CN106702375A - 一种激光‑感应复合熔化沉积纤维增强金属基复合材料的装置 - Google Patents

一种激光‑感应复合熔化沉积纤维增强金属基复合材料的装置 Download PDF

Info

Publication number
CN106702375A
CN106702375A CN201611106546.0A CN201611106546A CN106702375A CN 106702375 A CN106702375 A CN 106702375A CN 201611106546 A CN201611106546 A CN 201611106546A CN 106702375 A CN106702375 A CN 106702375A
Authority
CN
China
Prior art keywords
fiber
laser
stainless steel
template
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611106546.0A
Other languages
English (en)
Other versions
CN106702375B (zh
Inventor
戴晓琴
陈瀚宁
雷剑波
顾振杰
石川
周圣丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201611106546.0A priority Critical patent/CN106702375B/zh
Publication of CN106702375A publication Critical patent/CN106702375A/zh
Application granted granted Critical
Publication of CN106702375B publication Critical patent/CN106702375B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/52Hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/066Weaving wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种激光‑感应复合熔化沉积纤维增强金属基复合材料的装置,该装置由半导体激光器、同轴自动送粉器、高频感应加热器、专用纤维编织模版、加工机床与数控系统组成,其中专用纤维编织模版由两个完全相同的具有群孔的304不锈钢板组成,其中一块304不锈钢板固定于激光器的加工头上,另一块304不锈钢板固定于基材上,由数控系统统一控制半导体激光器的扫描速度、激光功率、扫描路径、分层切片厚度、感应加热温度与自动送粉器的粉末流量。采用本发明的装置,可以在高效率、低成本的条件下,制备纤维增强金属基复合材料结构件;纤维作为强化相均匀分布于金属基复合材料内;纤维结构保持完整且纤维之间距离可调可控;纤维增强金属基复合材料显微组织致密,无气孔与裂纹,实现纤维增强金属基复合材料的激光‑感应复合熔化沉积。

Description

一种激光-感应复合熔化沉积纤维增强金属基复合材料的 装置
技术领域
本发明涉及一种激光-感应复合熔化沉积的装置,它特别适合于制备纤维增强金属基复合材料。
背景技术
金属基复合材料由金属基体和增强相通过一定的工艺复合而成的新型结构材料,按增强相的形态可分为纤维增强金属基复合材料、晶须及短纤维增强金属基复合材料、颗粒增强金属基复合材料等几种形式。因此,金属基复合材料具有较高的比强度、比刚度以及良好的抗蠕变、耐高温性能,尤其是纤维增强金属基复合材料在其纤维方向上具有很高的强度和模量,在构件的受力状况基本确定时更能发挥其定向优势,在航空航天领域具有十分广阔的应用前景。
目前,纤维增强金属基复合材料的制备方法主要有粉末冶金法、真空压力浸渗法、挤压铸造法、搅拌铸造法等。粉末冶金法是预先将短纤维与金属粉末制成浆状并混合,经成型干燥热压烧结成型,该法较为复杂,不适宜制备大尺寸零件,成本很高。真空压力浸渗法是将增强相制成预制体,放入承压铸型内,加热、抽真空,通过真空产生的负压,使液态基体金属熔体浸渗到预制体中并凝固成形,该方法的设备复杂,工艺周期长,成本较高,适用于制备要求较高的小型零件;挤压铸造是将增强材料制成预制件,放入压型,用压机将液态金属压入凝固后得到成型件,其挤压铸造力大,一般在70-100MPa,所制成预制件必须有很高强度,同时需保证预制件的空隙度;搅拌铸造法是将金属熔化,在液态或半固态搅拌,同时加入增强材料(短纤维、晶须或粒子等),制备出复合材料浆料,然后进行铸造、液态模锻、轧制或挤压成形。尽管挤压铸造法与搅拌铸造法在工业中得到较为广泛的应用,但是这两种方法制备的纤维增强金属基复合材料都存在纤维增强相分布不均、结构不完整以及与金属基体界面润湿性差等缺点,其综合性能有待进一步提高。
激光增材制造主要以金属粉末或金属丝材为原料,通过CAD模型预分层处理,采用高功率激光束熔化堆积生长,直径从CAD模型一步完成高性能构件的“近终成形”。与传统的制造工艺相比,激光增材制造属于“加法制造”,具有工艺流程短、无模具、制造周期短、小批量零件生产成本低、零件近净成型、材料利用率高以及可实现多种材料任意复合制造等优点。近年来,激光-感应复合熔化沉积技术可以在加工效率提高1~5倍的条件下,快速制备组织致密的高性能三维结构件。但是,采用激光-感应复合熔化沉积技术制备纤维增强金属基复合材料的方法未见文献报道,尤其是专用于制备纤维增强金属基复合材料的激光-感应复合熔化沉积装置还未见文献公开报道。
发明内容
本发明的目的在于提供一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置。本发明的装置利用具有快速加热、快速凝固、柔性制造、易实现自动化等特点的激光-感应复合熔化热源,将粉末喷嘴喷射出的合金粉末熔化,并将镀有镍层的纤维包覆起来,结合分层切片技术形成纤维增强金属基复合材料。此外,专用纤维编织模版由两个完全相同的具有群孔的304不锈钢板组成,其中一块304不锈钢板固定于激光器的加工头上,另一块304不锈钢板固定于基材上,由数控系统统一控制半导体激光器的扫描速度、激光功率、扫描路径、分层切片厚度、感应加热温度与自动送粉器的粉末流量。因此,本装置的优点是根据镀镍后纤维的尺寸选择专用编织模版,实现了在高加工效率条件下,制备组织致密、无气孔与裂纹、纤维增强相结构完整且在复合材料内分布均匀与可控以及综合性能优异的纤维增强金属基复合材料结构件会,克服了传统制备工艺过程中,装置复杂与制造成本高,纤维分布不均匀、结构不完整、高性能易受热损伤以及力学性能有待进一步提高等问题。
附图说明
图1激光-感应复合熔化沉积纤维增强金属基复合材料的装置示意图
具体实施方式
下面结构附图和实例对本发明作进一小详细的说明。
如图1所示,本发明主要包括半导体激光器2、同轴自动送粉器8、高频感应加热器13、专用纤维编织模版、加工机床12与数控系统1。其中,专用纤维编织模版由两个完全相同且具有群孔的304不锈钢板5与5’构成。工作时,具体实施方法与步骤如下:
第一步:利用专用CAD软件生成纤维增强金属基复合材料零件的三维CAD实体模型,然后切割成若干相互平行的薄片,实现将零件的三维立体数据转换成一系列的二维平面数据,并在数控加工台上生成激光-感应复合熔化热源的扫描路径;
第二步:对直径为0.2~10μm的纤维进行粗化、敏化、活化与化学镀20~50μm的镍层,从而形成镀镍层纤维9,其中纤维为碳纤维、石英纤维或玻璃纤维;
第三步:采用三组专用纤维编织模板,将纤维编织成相互平行的结构,其中专用纤维编织模板由两个完全相同且表面均匀分布有群孔的304不锈钢板5与5’构成,编织的纤维9与304不锈钢板5、5’的表面垂直,304不锈钢板5与5,的尺寸为20×20×0.2cm3,纤维9的底部与基材18表面接触;
纤维经过化学镀镍后的直径为20.2~60μm,将编织模板分为三组:第一组模板①304不锈钢板5与5’的群孔孔径为35.1μm,孔间距为35.2~45μm;第二组模板②304不锈钢板5与5’的群孔孔径为45.1μm,孔间距为45.2~60μm;第三组模板③304不锈钢板5与5’群孔孔径为60.1μm,孔间距为60.2~70μm;当镀Ni层纤维9直径为20.2~35μm时,选用模板①;当镀Ni层纤维9直径为35.001~45μm时,选用模板②;当镀Ni层纤维9直径为45.001~60μm时,选用模板③;选定模板后,根据纤维编织的厚度,选择相邻或不相邻孔洞进行编制,实现纤维之间距离的可控;
第四步:专用纤维编织模板其中的一块304不锈钢板5’固定在基材18上,另一块304不锈钢板5固定在加工头4上,且位于激光-感应复合熔化热源前端5mm处,编织纤维9的长度方向与激光扫描方向平行;
第五步:半导体激光器2产生的激光束经反射镜3作用后,投向到透镜16上,并定位于感应加热区,同时自动送粉器9的粉末喷嘴14也定位于感应加热区内,实现激光热源与感应加热源的复合;同轴自动送粉器8的装料斗7内合金粉末通过氩气经导管6送入粉末喷嘴14,粉末喷嘴14将合金粉末均匀喷射入基材18表面的激光-感应复合熔化热源形成的熔池17内,合金粉末吸收激光-感应复合熔化热源的能量后快速熔化,当激光-感应复合熔化热源移开后,熔融的合金粉末快速凝固并将纤维9包覆起来,形成纤维增强金属基沉积层15;其中,感应加热线圈11上安装有导磁体10并与高频感应加热器13相连;
第六步:当在基材18表面沉积完一道之后,沿着激光扫描速度的垂直方向移动加工机床12,其移动的距离为激光束光斑直径的40~50%;
第七步:重复第五步-第六步,直到沉积层15的宽度满足零件宽度要求;
第八步:检测沉积层15是否满足零件高度要求,如果没有,将安装有另一块304不锈钢板5的加工头与感应加热线圈11沿Z轴向上升到与CAD二维薄片厚度相等的距离,然后按下一层的扫描轨迹进行激光-感应复合熔化沉积,当所有的二维薄片都被扫描完成后,最终形成三维纤维增强金属基复合材料。

Claims (2)

1.一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置,包括:半导体激光器、同轴自动送粉器、高频感应加热器、专用纤维编织模版、加工机床与数控系统,其特征在于:该装置还包括粉末喷嘴(14)固定于激光器(2)的加工头(4)上,粉末喷嘴(14)喷出的合金粉末在透镜(16)的焦距之下5mm处会聚,专用纤维编织模版由具有群孔的304不锈钢板(5)与(5’)组成,其中304不锈钢板(5)固定于激光器(1)的加工头(4)上,304不锈钢板(5’)固定于基材(18)上,高频感应加热器(13)的感应加热线圈(11)与编织纤维(9)的距离为5mm,感应加热线圈(11)上安装有导磁体(10),粉末喷嘴(14)的底部与编织纤维(9)的距离为8mm,工作时,同轴自动送粉器(8)的装料斗(7)内的合金粉末通过氩气经导管(6)送入粉末喷嘴(14),粉末喷嘴(14)将合金粉末均匀喷射入基材(18)表面的熔池(17)内,合金粉末吸收激光-感应复合熔化热源的能量后快速熔化,当激光-感应复合熔化热源移开后,合金粉末快速凝固并将编织纤维(9)包覆起来形成沉积层(15)。
2.根据权利要求1所述的一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置,其特征在于:使用的纤维直径为0.2~10μm,经过化学镀镍后的直径为20.2~60μm,将编织模板分为三组:第一组模板①304不锈钢板(5)与(5’)的群孔孔径为35.1μm,孔间距为35.2~45μm;第二组模板②304不锈钢板(5)与(5’)的群孔孔径为45.1μm,孔间距为45.2~60μm;第三组模板③304不锈钢板(5)与(5’)的群孔孔径为60.1μm,孔间距为60.2~70μm;当镀Ni层纤维(9)直径为20.2~35μm时,选用模板①;当镀Ni层纤维(9)直径为35.001~45μm时,选用模板②;当镀Ni层纤维(9)直径为45.001~60μm时,选用模板③;选定模板后,根据纤维编织的厚度,选择相邻或不相邻孔洞进行编制,实现纤维之间距离的可控。
CN201611106546.0A 2016-12-05 2016-12-05 一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置 Expired - Fee Related CN106702375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611106546.0A CN106702375B (zh) 2016-12-05 2016-12-05 一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611106546.0A CN106702375B (zh) 2016-12-05 2016-12-05 一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置

Publications (2)

Publication Number Publication Date
CN106702375A true CN106702375A (zh) 2017-05-24
CN106702375B CN106702375B (zh) 2019-01-01

Family

ID=58935907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611106546.0A Expired - Fee Related CN106702375B (zh) 2016-12-05 2016-12-05 一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置

Country Status (1)

Country Link
CN (1) CN106702375B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175364A (zh) * 2018-09-28 2019-01-11 江苏大学 一种激光增材装置及其增材制造的方法
CN113035572A (zh) * 2020-04-10 2021-06-25 东莞东阳光科研发有限公司 电极结构材料及制备电极结构材料的方法、电解电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113422A1 (de) * 2007-03-17 2008-09-25 Ks Kolbenschmidt Gmbh Erzeugung eines partiellen faserverbundgefüges in einem bauteil über eine laserumschmelzbehandlung
CN102179517A (zh) * 2011-04-15 2011-09-14 华中科技大学 一种激光感应复合熔化直接成形方法及装置
CN102689096A (zh) * 2012-06-07 2012-09-26 哈尔滨工业大学 一种激光诱导自蔓延连接碳纤维增强铝基复合材料与金属的方法
CN103128284A (zh) * 2013-03-15 2013-06-05 南昌航空大学 激光-感应复合熔化沉积梯度含量的CNTs增强铜基复合材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113422A1 (de) * 2007-03-17 2008-09-25 Ks Kolbenschmidt Gmbh Erzeugung eines partiellen faserverbundgefüges in einem bauteil über eine laserumschmelzbehandlung
CN102179517A (zh) * 2011-04-15 2011-09-14 华中科技大学 一种激光感应复合熔化直接成形方法及装置
CN102689096A (zh) * 2012-06-07 2012-09-26 哈尔滨工业大学 一种激光诱导自蔓延连接碳纤维增强铝基复合材料与金属的方法
CN103128284A (zh) * 2013-03-15 2013-06-05 南昌航空大学 激光-感应复合熔化沉积梯度含量的CNTs增强铜基复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周圣丰 等: "激光-感应复合熔覆WC-Ni 涂层极限条件研究", 《热加工工艺》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175364A (zh) * 2018-09-28 2019-01-11 江苏大学 一种激光增材装置及其增材制造的方法
CN113035572A (zh) * 2020-04-10 2021-06-25 东莞东阳光科研发有限公司 电极结构材料及制备电极结构材料的方法、电解电容器

Also Published As

Publication number Publication date
CN106702375B (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
KR101330977B1 (ko) 삼차원 형상 조형물의 제조 방법 및 그로부터 얻어지는 삼차원 형상 조형물
CN103121103B (zh) 金属-陶瓷多维度功能梯度结构件的激光近净成形方法
CN103317590B (zh) 一种激光3d打印陶瓷功能梯度结构件的方法
CN101780544A (zh) 一种采用激光成形难熔金属零件的方法
CN105215358B (zh) 铝材的送粉式激光增材制造系统及方法
CN108080629B (zh) 一种金属基碳纳米管复合材料零件的成形方法
CN104985180B (zh) 一种金属间化合物及其制备方法及设备
CN107774996A (zh) 一种多材料梯度点阵结构的零件的一体化成形方法
CN104388848A (zh) 一种3d打印制备长纤维增强金属基复合材料的方法
CN106001569B (zh) 一种曲面薄壳层结构金属增材制备方法
CN109396434A (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
CN107457404A (zh) 一种适用于复杂零件和模具的增材加工成形方法
CN104259460B (zh) 一种梯度孔隙结构金属纤维烧结板及制造方法
CN101709468A (zh) 激光感应复合熔覆快速制备梯度金属陶瓷复合材料的方法
US20020165634A1 (en) Fabrication of laminate tooling using closed-loop direct metal deposition
CN104388849A (zh) 一种金属基复合材料零部件的快速成形方法
CN110405209A (zh) 原位降低选区激光熔化制备钛基复合材料残余应力的方法
CN106702375B (zh) 一种激光-感应复合熔化沉积纤维增强金属基复合材料的装置
CN109794602A (zh) 一种用于增材制造的铜合金粉末及其制备方法和应用
CN107159893A (zh) 一种复杂结构陶瓷颗粒预制体制备方法
CN104399981A (zh) 一种金属基复合材料的三维打印成形方法
CN109128162A (zh) 一种嵌入预制件的金属工件加工方法
CN106694879B (zh) 一种激光-感应复合熔化沉积纤维增强金属基复合材料的方法
CN107584121A (zh) 一种利用多种元素粉末成型合金的激光3d打印方法及装置
CN101670433A (zh) 一种激光间接成型制造金属模具的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190101

Termination date: 20191205

CF01 Termination of patent right due to non-payment of annual fee