CN106701925B - Cataract pathogenic gene detection kit and detection method thereof - Google Patents

Cataract pathogenic gene detection kit and detection method thereof Download PDF

Info

Publication number
CN106701925B
CN106701925B CN201611120811.0A CN201611120811A CN106701925B CN 106701925 B CN106701925 B CN 106701925B CN 201611120811 A CN201611120811 A CN 201611120811A CN 106701925 B CN106701925 B CN 106701925B
Authority
CN
China
Prior art keywords
cataract
pathogenic
dna
genes
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611120811.0A
Other languages
Chinese (zh)
Other versions
CN106701925A (en
Inventor
阳菊华
陈晓乐
朱益华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Medical University
Original Assignee
Fujian Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Medical University filed Critical Fujian Medical University
Priority to CN201611120811.0A priority Critical patent/CN106701925B/en
Publication of CN106701925A publication Critical patent/CN106701925A/en
Application granted granted Critical
Publication of CN106701925B publication Critical patent/CN106701925B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides a cataract virulence gene detection kit and a detection method thereof, wherein the kit comprises 27 pairs of PCR primers, and the sequences of the PCR primers are respectively shown in SEQ ID NO. 1-54. The invention establishes a cataract pathogenic gene detection method based on a high-frequency mutation region of cataract pathogenic genes, and 80 percent of pathogenic genes of hereditary cataract families can be detected only by screening 26 exons of 18 cataract pathogenic genes. The invention can obviously reduce the workload and the cost of the cataract pathogenic gene detection on the basis of not reducing the detection rate, has the advantages of rapidness, economy, high efficiency and the like, finds 16 different cataract gene pathogenic mutation sites through the detection of the kit, and provides convenience for diagnosis and treatment and prevention intervention of patients clinically.

Description

一种白内障致病基因检测试剂盒及其检测方法Cataract pathogenic gene detection kit and detection method thereof

技术领域technical field

本发明涉及基因诊断遗传性疾病领域,具体的说是一种白内障致病基因检测试剂盒及其检测方法。The invention relates to the field of genetic diagnosis of hereditary diseases, in particular to a cataract pathogenic gene detection kit and a detection method thereof.

背景技术Background technique

白内障是由于先天性或后天性因素导致的晶状体混浊,其中先天性白内障在世界范围内的患病率为0.0l%~0.06%,我国约为0.05%。预防先天性白内障引起的视力损害是世界卫生组织(WHO)国际项目“2020年消灭可避免失明”的一个重要组成部分。Cataract is the opacity of the lens caused by congenital or acquired factors. The prevalence of congenital cataract in the world is 0.01%~0.06%, and it is about 0.05% in my country. The prevention of visual impairment caused by congenital cataracts is an important part of the World Health Organization (WHO) international project "End Avoidable Blindness by 2020".

先天性白内障表现明显的临床异质性,按临床表型可分全白内障、膜性白内障、核性白内障、绕核性白内障、前极白内障、后极白内障、缝状白内障、点状白内障、盘状白内障,珊瑚型等,其发病机制复杂,涉及遗传、代谢性疾病、宫内感染及自发性等因素,其中约有30%-50%与遗传有关,统称为遗传性白内障。遗传性白内障的遗传方式包括常染色体显性、常染色体隐性和性染色体连锁遗传等,其中以常染色体显性遗传为主。据统计我国家族性白内障患者中,常染色体显性遗传的白内障占家族性白内障总数的73%。Congenital cataracts have obvious clinical heterogeneity. According to the clinical phenotype, they can be divided into pan cataract, membranous cataract, nuclear cataract, circumnuclear cataract, anterior pole cataract, posterior pole cataract, suture cataract, punctate cataract, disc The pathogenesis of cataract is complex, involving factors such as heredity, metabolic disease, intrauterine infection and spontaneity, of which about 30%-50% are related to heredity, collectively referred to as hereditary cataract. The hereditary cataract inheritance modes include autosomal dominant, autosomal recessive, and sex chromosome-linked inheritance, among which autosomal dominant inheritance is the main one. According to statistics, among familial cataract patients in my country, autosomal dominant cataract accounts for 73% of the total number of familial cataracts.

晶状体的发育是一个非常复杂的过程,涉及许多基因,这些基因任何一个发生突变后都可能导致晶状体混浊,也就是我们所说的白内障。通过研究遗传性白内障去认识在细胞层次发挥不同功能的基因(蛋白质),是人类认识该类基因乃至其基因家族最为有效的途径。所以从科学理论研究来说,遗传性白内障对于阐明人类基因功能是一个很好的遗传性模式疾病。The development of the lens is a very complex process involving many genes. Mutations in any one of these genes may cause the lens to become cloudy, which is what we call cataracts. To understand the genes (proteins) that play different functions at the cellular level by studying hereditary cataracts is the most effective way for humans to understand such genes and even their gene families. Therefore, in terms of scientific theoretical research, hereditary cataract is a good hereditary model disease for elucidating the function of human genes.

为了寻找引起白内障的致病基因,常采用的分子遗传学研究方法包括功能克隆(如候选基因筛选和蛋白质分析)、位置克隆、定位候选基因克隆(如基于家系的连锁分析和等位基因共享分析)等。迄今为止,已明确30个基因与单纯遗传性白内障相关,统称为遗传性白内障致病基因,其大致可归为四大类:晶体蛋白基因(CRYAA、CRYAB、CRYBAI/A3、CRYBA2、CRYBA4、CRYBB1、CRYBB2、CRYBB3、CRYGB、CRYGC、CRYGD、CRYGS)、细胞骨架或膜蛋白基因(GJA3、GJA8、MIP、LIM2、BFSP1、BFSP2、EPHA2、TMEM114、CHMP4B、VIM)、转录因子调控基因(HSF4、PITX3)和其他相关基因(GCNT2、FOXE3、WFS1、UNC45B、TDRD7、FYCO1)等。In order to search for the causative gene causing cataract, molecular genetic research methods are often used including functional cloning (such as candidate gene screening and protein analysis), positional cloning, locational candidate gene cloning (such as family-based linkage analysis and allele sharing analysis) )Wait. So far, 30 genes have been identified that are related to pure hereditary cataract, collectively referred to as hereditary cataract pathogenic genes, which can be roughly classified into four categories: crystal protein genes (CRYAA, CRYAB, CRYBAI/A3, CRYBA2, CRYBA4, CRYBB1 , CRYBB2, CRYBB3, CRYGB, CRYGC, CRYGD, CRYGS), cytoskeleton or membrane protein genes (GJA3, GJA8, MIP, LIM2, BFSP1, BFSP2, EPHA2, TMEM114, CHMP4B, VIM), transcription factor regulatory genes (HSF4, PITX3) ) and other related genes (GCNT2, FOXE3, WFS1, UNC45B, TDRD7, FYCO1), etc.

遗传性先天性白内障具有高度的遗传异质性和临床异质性,即不同的基因突变可导致相同表型的白内障,不同表型的白内障可由相同的基因突变造成。由于遗传性白内障致病基因众多,且基因型与表型之间不存在一定的相关性,使其临床基因检测颇具挑战性。Hereditary congenital cataracts have a high degree of genetic and clinical heterogeneity, that is, different gene mutations can cause cataracts with the same phenotype, and cataracts with different phenotypes can be caused by the same gene mutation. Due to the large number of causative genes of hereditary cataract, and there is no certain correlation between genotype and phenotype, its clinical genetic testing is quite challenging.

随着生物技术的高速发展,特别是外显子组测序及全基因组测序等,为遗传性疾病致病基因突变的筛查和发现提供了快捷的手段,但费用相对昂贵。因此,该类技术常常应用于排除已知致病基因之后,以降低实验的成本风险,否则性价比太高。目标序列捕获测序技术可实现高通量众多已知致病基因突变筛查,具有快捷、高效等优势,但费用较高。从科学严谨性来说,以上新技术筛查到可疑致病基因突变最后仍需金标DNA测序Sanger法进一步验证。因此,在精准医学时代,建立快速、经济又高效的遗传性白内障致病基因检测体系不仅有助于尽快排查白内障家系的已知致病基因,发现新的突变位点,同时又可为发现新的致病基因提供可靠的家系材料及其后继研究方法决策的制定。在临床应用上,可开发成相应的白内障基因诊断试剂盒,为有白内障家族史者提供科学的遗传咨询与产前基因诊断。With the rapid development of biotechnology, especially exome sequencing and whole-genome sequencing, it provides a fast method for the screening and discovery of pathogenic gene mutations in hereditary diseases, but the cost is relatively expensive. Therefore, this type of technology is often applied after excluding known disease-causing genes to reduce the cost risk of experiments, which would otherwise be too cost-effective. Target sequence capture sequencing technology can realize high-throughput screening of many known pathogenic gene mutations, and has the advantages of fast and efficient, but high cost. In terms of scientific rigor, the screening of suspected pathogenic gene mutations by the above new technologies still requires further verification by the Sanger method of gold-labeled DNA sequencing. Therefore, in the era of precision medicine, the establishment of a rapid, economical and efficient genetic detection system for hereditary cataracts not only helps to identify known causative genes in cataract families as soon as possible, but also helps to discover new mutation sites. The causative genes provide reliable pedigree material and the formulation of methodological decisions for subsequent research. In clinical application, a corresponding cataract gene diagnosis kit can be developed to provide scientific genetic counseling and prenatal genetic diagnosis for those with a family history of cataract.

目前,就我们所知,遗传性白内障致病基因的研究主要限于科研,尚未见临床上有遗传性白内障致病基因检测产品;而检索到与白内障致病基因筛查有关的专利则仅针对单个遗传性白内障致病基因突变检测方法或试剂盒,未见有针对多个遗传性白内障致病基因突变检测试剂盒的发明专利申请。At present, as far as we know, the research on hereditary cataract causative genes is mainly limited to scientific research, and there is no clinical product for hereditary cataract causative gene detection; and the patents related to cataract causative gene screening are only for single There are no invention patent applications for multiple genetic cataract pathogenic gene mutation detection kits for hereditary cataract pathogenic gene mutation detection methods or kits.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种快速、经济又高效的白内障致病基因检测试剂盒及其检测方法。The purpose of the present invention is to provide a rapid, economical and efficient cataract pathogenic gene detection kit and its detection method.

为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

本发明的理论依据是遗传性白内障存在高频致病基因或突变热点区域,具体获得白内障致病基因高频突变谱的操作步骤如下:首先,检索自1997年发现第一个人类遗传性白内障致病基因CRYBB2以来至2014年7月国内外报道与遗传性白内障致病基因及其突变的相关文献211篇,统计299个家系或先证者,涉及30个相关致病基因,分布于16条染色体(chr.1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22),鉴定221个单一突变(Uni-mutation),分布于72个外显子,占基因总外显子数的34.6%(72/205);随后,分析致病基因的发生频谱,结果显示90.97%的病例数与16个致病基因的突变有关,其发生频谱由高到低依次为GJA8 和CRYGD (11.04%),GJA3和 CRYAA(10.03%),CRYBB2(7.69%),CRYBA1(6.35%),MIP(5.02%), EPHA2, CRYGC, CRYAB和HSF4(4.01%), FYCO1(3.34%), CRYBB1(3.01%), BFSP2(2.68%), GCNT2和PITX3 (2.34%);其中FYCO1和GCNT2仅涉及常染色体隐性遗传;最后,进一步分析致病基因各外显子发生突变频率,结果显示57.19%的突变位于8个基因的11个外显子上,65.22%的突变位于12个基因的15个外显子上,70.23%的突变位于13个基因的18个外显子上,80.27%的突变位于18个基因的26个外显子上。统计分析结果直观图见附图1,且本发明将此18个基因的26个外显子定义为白内障致病基因高频突变外显子。The theoretical basis of the present invention is that hereditary cataract has high-frequency pathogenic genes or mutation hot spots, and the specific operation steps to obtain the high-frequency mutation spectrum of cataract pathogenic genes are as follows: From the disease gene CRYBB2 to July 2014, 211 domestic and foreign literatures were reported on hereditary cataract pathogenic genes and their mutations, 299 families or probands were counted, involving 30 related pathogenic genes, distributed on 16 chromosomes (chr.1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22), identified 221 single mutations (Uni-mutation), distributed in 72 exons, accounting for 34.6% (72/205) of the total exons of the gene; then, the occurrence spectrum of pathogenic genes was analyzed, and the results showed that 90.97% of the cases were related to mutations in 16 pathogenic genes, which occurred The spectrum from high to low is GJA8 and CRYGD (11.04%), GJA3 and CRYAA (10.03%), CRYBB2 (7.69%), CRYBA1 (6.35%), MIP (5.02%), EPHA2, CRYGC, CRYAB and HSF4 (4.01 %), FYCO1 (3.34%), CRYBB1 (3.01%), BFSP2 (2.68%), GCNT2 and PITX3 (2.34%); FYCO1 and GCNT2 are only involved in autosomal recessive inheritance; Exon mutation frequency, the results show that 57.19% of mutations are located in 11 exons of 8 genes, 65.22% of mutations are located in 15 exons of 12 genes, and 70.23% of mutations are located in 18 of 13 genes. 80.27% of the mutations were located in 26 exons of 18 genes. The visual diagram of the statistical analysis results is shown in Figure 1, and the present invention defines the 26 exons of the 18 genes as the high-frequency mutation exons of the cataract pathogenic gene.

本发明提供的白内障致病基因检测试剂盒,该基因检测试剂盒主要检测上述定义的白内障致病基因高频突变外显子的蛋白编码区及其剪切位点连接区,即白内障致病基因高频突变区域,就可以检出80%的遗传性白内障家系的致病基因突变。The present invention provides a cataract pathogenic gene detection kit, which mainly detects the protein coding region of the high-frequency mutation exon of the cataract pathogenic gene defined above and its splice site connection region, that is, the cataract pathogenic gene In the high-frequency mutation region, the pathogenic gene mutation in 80% of the hereditary cataract families can be detected.

本发明提供的白内障致病基因检测试剂盒,该基因检测试剂盒包括27对PCR引物,是根据上述白内障致病基因高频或热点突变区域的DNA序列,采用Primer和Generunner等生物学软件设计和人工合成;27对PCR引物的具体信息见表1。The cataract pathogenic gene detection kit provided by the present invention, the gene detection kit includes 27 pairs of PCR primers. Artificial synthesis; the specific information of the 27 pairs of PCR primers is shown in Table 1.

表1. 本发明提供的26对引物信息及其PCR条件Table 1. 26 pairs of primer information and PCR conditions provided by the present invention

Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE004

本发明提供的白内障致病基因检测试剂盒组成部件如下表2:The components of the cataract pathogenic gene detection kit provided by the present invention are as follows in Table 2:

表2白内障致病基因检测试剂盒组成Table 2 Composition of cataract pathogenic gene detection kit

Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE008

本发明提供的试剂盒用于白内障致病基因检测方法,该方法主要包括三部分内容:The kit provided by the invention is used for a cataract pathogenic gene detection method, and the method mainly includes three parts:

1)应用本发明的白内障致病基因检测试剂盒进行PCR扩增目标基因的DNA片段;2)PCR产物的DNA测序分析,发现变异位点;1) Use the cataract pathogenic gene detection kit of the present invention to amplify the DNA fragment of the target gene by PCR; 2) DNA sequencing analysis of the PCR product to find the mutation site;

3)鉴定目标基因变异位点是否为致病性突变位点。3) Identify whether the target gene mutation site is a pathogenic mutation site.

所述试剂盒的白内障致病基因检测方法,具体操作步骤如下:The specific operation steps of the cataract pathogenic gene detection method of the kit are as follows:

1)按下表3配制PCR反应液(50μl),混匀置于PCR仪上;1) Prepare PCR reaction solution (50 μl) according to Table 3, mix well and place it on the PCR machine;

表3 PCR反应体系(100μl)组成Table 3 Composition of PCR reaction system (100 μl)

Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE010

2)按下列条件进行PCR扩增反应:2) Carry out PCR amplification reaction under the following conditions:

94℃/4min 预变性;94℃/30sec, 57℃-61℃(退火温度依据不同PCR引物而异,具体参考附表1)/30sec,72℃/1min,30个循环; 72℃/4min;4℃保存。94°C/4min pre-denaturation; 94°C/30sec, 57°C-61°C (annealing temperature varies according to different PCR primers, see Appendix 1 for details)/30sec, 72°C/1min, 30 cycles; 72°C/4min; Store at 4°C.

3)PCR产物琼脂糖凝胶电泳鉴定:取9ulPCR产物,加入1ul的10×上样缓冲液,于1%琼脂糖凝胶电泳,紫外成像系统下检测PCR产物的特异性及其大小是否与预期相符。3) Identification of PCR products by agarose gel electrophoresis: Take 9ul of PCR products, add 1ul of 10× loading buffer, run 1% agarose gel electrophoresis, and check the specificity and size of PCR products under the UV imaging system. match.

4)PCR产物的DNA测序分析,发现变异位点:PCR产物经琼脂糖凝胶电泳分离、纯化后采用ABI3730XL 自动DNA测序仪进行DNA测序,测序结果与正常DNA序列Blast比对分析,筛查变异位点。4) DNA sequencing analysis of PCR products to find variation sites: PCR products are separated and purified by agarose gel electrophoresis and then DNA sequenced by ABI3730XL automatic DNA sequencer. The sequencing results are compared with the normal DNA sequence Blast to screen for variation site.

5)鉴定致病性突变位点:如果变异位点为已知致病基因突变位点,即确定其为致病性突变;如果变异位点为新变异位点,则通过SNP排除、疾病表型与变异位点共分离、蛋白序列同源性比较、以及应用一些生物学蛋白变异功能预测软件分析,包括PolyPhen2(Polymorphism Phenotyping v2)和SIFT (Sorting Intolerant From Tolerant)对编码区新发的错义突变进行功能预测,以及HSF (Human Splicing Finder) 对于内含子上剪接点的改变进行预测。5) Identification of pathogenic mutation sites: If the mutation site is a known pathogenic gene mutation site, it is determined to be a pathogenic mutation; if the mutation site is a new mutation site, it is excluded by SNP and disease table. Co-segregation of type and variant sites, comparison of protein sequence homology, and application of some biological protein variant function prediction software analysis, including PolyPhen2 (Polymorphism Phenotyping v2) and SIFT (Sorting Intolerant From Tolerant) new missense to coding regions Mutations are used for functional prediction, and HSF (Human Splicing Finder) is used to predict changes in splice junctions on introns.

除本发明提供的基因检测试剂盒外,根据本发明提供的白内障致病基因高频突变区域,应用现有的生物学技术,如DNA芯片技术和目标序列捕获二代测序技术,可简单开发相关的白内障致病基因检测试剂和方法。因此本发明提供的白内障致病基因高频突变区域亦适合上述技术,但不限于上述技术。In addition to the gene detection kit provided by the present invention, according to the high-frequency mutation region of the cataract pathogenic gene provided by the present invention, the application of existing biological technologies, such as DNA chip technology and target sequence capture second-generation sequencing technology, can easily develop related Cataract pathogenic gene detection reagents and methods. Therefore, the high-frequency mutation region of the cataract pathogenic gene provided by the present invention is also suitable for the above-mentioned technology, but is not limited to the above-mentioned technology.

本发明还提供了16个白内障致病基因新突变位点,见表5和附图2。 根据本发明提供的新突变位点,应用现有技术,如基于PCR扩增技术的DNA测序、限制性片段长度多态性(restriction fragment length polymorphism,RFLP) 分析、单链构象多态性检测(SSCP)、等位基因特异PCR、实时定量PCR以及高分辨率熔解曲线 (HRM) 分析等,可简易针对本发明提供的新突变位点信息开发相应的快捷检测试剂和方法。因此本发明提供的16个白内障致病基因高新突变亦适合上述技术,但不限于上述技术。The present invention also provides 16 new mutation sites of cataract pathogenic genes, as shown in Table 5 and accompanying drawing 2 . According to the new mutation site provided by the present invention, the existing technology, such as DNA sequencing based on PCR amplification technology, restriction fragment length polymorphism (restriction fragment length polymorphism, RFLP) analysis, single-strand conformation polymorphism detection ( SSCP), allele-specific PCR, real-time quantitative PCR, and high-resolution melting curve (HRM) analysis, etc., can easily develop corresponding quick detection reagents and methods for the new mutation site information provided by the present invention. Therefore, the 16 high-level mutations of cataract pathogenic genes provided by the present invention are also suitable for the above-mentioned technology, but are not limited to the above-mentioned technology.

为说明本发明所具有的优点和有益效果,先列举一些相关的现有技术情况:Hansen L等对28个丹麦白内障家系采用PCR扩增17个白内障致病基因的所有外显子,DNA测序结果显示其检出率为71% (Invest Ophthalmol Vis Sci. 2009,50, 3291-3303);Sun W等在25个中国人白内障家系采用PCR扩增12个白内障致病基因的所有外显子,DNA测序结果显示其检出率为40% (Mol Vis. 2011,17, 2197-2206);Ponnam SP等在40个印度白内障家系采用SSCP(single strand conformation polymorphism)技术筛查10个白内障致病基因的所有外显子,其检出率仅10%(Mol Vis. 19, 1141-1148 2013);Sun W等采用外显子组测序技术筛查18个中国人白内障家系,其检出率67.6%(PLoS One. 2014,9, e100455);Ma AS等采用目标序列捕获二代测序技术在46个先天性白内障家系中筛查32个白内障致病基因,其检出率70%(Hum Mutat. 2016,37, 371-384)。In order to illustrate the advantages and beneficial effects of the present invention, some related prior art situations are listed first: Hansen L et al. used PCR to amplify all exons of 17 cataract pathogenic genes in 28 Danish cataract families, and the results of DNA sequencing showed that the detection rate was 71% (Invest Ophthalmol Vis Sci. 2009, 50, 3291-3303); Sun W et al used PCR to amplify all exons of 12 cataract-causing genes in 25 Chinese cataract families, DNA Sequencing results showed that the detection rate was 40% (Mol Vis. 2011, 17, 2197-2206); Ponnam SP et al. used SSCP (single strand conformation polymorphism) technology to screen 10 cataract causative genes in 40 Indian cataract families. For all exons, the detection rate is only 10% (Mol Vis. 19, 1141-1148 2013); Sun W et al. used exome sequencing technology to screen 18 Chinese cataract families, and the detection rate was 67.6% ( PLoS One. 2014, 9, e100455); Ma AS et al. used target sequence capture next-generation sequencing technology to screen 32 cataract-causing genes in 46 congenital cataract families, and the detection rate was 70% (Hum Mutat. 2016, 37, 371-384).

与现有技术相比,本发明所具有的优点和有益效果是:Compared with the prior art, the present invention has the following advantages and beneficial effects:

由于本发明基于白内障致病基因突变热点区域建立白内障致病基因检测体系,仅通过筛查18个白内障致病基因的26个外显子,就可检测80%的遗传性白内障家系的致病基因突变。故本发明在不降低检出率的基础上可明显降低白内障致病基因检测的工作量和成本等,具有快速、经济和高效等优势。Since the present invention establishes a cataract pathogenic gene detection system based on the hot spot region of cataract pathogenic gene mutation, only by screening 26 exons of 18 cataract pathogenic genes, the pathogenic genes of 80% of hereditary cataract families can be detected mutation. Therefore, the present invention can obviously reduce the workload and cost of cataract pathogenic gene detection on the basis of not reducing the detection rate, and has the advantages of rapidity, economy and efficiency.

在基础研究方面,用本发明提供的白内障致病基因检测试剂盒及其检测方法可实现快速排查白内障家系的已知致病基因,发现新的突变位点,扩充白内障致病基因突变谱,又可为筛查新的白内障致病基因提供可靠而宝贵的遗传资源;在临床应用上,用本发明提供的试剂盒及其方法体系进行白内障致病基因检测,可为白内障家族史提供科学的遗传咨询和产前诊断。In terms of basic research, the cataract pathogenic gene detection kit and the detection method provided by the present invention can quickly check the known pathogenic genes of cataract families, discover new mutation sites, expand the cataract pathogenic gene mutation spectrum, and further It can provide reliable and valuable genetic resources for screening new cataract pathogenic genes; in clinical application, the kit and the method system provided by the present invention are used for cataract pathogenic gene detection, which can provide scientific genetic information for cataract family history Counseling and prenatal diagnosis.

附图说明Description of drawings

图1 白内障致病基因高频突变区域的选择:黑色点表示该研究选择热点突变区域,包括了18个基因上的26个外显子,这些区域覆盖了文献报道的80.27%白内障家系致病基因突变;点的大小与该外显子突变的频率有关,突变频率越高,点的直径越大。;可期望36.11%(26/72)的外显子区域可以覆盖约80%以上的突变。Figure 1 Selection of high-frequency mutation regions of cataract causative genes: The black dots indicate the hot spot mutation regions selected in this study, including 26 exons of 18 genes, and these regions cover 80.27% of cataract pedigree causative genes reported in the literature Mutation; the size of the dot is related to the frequency of mutation in that exon, the higher the mutation frequency, the larger the diameter of the dot. ; It can be expected that 36.11% (26/72) of the exon region can cover more than 80% of the mutations.

图2:白内障致病基因新突变位点的DNA测序图。Figure 2: DNA sequencing map of novel mutation sites in cataract-causing genes.

具体实施方式Detailed ways

实施例1:白内障致病基因高频突变谱Example 1: High-frequency mutation spectrum of cataract-causing genes

为了获得白内障致病基因高频突变谱,即致病基因及其外显子突变热点区域,我们检索PubMed收录人类单纯遗传性白内障致病基因及其突变的相关文献210篇(自1997年发现第一个人类遗传性白内障致病基因CRYBB2以来至2014年7月),共报道了299个家系或先证者,涉及30个相关致病基因,分布于16条染色体(chr.1, 2, 3, 4, 6, 9, 10, 11,12, 13, 16, 17, 19, 20, 21, 22),鉴定了221个单一突变(Uni-mutation),分布于72个外显子,占基因总外显子数的34.6%(72/208)。以家系或先证者为单位,统计30个白内障致病基因上的所有突变;然后,按照外显子突变进行汇总频率统计,由高到底进行排序,绘制白内障致病基因高频突变谱,结果详见附图1;最后,本发明选择分布于18个基因的26个外显子作为突变热点区域(详见表1),进行后继的白内障致病基因检测分析。In order to obtain the high-frequency mutation spectrum of cataract causative genes, that is, the hot spot regions of causative genes and their exons, we searched PubMed for 210 related literatures on human purely hereditary cataract causative genes and their mutations (since the discovery of the first in 1997). A human hereditary cataract causative gene CRYBB2 since July 2014), a total of 299 families or probands have been reported, involving 30 related causative genes distributed on 16 chromosomes (chr.1, 2, 3). , 4, 6, 9, 10, 11, 12, 13, 16, 17, 19, 20, 21, 22), identified 221 single mutations (Uni-mutation), distributed in 72 exons, accounting for gene 34.6% (72/208) of total exons. All mutations in 30 cataract-causing genes were counted in the unit of family or proband; then, the frequency of exon mutations was summarized, sorted from high to bottom, and the high-frequency mutation spectrum of cataract-causing genes was drawn. Results See Figure 1 for details; finally, the present invention selects 26 exons distributed in 18 genes as mutation hotspot regions (see Table 1 for details) for subsequent detection and analysis of cataract pathogenic genes.

实施例2:白内障致病基因检测方法Example 2: Cataract causative gene detection method

根据实施例1选择的白内障致病基因突变热点区域,采用Primer、Generunner等生物学软件设计和合成相应的PCR引物;以先证者gDNA为模板,PCR扩增相应蛋白编码区和剪切接合区的DNA片段,PCR引物和PCR条件见表1。PCR产物纯化后,用ABI 3730XL 全自动测序仪(Automated Sequencer PE Biosystems, Foster City, CA)进行DNA直接测序。According to the selected cataract pathogenic gene mutation hotspot region in Example 1, use biological software such as Primer and Generunner to design and synthesize corresponding PCR primers; take the proband gDNA as a template, PCR amplify the corresponding protein coding region and the splice junction region The DNA fragments, PCR primers and PCR conditions are shown in Table 1. After purification of the PCR products, direct DNA sequencing was performed using an ABI 3730XL automated sequencer (Automated Sequencer PE Biosystems, Foster City, CA).

通过DNA序列比对,分析筛查致病基因变异位点。如果变异位点为已知突变位点,即确定其为致病性突变;如果变异位点为新的,则通过SNP排除、疾病表型与变异位点共分离、蛋白序列同源性比较、以及应用一些生物学蛋白变异功能预测软件分析,包括PolyPhen2 (Polymorphism Phenotyping v2)和SIFT (Sorting Intolerant FromTolerant)对编码区新发的错义突变进行功能预测,以及HSF (Human Splicing Finder)对于内含子上剪接点的改变进行预测。Through DNA sequence alignment, analysis and screening of pathogenic gene mutation sites. If the mutation site is a known mutation site, it is determined to be a pathogenic mutation; if the mutation site is new, it is excluded by SNP, disease phenotype and mutation site co-segregation, protein sequence homology comparison, And apply some biological protein variant function prediction software analysis, including PolyPhen2 (Polymorphism Phenotyping v2) and SIFT (Sorting Intolerant FromTolerant) for functional prediction of new missense mutations in the coding region, and HSF (Human Splicing Finder) for introns. Changes in upper splice junctions are predicted.

对于筛查到的新发突变,在突变基因的上下游分别选择2-3个含高信息STR微卫星标记,PCR扩增微卫星位点DNA区域,扩增产物在ABI3730自动测序仪上用毛细管凝胶电泳进行分离,DNA片段大小用GeneMarker2.4.0软件进行分析,用Cyrillic 2.1 软件画家系图,并构建单体型,进一步确证新致病基因突变位点。For the newly identified mutations, 2-3 microsatellite markers with high information were selected in the upstream and downstream of the mutant gene, and the DNA region of the microsatellite locus was amplified by PCR. Gel electrophoresis was used for separation, DNA fragment size was analyzed with GeneMarker 2.4.0 software, pedigree was drawn with Cyrillic 2.1 software, and haplotypes were constructed to further confirm new pathogenic gene mutation sites.

实施例3:遗传性白内障家系或散发病例血样标本收集及基因组DNA的分离、纯化Example 3: Collection of blood samples from hereditary cataract families or sporadic cases and isolation and purification of genomic DNA

为验证是否存在白内障致病基因高频突变谱和发现新的致病基因突变,本发明收集了43个白内障先证者(31个来自常染色体显性遗传家系,8个来自无家族史家系和4个散发病例)及其234个家系成员的血样标本;另外,收集112份正常人血样标本作为对照。按Wizard Genomic DNA Purification Kit (Promega, Beijing, China)试剂盒说明操作从全血样中提取和纯化基因组DNA(gDNA)。In order to verify whether there is a high-frequency mutation spectrum of cataract pathogenic genes and discover new pathogenic gene mutations, the present invention collected 43 cataract probands (31 from autosomal dominant families, 8 from families with no family history and 4 sporadic cases) and blood samples from 234 family members; in addition, 112 normal human blood samples were collected as controls. Genomic DNA (gDNA) was extracted and purified from whole blood samples according to the instructions of the Wizard Genomic DNA Purification Kit (Promega, Beijing, China).

实施例4:白内障致病基因检测试剂盒的应用Example 4: Application of cataract pathogenic gene detection kit

以实施例3的基因组DNA为对象,应用实施例2建立的白内障致病基因检测方法。结果发现7个已知突变位点(表4)和16个新突变位点(表-5和附图-2)。统计分析结果显示:60.5% (26/43)的先证者/家系中检出致病性的突变,低于文献报道的检出率80.27% (240/299,X2=7.99,p=0.005)。而对于常染色体显性遗传家系来说,检出率为80%(24/30),与基于文献报道的检出率83.57%(234/280)无统计学差异(X2=0.489, p=0.484)。对于无家族史家系和散发病例,检出率仅为16.67% (2/12)。 故本发明提供的试剂盒及其检测方法特别适合常染色体显性遗传白内障家系致病基因的检测。Taking the genomic DNA of Example 3 as the object, the cataract pathogenic gene detection method established in Example 2 was applied. As a result, 7 known mutation sites (Table 4) and 16 new mutation sites (Table-5 and Figure-2) were found. Statistical analysis showed that pathogenic mutations were detected in 60.5% (26/43) of the probands/families, which was lower than the reported detection rate of 80.27% (240/299, X2=7.99, p=0.005) . For autosomal dominant pedigrees, the detection rate was 80% (24/30), which was not statistically different from the 83.57% (234/280) detection rate based on literature reports (X2=0.489, p=0.484 ). For families with no family history and sporadic cases, the detection rate was only 16.67% (2/12). Therefore, the kit and the detection method provided by the present invention are particularly suitable for the detection of the causative gene of an autosomal dominant cataract family.

表4.在10个先天性白内障家系中鉴定7个已知致病基因突变位点Table 4. Identification of 7 known causative gene mutation loci in 10 families with congenital cataract

Figure DEST_PATH_IMAGE012
Figure DEST_PATH_IMAGE012

表5 在先天性白内障家系中鉴定16个白内障致病基因新突变位点Table 5 Identification of 16 new mutation sites of cataract pathogenic genes in congenital cataract families

Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE014

备注: D= damaging; PD = probably damaging; MPA = mostprobablyaffecting splicingRemarks: D= damaging; PD = probably damaging; MPA = mostprobablyaffecting splicing

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 福建医科大学<110> Fujian Medical University

<120> 一种白内障致病基因检测试剂盒及其检测方法<120> A cataract pathogenic gene detection kit and its detection method

<130> 54<130> 54

<160> 54<160> 54

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 1<400> 1

ttggaaagga gaggtacccc 20ttggaaagga gaggtacccc 20

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 2<400> 2

cagaggccac agacaacatg a 21cagaggccac agacaacatg a 21

<210> 3<210> 3

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 3<400> 3

ttccggatcc tgcctctgta 20ttccggatcc tgcctctgta 20

<210> 4<210> 4

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 4<400> 4

cctttcatct tgccctacgt a 21cctttcatct tgccctacgt a 21

<210> 5<210> 5

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 5<400> 5

ccatcccagt accatccag 19ccatcccagt accatccag 19

<210> 6<210> 6

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 6<400> 6

cctgcttgag cttcttcca 19cctgcttgag cttcttcca 19

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 7<400> 7

acggtggact gcttcatctc 20acggtggact gcttcatctc 20

<210> 8<210> 8

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 8<400> 8

tctatctgct ggtgggaagt g 21tctatctgct ggtgggaagt g 21

<210> 9<210> 9

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 9<400> 9

agaacacgaa aatgcccttg 20agaacacgaa aatgcccttg 20

<210> 10<210> 10

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 10<400> 10

tgcttgaaac catccagtga 20tgcttgaaac catccagtga 20

<210> 11<210> 11

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 11<400> 11

cttcttcatg agctcacgcc 20cttcttcatg agctcacgcc 20

<210> 12<210> 12

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 12<400> 12

tgacggagca agaccagagt 20tgacggagca agaccagagt 20

<210> 13<210> 13

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 13<400> 13

ctgaccccag tacagtacag t 21ctgaccccag tacagtacag t 21

<210> 14<210> 14

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 14<400> 14

catttctctc tcgctgtcac tctctc 26catttctctc tcgctgtcac tctctc 26

<210> 15<210> 15

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 15<400> 15

actctgggca aatgaacacc 20actctgggca aatgaacacc 20

<210> 16<210> 16

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 16<400> 16

tcccctatcc ccactctatg 20tcccctatcc ccactctatg 20

<210> 17<210> 17

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 17<400> 17

caggctcagg tccagagaag 20caggctcagg tccagagaag 20

<210> 18<210> 18

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 18<400> 18

gggaagcaaa ggaagacaga 20gggaagcaaa ggaagacaga 20

<210> 19<210> 19

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 19<400> 19

gttgtcatgg catttggtct c 21gttgtcatgg catttggtct c 21

<210> 20<210> 20

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 20<400> 20

cttgataatt tgggcctgcc 20cttgataatt tgggcctgcc 20

<210> 21<210> 21

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 21<400> 21

cctgtcaact cattcctcaa ctc 23cctgtcaact cattcctcaa ctc 23

<210> 22<210> 22

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 22<400> 22

cacctggtgg agaaaaatca a 21cacctggtgg agaaaaatca a 21

<210> 23<210> 23

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 23<400> 23

cctcaccaag ctggactgc 19cctcaccaag ctggactgc 19

<210> 24<210> 24

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 24<400> 24

gccaggaaca cacagaaaat att 23gccaggaaca cacagaaaat att 23

<210> 25<210> 25

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 25<400> 25

cgcagcaacc acagtaatct 20cgcagcaacc acagtaatct 20

<210> 26<210> 26

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 26<400> 26

cccaccccat tcacttctta 20cccaccccat tcacttctta 20

<210> 27<210> 27

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 27<400> 27

ggacccaaga gtgagcatga 20ggacccaaga gtgagcatga 20

<210> 28<210> 28

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 28<400> 28

ccctcctcct ctttgctcat 20ccctcctcct ctttgctcat 20

<210> 29<210> 29

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 29<400> 29

cccgggaagc caggttatca gaagt 25cccgggaagc caggttatca gaagt 25

<210> 30<210> 30

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 30<400> 30

tttgagactg ctggggtaac ctgac 25tttgagactg ctggggtaac ctgac 25

<210> 31<210> 31

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 31<400> 31

agctctcttg ccctacaggt cccc 24agctctcttg ccctacaggt cccc 24

<210> 32<210> 32

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 32<400> 32

ctaagtgctc agctgtgtgc gtctc 25ctaagtgctc agctgtgtgc gtctc 25

<210> 33<210> 33

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 33<400> 33

gccacctcat ctcgtttatt g 21gccacctcat ctcgtttatt g 21

<210> 34<210> 34

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 34<400> 34

gggagcaagc cagtcaaaa 19gggagcaagc cagtcaaaa 19

<210> 35<210> 35

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 35<400> 35

agctgggcat ccaggttt 18agctgggcat ccaggttt 18

<210> 36<210> 36

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 36<400> 36

cctgcaccca cagtacattc t 21cctgcaccca cagtacattc t 21

<210> 37<210> 37

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 37<400> 37

tgcataaaat ccccttaccg 20tgcataaaat ccccttaccg 20

<210> 38<210> 38

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 38<400> 38

cctccctgta acccacattg 20cctccctgta acccacattg 20

<210> 39<210> 39

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 39<400> 39

tgggtgcact gggaagaga 19tgggtgcact gggaagaga 19

<210> 40<210> 40

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 40<400> 40

gaagccagag gtcagcagag 20gaagccagag gtcagcagag 20

<210> 41<210> 41

<211> 17<211> 17

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 41<400> 41

ccagacaggg catcagt 17ccagacaggg catcagt 17

<210> 42<210> 42

<211> 18<211> 18

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 42<400> 42

tggtacagca gccaacac 18tggtacagca gccaacac 18

<210> 43<210> 43

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 43<400> 43

gcacagagca ggaagggata 20gcacagagca ggaagggata 20

<210> 44<210> 44

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 44<400> 44

cgaggaagtc acatcccagt 20cgaggaagtc acatcccagt 20

<210> 45<210> 45

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 45<400> 45

ccttcagcat cctttgggtt ctct 24ccttcagcat cctttgggtt ctct 24

<210> 46<210> 46

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 46<400> 46

gcagttctaa aagcttcatc agtc 24gcagttctaa aagcttcatc agtc 24

<210> 47<210> 47

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 47<400> 47

gaaaccatca atagcgtcta aatg 24gaaaccatca atagcgtcta aatg 24

<210> 48<210> 48

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 48<400> 48

tgaaaagcgg gtaggctaaa 20tgaaaagcgg gtaggctaaa 20

<210> 49<210> 49

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 49<400> 49

gactgtccac ccagacaagg 20gactgtccac ccagacaagg 20

<210> 50<210> 50

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 50<400> 50

tcagggagtc agggcaatag 20tcagggagtc agggcaatag 20

<210> 51<210> 51

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 51<400> 51

tgaaggagca ctgttaggag atg 23tgaaggagca ctgttaggag atg 23

<210> 52<210> 52

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 52<400> 52

agagggatag ggcagagttg att 23agagggatag ggcagagttg att 23

<210> 53<210> 53

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 53<400> 53

aacccctgac atcaccattc 20aacccctgac atcaccattc 20

<210> 54<210> 54

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 54<400> 54

aaggactctc ccgtcctagc 20aaggactctc ccgtcctagc 20

Claims (2)

1.一种白内障致病基因检测试剂盒,其特征在于:所述试剂盒包括27对PCR引物,用于PCR扩增白内障致病基因高频突变区,其引物DNA序列分别如SEQ ID NO.1-54所示;1. a cataract pathogenic gene detection kit, is characterized in that: described test kit comprises 27 pairs of PCR primers, is used for PCR amplification cataract pathogenic gene high frequency mutation region, and its primer DNA sequence is respectively as SEQ ID NO. 1-54; 所述的白内障致病基因高频突变区包括18个白内障致病基因的26个外显子,可检测遗传性白内障家系的致病基因;The high-frequency mutation region of the cataract pathogenic gene includes 26 exons of 18 cataract pathogenic genes, which can detect the pathogenic genes of the hereditary cataract family; 所述检测遗传性白内障家系的致病基因为:GJA8、GJA3、CRYGD、CRYAA、CRYBB2、CRYBB1、CRYBA1、CRYAB、CRYGC、HSF4、BFSP2、EPHA2、PITX3、FYCO1、MIP、CRYGS。The pathogenic genes for the detection of hereditary cataract families are: GJA8, GJA3, CRYGD, CRYAA, CRYBB2, CRYBB1, CRYBA1, CRYAB, CRYGC, HSF4, BFSP2, EPHA2, PITX3, FYCO1, MIP, CRYGS. 2.根据权利要求1所述的一种白内障致病基因检测试剂盒,其特征在于:所述试剂盒包括以下组分:5U/ul 100uL Taq酶,10×Taq含Mg2+缓冲液 2.0mL,2.5mM dNTP混合液1.6mL,权利要求1所述的上、下游引物共27对,每条引物各10pM,10×上样缓冲液1.0mL。2. a kind of cataract pathogenic gene detection kit according to claim 1, is characterized in that: described kit comprises the following components: 5U/ul 100uL Taq enzyme, 10 × Taq contains Mg 2+ buffer 2.0mL , 1.6mL of 2.5mM dNTP mixture, 27 pairs of upstream and downstream primers according to claim 1, 10pM for each primer, 1.0mL of 10× loading buffer.
CN201611120811.0A 2016-12-08 2016-12-08 Cataract pathogenic gene detection kit and detection method thereof Active CN106701925B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611120811.0A CN106701925B (en) 2016-12-08 2016-12-08 Cataract pathogenic gene detection kit and detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611120811.0A CN106701925B (en) 2016-12-08 2016-12-08 Cataract pathogenic gene detection kit and detection method thereof

Publications (2)

Publication Number Publication Date
CN106701925A CN106701925A (en) 2017-05-24
CN106701925B true CN106701925B (en) 2020-02-07

Family

ID=58936349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611120811.0A Active CN106701925B (en) 2016-12-08 2016-12-08 Cataract pathogenic gene detection kit and detection method thereof

Country Status (1)

Country Link
CN (1) CN106701925B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110624114B (en) * 2018-06-25 2021-07-16 沈阳何氏眼产业集团有限公司 Application of CRYGD protein
CN109811052A (en) * 2019-04-01 2019-05-28 中国福利会国际和平妇幼保健院 A kind of kit and gene panel detecting idiopathic azoospermatism
CN111424080B (en) * 2020-04-07 2022-06-07 北京动物园 Application of substance for detecting HSF4 gene mutation in diagnosis of giant panda cataract
CN113186192B (en) * 2021-05-06 2023-05-02 潍坊医学院 CRYBB2 gene mutant, polypeptide, kit, construct and recombinant cell
CN113774128B (en) * 2021-09-24 2022-08-23 中国人民解放军东部战区总医院 Gja8 application of gene mutation site in preparation of product for diagnosing cataract disease

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101168775A (en) * 2007-10-29 2008-04-30 哈尔滨医科大学 A cataract gene detection kit
CN103045722A (en) * 2012-08-30 2013-04-17 山西省眼科医院 Detection kit of disease-causing gene CRYGD of crystalline congenital cataract
CN104561016A (en) * 2014-12-29 2015-04-29 深圳华大基因科技有限公司 CC (congenital cataract) PITX3 gene novel mutation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101168775A (en) * 2007-10-29 2008-04-30 哈尔滨医科大学 A cataract gene detection kit
CN103045722A (en) * 2012-08-30 2013-04-17 山西省眼科医院 Detection kit of disease-causing gene CRYGD of crystalline congenital cataract
CN104561016A (en) * 2014-12-29 2015-04-29 深圳华大基因科技有限公司 CC (congenital cataract) PITX3 gene novel mutation

Also Published As

Publication number Publication date
CN106701925A (en) 2017-05-24

Similar Documents

Publication Publication Date Title
CN106701925B (en) Cataract pathogenic gene detection kit and detection method thereof
Costantino et al. Genetics and functional genomics of spondyloarthritis
CN102206701B (en) Identification method for genetic disease-related gene
CN111676283B (en) Application of mitochondrial DNA single nucleotide polymorphism related to occurrence of high altitude pulmonary edema
Lio et al. Association between the MHC class I gene HFE polymorphisms and longevity: a study in Sicilian population
CN104212806A (en) New mutant disease-causing gene of Alport syndrome, encoded protein and application thereof
CN109371123A (en) Probe sets and kits for detecting autoinflammatory disease causative genes
Gupta et al. Whole exome sequencing: Uncovering causal genetic variants for ocular diseases
JP2008534009A (en) Multiple SNP for diagnosing colorectal cancer, microarray and kit including the same, and method for diagnosing colorectal cancer using the same
CN104928389A (en) Method and kit for detecting human ATP7B gene mutation type
JP6378529B2 (en) Methods for detecting genetic diseases
CN103757028B (en) OSBPL2 mutant gene, its identification method and detection kit
CN103374574B (en) CYP4V2 gene mutant and its application
CN108531580B (en) C5orf42 gene mutant and application thereof
CN113215248B (en) A MYO15A gene mutation detection kit related to sensorineural hearing loss
CN106191032A (en) The Disease-causing gene model of dysnoesia disease and construction method thereof and application
CN104232650A (en) New pathogenic gene of idiopathic basal ganglia calcification, and coding protein and application thereof
CN104789572B (en) GPRASP2 mutated genes, its authentication method and detection kit
CN107557468A (en) A kind of cancer testis cdna genetic marker related to primary lung cancer auxiliary diagnosis and its application
CN101525620B (en) COPPOCK cataract pathogenic gene and its detection method
CN108676870B (en) Detection method, detection kit and application of FMO3 gene SNP related to TIA susceptibility
CN105624167A (en) Pathogenic mutant gene of hereditary central areolar retinopathy and detection reagent thereof
CN110218793A (en) A kind of SNP marker relevant to cancer of the esophagus auxiliary diagnosis
CN101525619A (en) Anterior pole cataract disease-causing gene and detecting method thereof
CN115927354B (en) SH3TC2 gene pathogenic mutant and application thereof in preparation of fibula muscular atrophy 4C type diagnostic kit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant