可以结束,并在下一开关周期内继续作用,但本发明并不以此为限。此外,若当前调制波平移至载波的谷值V后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,则执行步骤611,对三个调制波Va~Vc叠加平移量,使得当前调制波平移至载波的中间值M。
需说明的是,在执行上述步骤611后,有可能产生过调制现象,因此,执行步骤613以判断是否产生过调制现象。详细而言,执行步骤613以判断当前调制波Vx平移至载波的中间值M后,三个调制波Va~Vc的任一者是否超过载波的峰值Pe或低于载波的谷值V。倘若当前调制波Vx平移后,三个调制波Va~Vc皆未超过载波的峰值Pe或低于载波的谷值V,则未发生过调制现象,本实施例的调制波控制方法在本开关周期的作用可以结束,并在下一开关周期内继续作用,但本发明并不以此为限。此外,若当前调制波平移至载波的中间值M后,三个调制波Va~Vc的任一者超过载波的峰值Pe或低于载波的谷值V,则采用步骤615的修正方式。详细而言,执行步骤615以判断三相三线三电平电路的各相分别对应的电流中的电流值次大者,取对应电流值次大者的调制波为次要调制波Vy。然后,对三个调制波Va~Vc叠加该平移量,使得次要调制波平移至载波的峰值Pe或谷值V,例如图6中步骤417、419、421、423所示,本发明并不以此为限。由上述说明可知,采用修正方式,确实可避免过调制现象发生。本实施例中,步骤603、607、611的顺序可以调换和变化,本发明并不以此为限。
在一实施例中,本发明提出一种三相三线三电平电路,其可采用图3至图5所示的调制波控制方法,并可执行图6至图8所示的调制波控制方法的流程。在另一实施例中,三相三线三电平电路为二极管钳位型三电平电路(DNPC)、T型三电平电路(TNPC)、有源器件钳位型三电平电路(ANPC)或飞跨电容式三电平电路,本发明并不以此为限。
所属技术领域中技术人员当可明白,调制波控制方法中的各步骤依其执行的功能予以命名,仅是为了让本发明的技术更加明显易懂,并非用以限定该等步骤。将各步骤予以整合成同一步骤或分拆成多个步骤,或者将任一步骤更换到另一步骤中执行,皆仍属于本公开内容的实施方式。
由上述本发明实施方式可知,应用本发明具有下列优点。本发明实施例通过提供一种三相三线三电平电路及调制波控制方法,借以有效降低半导体开关器件的开关损耗,并减小半导体开关器件热应力,且提高整体系统效率。
虽然上文实施方式中公开了本发明的具体实施例,然其并非用以限定本发明,本发明所属技术领域中技术人员,在不悖离本发明的原理与精神的情形下,当可对其进行各种变动与修饰,因此本发明的保护范围当以附随权利要求所界定的范围为准。

Claims (10)

1.一种调制波控制方法,用于三相三线三电平电路,其中该三相三线三电平电路的三个桥臂分别对应至少三个调制波,通过比较该三个调制波与载波以对该三相三线三电平电路进行控制,包括:
根据该三相三线三电平电路的各相分别对应的电流,以由该三个调制波中取得一当前调制波;以及
对该三个调制波叠加平移量,使得该当前调制波平移至该载波的峰值、谷值或介于峰值与谷值之间的中间值;
其中对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值、谷值或介于峰值与谷值之间的中间值的步骤包含:
判断该当前调制波的极性,以对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值或谷值;
若使得该当前调制波平移至该载波的峰值或谷值后,该三个调制波的任一者超过该载波的峰值或低于该载波的谷值,该调制波控制方法还包含:
对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的中间值。
2.如权利要求1所述的调制波控制方法,其中由该三个调制波中取得该当前调制波的步骤包含:
判断所述对应的电流中的电流值最大者;以及
取对应该电流值最大者的调制波为该当前调制波。
3.如权利要求1所述的调制波控制方法,其中若使得该当前调制波平移至该载波的中间值后,该三个调制波的任一者超过该载波的峰值或低于该载波的谷值,该调制波控制方法还包含:
判断所述对应的电流中的电流值次大者;
取对应该电流值次大者的调制波为一次要调制波;以及
对该三个调制波叠加该平移量,使得该次要调制波平移至该载波的峰值或谷值。
4.一种调制波控制方法,用于三相三线三电平电路,其中该三相三线三电平电路的三个桥臂分别对应至少三个调制波,通过比较该三个调制波与载波以对该三相三线三电平电路进行控制,包括:
根据该三相三线三电平电路的各相分别对应的电流,以由该三个调制波中取得一当前调制波;以及
对该三个调制波叠加平移量,使得该当前调制波平移至该载波的峰值、谷值或介于峰值与谷值之间的中间值;
其中对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值、谷值或介于峰值与谷值之间的中间值的步骤包含:
对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值、谷值和中间值中的一者;
若使得该当前调制波平移至该者后,该三个调制波的任一者超过该载波的峰值或低于该载波的谷值,该调制波控制方法还包含:
对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值、谷值和中间值中的另一者;
若使得该当前调制波平移至该另一者后,该三个调制波的任一者超过该载波的峰值或低于该载波的谷值,该调制波控制方法还包含:
对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的峰值、谷值和中间值中的第三者。
5.如权利要求4所述的调制波控制方法,其中由该三个调制波中取得该当前调制波的步骤包含:
判断所述对应的电流中的电流值最大者;以及
取对应该电流值最大者的调制波为该当前调制波。
6.如权利要求4所述的调制波控制方法,其中若使得该当前调制波平移至该第三者后,该三个调制波的任一者超过该载波的峰值或低于该载波的谷值,该调制波控制方法还包含:
判断所述对应的电流中的电流值次大者;
取对应该电流值次大者的调制波为一次要调制波;以及
对该三个调制波叠加该平移量,使得该次要调制波平移至该载波的峰值或谷值。
7.一种调制波控制方法,用于三相三线三电平电路,其中该三相三线三电平电路的三个桥臂分别对应至少三个调制波,通过比较该三个调制波与载波以对该三相三线三电平电路进行控制,包括:
根据该三相三线三电平电路的各相分别对应的电流,以由该三个调制波中取得一当前调制波;以及
对该三个调制波叠加平移量,使得该当前调制波平移至该载波的高值、低值或介于高值与低值之间的中间值;
其中对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的高值、低值或介于高值与低值之间的中间值的步骤包含:
判断该当前调制波的极性,以对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的高值或低值;
若使得该当前调制波平移至该载波的高值或低值后,该三个调制波的任一者超过该载波的高值或低于该载波的低值,该调制波控制方法还包含:
对该三个调制波叠加该平移量,使得该当前调制波平移至该载波的中间值。
8.如权利要求7所述的调制波控制方法,其中由该三个调制波中取得该当前调制波的步骤包含:
判断所述对应的电流中的电流值最大者;以及
取对应该电流值最大者的调制波为该当前调制波。
9.一种三相三线三电平电路,采用如权利要求1至8任一所述的调制波控制方法。
10.如权利要求9所述的三相三线三电平电路,其中该三相三线三电平电路为二极管钳位型三电平电路、T型三电平电路、有源器件钳位型三电平电路或飞跨电容式三电平电路。
CN201510791588.1A 2015-11-17 2015-11-17 调制波控制方法及三相三线三电平电路 Active CN106712533B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510791588.1A CN106712533B (zh) 2015-11-17 2015-11-17 调制波控制方法及三相三线三电平电路
JP2016146290A JP6296256B2 (ja) 2015-11-17 2016-07-26 変調波制御方法及び三相3線式3レベル回路
US15/279,446 US9859816B2 (en) 2015-11-17 2016-09-29 Method for controlling modulation wave and three-phase three-wire three-level circuit
EP16197431.6A EP3171504A1 (en) 2015-11-17 2016-11-04 Discontinuous pwm for three-level npc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510791588.1A CN106712533B (zh) 2015-11-17 2015-11-17 调制波控制方法及三相三线三电平电路

Publications (2)

Publication Number Publication Date
CN106712533A CN106712533A (zh) 2017-05-24
CN106712533B true CN106712533B (zh) 2019-02-19

Family

ID=57240983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510791588.1A Active CN106712533B (zh) 2015-11-17 2015-11-17 调制波控制方法及三相三线三电平电路

Country Status (4)

Country Link
US (1) US9859816B2 (zh)
EP (1) EP3171504A1 (zh)
JP (1) JP6296256B2 (zh)
CN (1) CN106712533B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832827B (zh) * 2018-06-06 2019-12-20 合肥工业大学 一种具有最小开关损耗的三电平逆变器的非连续脉宽调制方法
CN109085765A (zh) * 2018-08-06 2018-12-25 江苏师范大学 中点钳位式三电平有源电力滤波器快速模型预测控制方法
CN108900105B (zh) * 2018-08-16 2020-09-18 珠海泰为电子有限公司 一种三相三电平逆变电路的载波层叠移相控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660077A (zh) * 2015-01-27 2015-05-27 上海交通大学 三电平的调制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757636A (en) 1994-12-08 1998-05-26 Pwm Drives Limited Multi-phase inverters utilizing discontinuous PWM with dead bands
JP3179692B2 (ja) * 1995-12-26 2001-06-25 東洋電機製造株式会社 スイッチング損失を低減化した3レベルインバータのpwm制御方法および装置
US5706186A (en) 1996-09-23 1998-01-06 Allen-Bradley Company, Inc. Hybrid pulse width modulation method and apparatus
US6023417A (en) 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
US6058028A (en) 1999-05-12 2000-05-02 Otis Elevator Company Control of a DC matrix converter
KR100387758B1 (ko) * 2000-09-23 2003-06-18 로크웰오토메이션코리아 주식회사 전압 변조 방법
CN1299426C (zh) 2003-08-01 2007-02-07 清华大学 一种减少三电平变频器开关损耗的方法
US7391181B2 (en) 2006-03-16 2008-06-24 General Motors Corporation Loss minimized PWM for voltage source inverters taking into account inverter non-linearity
JP5734609B2 (ja) * 2010-09-22 2015-06-17 株式会社ダイヘン インバータ装置、および、このインバータ装置を備えた系統連系インバータシステム
JP5973856B2 (ja) * 2012-09-18 2016-08-23 日立オートモティブシステムズ株式会社 電動パワーステアリング装置および電動パワーステアリング装置の制御装置
CN103580520B (zh) 2013-11-05 2015-12-09 浙江大学 一种逆变器的调制装置及方法
CN103618491B (zh) 2013-11-21 2017-01-11 中国矿业大学 一种基于双三电平逆变器供电拓扑的svpwm策略

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660077A (zh) * 2015-01-27 2015-05-27 上海交通大学 三电平的调制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Efficient Modulation Technique for a Four-Leg Fault-Tolerant Neutral-Point-Clamped Inverter;Salvador Ceballos等;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20080331;第55卷(第3期);第1067-1074页

Also Published As

Publication number Publication date
JP6296256B2 (ja) 2018-03-20
EP3171504A1 (en) 2017-05-24
US9859816B2 (en) 2018-01-02
US20170141699A1 (en) 2017-05-18
JP2017099253A (ja) 2017-06-01
CN106712533A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
BR102013023246A2 (pt) Conversor de energia, método de conversão de energia e sistema de conversão de energia
CN106712533B (zh) 调制波控制方法及三相三线三电平电路
CN103956890B (zh) 一种三相四桥臂光伏并网逆变器漏电流抑制方法
Sarker et al. An improved multicarrier PWM (MCPWM) technique with a new harmonic mitigation strategy for cascaded H-bridge multilevel inverter applications
CN104333245B (zh) 基于载波实现的过调制方法
CN103401454B (zh) 一种适用于混合级联七电平逆变器的类单极性调制方法
Bai et al. Transients of modern power electronics
CN106787805B (zh) 不平衡负载下五相六桥臂双级矩阵变换器载波pwm控制策略
CN104410311A (zh) 一种三电平逆变器不连续pwm调制中点平衡方法
Colak et al. Comparision of multi-carrier techniques in seven-level asymmetric cascade multilevel inverter
Kakar et al. A novel single-phase PWM asymmetrical multilevel inverter with number of semiconductor switches reduction
CN103312209B (zh) 基于三电平电压源逆变器实现三电平输出的空间矢量调制方法
CN100525051C (zh) 多电平变换方法及其采用的多电平电路
Zhao et al. Application of MATLAB/SIMULINK and PSPICE simulation in teaching power electronics and electric drive system
Wu et al. Zero-crossing disturbance elimination and spectrum analysis of single-carrier seven-level SPWM
Tuluhong et al. A Novel Hybrid T‐Type Three‐Level Inverter Based on SVPWM for PV Application
Lavanya et al. A novel technique for simulation & analysis of SVPWM two & three-level inverters
CN105140906A (zh) 一种应用于柔性直流输电的mmc模块拓扑结构
Govindaraju et al. Sequential switching hybrid single-carrier sinusoidal modulation for cascaded multi-level inverter
Zhou et al. Power losses in T-type and NPC inverters with SHEPWM strategy
Chen Power losses of silicon carbide MOSFET in HVDC application
Sena et al. A Comparative Study of Power Semiconductor Devices for Industrial PWM Inverters
Acharya et al. Simulation and Analysis of Single-Phase Cascaded H-Bridge Multilevel Inverter for Solar PV Application
CN108054941A (zh) 三相两电平逆变器中心脉冲调制方法
Li et al. Control Strategy of Loss Balance on the IGCT-Based Large Power Three-level Active Neutral-Point-Clamped Converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant