CN106698810A - 一种基于碳氮分离的污水处理系统及工艺 - Google Patents

一种基于碳氮分离的污水处理系统及工艺 Download PDF

Info

Publication number
CN106698810A
CN106698810A CN201611030877.0A CN201611030877A CN106698810A CN 106698810 A CN106698810 A CN 106698810A CN 201611030877 A CN201611030877 A CN 201611030877A CN 106698810 A CN106698810 A CN 106698810A
Authority
CN
China
Prior art keywords
reactor
sludge
anaerobic
denitrification
ammonia oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611030877.0A
Other languages
English (en)
Other versions
CN106698810B (zh
Inventor
陈传好
马华飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Crrc Times New Energy Material Technology Co ltd
Original Assignee
Qingdao Zhongche Huaxuan Water Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Zhongche Huaxuan Water Co Ltd filed Critical Qingdao Zhongche Huaxuan Water Co Ltd
Priority to CN201611030877.0A priority Critical patent/CN106698810B/zh
Publication of CN106698810A publication Critical patent/CN106698810A/zh
Application granted granted Critical
Publication of CN106698810B publication Critical patent/CN106698810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明提供一种基于碳氮分离的污水处理系统及工艺,所述系统包括恒温加热系统、快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器、反硝化反应器、后曝气反应器、二级分离反应器;所述厌氧反应器底部设有污泥回流系统,使污泥回流至快速混凝反应器并循环至一级分离反应器循环吸附,所述快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器均设有保温装置。本发明适用于含中、高浓度有机物及总氮废水处理工程,针对传统厌氧‑好氧污水处理工艺产能效率低、脱氮效果不佳、能耗较高等缺点,将传统厌氧‑好氧工艺与污泥吸附进水及短程硝化技术结合,是一种运行费用低、工程投资小,同时脱碳除氮并且节能产能的污水处理工艺。

Description

一种基于碳氮分离的污水处理系统及工艺
技术领域
本发明属于环境工程学科中污水处理技术领域,具体涉及一种基于碳氮分离的污水处理系统及工艺。
背景技术
近年来高浓度有机废水处理技术已由传统单一的预处理+活性污泥法转向更加集约、节能的厌氧-好氧联合处理方法。然而,对于原水中同时含有较高浓度氨氮的废水厌氧-好氧联合处理方法处理难度较大,往往需要根据废水水质特性采取物理、化学预处理然后与生化处理方法相结合处理方法。此种处理方法投资成本高,运行费用高,且易造成二次污染。
由于进入厌氧产甲烷系统中含氮量过多,pH值可能上升到8.0以上,脂肪酸的铵盐发生积累,使有机物分解受到抑制;发生反硝化过程引起厌氧污泥的沉降性下降从而导致系统的稳定性变差;同时NO2-N/NO3-N以及反硝化的中间产物对甲烷菌具有毒害作用,以上原因综合作用直接导致了厌氧反应器的不稳定及厌氧系统产气品质的下降。
更多的碳源在反硝化过程中被反硝化菌利用同时产生氮气,消耗大量有机碳源,从而导致了系统甲烷产生量的减少,降低了系统碳源利用效率,破坏了厌氧反应器的优势。
由于污水中总氮含量高,在后续好氧处理系统设计中污水氨氮负荷必然成为好氧池设计的限制性因素,为了保证系统氨氮达标排放,往往需要较大的曝气池容积,必然导致建设成本的增加。同时氨氮氧化过程中消耗的溶解氧必然也是系统风量的主要限制性因素,系统运行费用较高。
发明内容
本发明的目的在于克服现有厌氧-好氧污水处理技术的不足,提供一种处理含有中、高浓度有机物及总氮废水的厌氧菌群生物吸附-高浓度生物厌氧降解联合短程脱氮活性污泥处理工艺的技术方案,该工艺方案具有工艺简单、处理效果好、设备投资小、运行成本低、
节能产能的特点。
本发明解决其技术问题所采用的技术方案是:
一种基于碳氮分离的低耗高效污水处理系统,包括恒温加热系统、快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器、反硝化反应器、后曝气反应器、二级分离反应器;所述恒温加热系统连接快速混凝反应器,所述快速混凝反应器的出口端连接所述一级分离反应器,所述一级分离反应器的出口段分别连接所述厌氧反应器和所述氨氧化反应器,所述氨氧化反应器、反硝化反应器、后曝光反应器以及二级分离反应器依次连接,
所述厌氧反应器底部设有污泥回流系统,所述污泥回流系统连接快速混凝反应器,使污泥回流至快速混凝反应器并循环至一级分离反应器循环吸附,所述二级分离反应器设有污泥回流系统,回流系统出口端连接快速混凝反应器,所述厌氧反应器还与反硝化反应器连接,所述氨氧化反应器及后曝气反应器设有曝气系统。
进一步优选的,所述厌氧反应器为错流式反应器,还包括进水连接管道和污泥回流连接管道,所述进水连接管道位于反应器的上部,所述污泥回流管道连接污泥回流系统,所述厌氧反应器进水连接管道及污泥回流连接管道上分别设有流量控制阀。
进一步优选的,所述氨氧化反应器、反硝化反应器及后曝气反应器内均设有海绵填料,所述海绵填料通过金属筛网固定在反应器内,其体积占反应器总体积的5%-15%。
进一步优选的,所述反硝化反应器与后曝气反应器连接管路设有热回收装置。
进一步优选的,快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器设有保温装置。
一种基于碳氮分离的低耗高效污水处理工艺,其特征在于,包括如下步骤:
(1)将高浓度废水进行恒温加热;
(2)将加热后的高浓度废水与回流污泥充分混合搅拌,使污水中颗粒状及胶体状有机物高效絮凝;
(3)将混凝后的污水进行固液分离,将其分成含有大量有机物的污泥和高氨氮废水。
(4)分离后的污泥进行厌氧生物反应,之后进行生物质能源回收;将产生的厌氧活性污泥作为回流污泥,将上清液进一步处理;
(5)将分离后的高氨氮废水进行好氧微生物氨氧化反应;
(6)将步骤4的流出水以及步骤3的上清液进行反硝化反应,脱氮;
(7)将步骤5的流出水进行硝化反应;
(8)将步骤6的流出水进行二次固液分离后外排,将沉淀的污泥作为回流污泥;
(9)将上述回流污泥与加热后的高浓度废水进行混合,重复步骤(2)~(8)。
进一步优选的,厌氧反应器和氨氧化反应器分别选择性地培养厌氧颗粒污泥和好氧微生物氨氧化细菌。
进一步优选的,一级分离反应器:中温30-35℃条件下运行,吸附沉淀时间10min-30min。
进一步优选的,厌氧反应器:中温30-35℃条件下运行,用自身产生的沼气进行搅拌;污泥采用推流式厌氧循环方式运行,进水有机负荷在5.0-12.0kg/(m3.d)之间。
进一步优选的,氨氧化反应器:中温30-35℃条件下运行,污泥浓度4000mg/l,溶解氧浓度0.3~0.5mg/L,采用连续培养挂膜方式运行。
进一步优选的,后曝气反应器溶解氧控制在2~5mg/L范围。
本发明有益效果是:
1、与传统厌氧好氧处理工艺相比,该工艺可以大幅提高含中、高浓度有机物及总氮废水处理系统有机负荷,节约建设成本,降低系统能耗并同时节能产能。
2、厌氧反应器进水为一级分离反应器中生物选择吸附的高浓度废水,有利于形成生物相稳定的厌氧菌群,由于产甲烷丝菌半饱和常数低,能在低有机负荷下较为彻底地去除残余有机物,加之以甲烷丝菌为骨架的颗粒污泥具有较好的沉降性能,能够最大限度地改善出水水质。
3、以厌氧吸附-厌氧生物处理分离模式运行时,能够缩短厌氧系统总的水力停留时间,提高系统整体的有机负荷。活性污泥中废水与厌氧颗粒污泥接触很短时间内大部分COD就被吸附去除,10min就降到一个低点,吸附能达到假定平衡,此时COD的去除率为74.9%,吸附去除效果十分显著;而厌氧颗粒污泥对于氨氮几乎没有吸附效果,最高仅达到5%。利用厌氧污泥吸附污水中的有机污染物分离处理可以避免高氨氮废水进入厌氧反应系统进行无谓的停留,增加了系统处理的针对性,有利于提高系统整体的有机负荷。
4、由于进入高浓度厌氧反应器的总氮含量较低,避免了在厌氧反应器中发生反硝化反应,使厌氧系统产气中甲烷纯度大幅提高,同时避免了高浓度氨氮及硝酸盐氮对产甲烷菌的抑制毒害作用。
5、系统利用厌氧颗粒污泥回流进行吸附反应,无需添加任何絮凝剂;且由于采用了短程硝化工艺,通过选择性的培养自养型微生物氨氧化细菌将硝化作用控制在亚硝酸盐阶段,能够节省氧气消耗量、提高反硝化效率、节省反硝化碳源、减少污泥产生量,从而降低系统运行费用。
6、因采用厌氧吸附模型减少了厌氧反应器的体积,且短程硝化反应降低了系统好氧池规模,工程投资较低。
附图说明
图1为本发明的工艺流程示意图;
具体实施方式
一种基于碳氮分离的低耗高效污水处理系统,包括恒温加热系统、快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器、反硝化反应器、后曝气反应器、二级分离反应器;所述恒温加热系统连接快速混凝反应器,所述快速混凝反应器的出口端连接一级分离反应器,一级分离反应器的出口段分别连接厌氧反应器和氨氧化反应器,所述氨氧化反应器、反硝化反应器、后曝气反应器以及二级分离反应器依次连接,所述厌氧反应器底部设有污泥回流系统,所述污泥回流系统连接快速混凝反应器,使污泥回流至快速混凝反应器并循环至一级分离反应器循环吸附,所述二级分离反应器设有污泥回流系统,回流系统出口端连接快速混凝反应器,所述厌氧反应器还与反硝化反应器连接。所述氨氧化反应器及后曝气反应器设有曝气系统。
所述厌氧反应器为错流式反应器,还包括反应器、进水连接管道和污泥回流连接管道,所述进水连接管道位于反应器的上部,进水从反应器顶部流入反应器反应并下流进入反应器的底部沉降区,经泥水分离的上清液上流进入顶部出水槽外排至反消化反应器,所述污泥回流连接管道连接污泥回流系统。所述厌氧反应器进水连接管道及污泥回流连接管道上分别设有流量控制阀,用于控制系统流量。
进一步优选的,所述氨氧化反应器、反硝化反应器及后曝气反应器内均设有海绵填料,强化功能微生物的富集生长;所述海绵填料通过金属筛网固定在反应器内,其体积占反应器总体积的5%-15%。
进一步优选的,所述反硝化反应器与后曝气反应器连接管路设有热回收装置,回收热能用于恒温加热系统。
进一步优选的,所述快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器均设有保温装置,其中厌氧反应器、氨氧化反应器温度控制在30-35℃。
厌氧反应器和氨氧化反应器分别选择性地培养厌氧颗粒污泥和好氧微生物氨氧化细菌。一级分离反应器以吸附反应为主,厌氧反应器进行厌氧生物降解反应,氨氧化反应器以好养微生物氨氧化反应为主,反硝化反应器进行反硝化反应,后曝气反应器进行硝化反应。
原料:
厌氧反应器接种污泥:城市污水处理厂消化污泥;
氨氧化反应器接种污泥:以现有污水厂二沉池回流污泥作为接种污泥;
盐类化合物:FeCl2、CoCl2和NiCl2
条件:
一级分离反应器:中温30-35℃条件下运行,吸附沉淀时间10min-30min;
厌氧反应器:中温30-35℃条件下运行,用自身产生的沼气进行搅拌;污泥采用推流式厌氧循环方式运行,进水有机负荷在5.0-12.0kg/(m3.d)之间;微量金属元素Fe2+、Co2+和Ni2+都参与了厌氧微生物甲烷菌的合成,这些微量金属元素的补充可增加单位质量微生物中活细胞的浓度及它们的酶活性,促进颗粒污泥的形成,对厌氧菌群具有催化激活的作用。微量金属元素投加量为FeCl2:1g/(m3.d)、CoCl2:0.1g/(m3.d)、NiCl2:0.2g/(m3.d)。
氨氧化反应器:中温30-35℃条件下运行,污泥浓度4000mg/l,溶解氧浓度0.3~0.5mg/L,采用连续培养挂膜方式运行。
后曝气反应器:溶解氧控制在2~5mg/L范围。
本发明运行模式为:混凝-吸附分离-厌氧脱碳产能\好氧氨氧化反应-反硝化脱氮-硝化反应-沉淀排水。
一种基于碳氮分离的低耗高效污水处理工艺,具体步骤如下:
(1)经过预处理的污水首先进入快速混凝反应器,通过与厌氧反应器及二级分离反应器回流污泥充分混合搅拌,使污水中颗粒状及胶体状有机物高效絮凝;
(2)混凝后的污水自流进入一级分离反应器进行固液分离;
(3)污水混凝后吸附了大量有机物的厌氧污泥沉积至一级分离反应器底部,控制有机碳源氧化还原电位-310~-340mV,排入厌氧反应器,进行生物质能源回收。
(4)污水混凝后剩余的高氨氮废水流入氨氧化反应器通过氨氧化菌的作用,生成亚硝酸盐;
(5)氨氧化反应器及厌氧反应器出水流入反硝化反应器通过反硝化菌的作用脱氮;
(6)反硝化反应器出水流入后曝气反应器;
(7)后曝气反应器出水经二级分离反应器固液分离后外排。
本发明适用于含中、高浓度有机物及总氮废水处理工程,针对传统厌氧-好氧污水处理工艺产能效率低、脱氮效果不佳、能耗较高等缺点,将传统厌氧-好氧工艺与污泥吸附进水及短程硝化技术结合,这里的短程硝化技术包括氨氧化与反硝化技术。在工艺前期采用厌氧吸附-厌氧生物处理分离模式流程,首先,运用厌氧反应器回流污泥对原水进行吸附,利用厌氧活性污泥的初期吸附特性将污水中的大部分有机物吸附、过滤截留下来,可以达到对污水进行碳氮分离的目的,随污泥进入厌氧反应器,吸附的有机物进行厌氧生物反应,经过水解-发酵产酸-产甲烷途径转化成沼气回收利用;剩余的高氨氮废水流入氨氧化反应器通过氨氧化菌的作用,生成亚硝酸盐;短程硝化技术包括氨氧化反应器及厌氧反应器出水进入反硝化反应器,在反硝化反应器内,反硝化菌利用厌氧反应器出水中剩余有机污染物作为碳源及电子供体进行反硝化反应,亚硝酸盐被还原成氮气达到脱氮的目的;反硝化反应器出水进入后曝气反应器进行硝化反应,实现剩余碳源及氨氮的去除确保高质量的出水水质;后曝气反应器出水经二级分离反应器沉淀后上清液达标排放。这种工艺既减少了进入硝化过程中的有机物,降低了硝化过程中COD对硝化细菌的抑制作用,提升了硝化效率,节省了曝气能源,又回收了原水中碳源,还大量减少了剩余污泥量,节约了污水处理的成本。
本发明所给出的具体实施方式是为了进一步解释本发明,而不是限制本发明的范围。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种基于碳氮分离的低耗高效污水处理系统,包括恒温加热系统、快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器、反硝化反应器、后曝气反应器、二级分离反应器;所述恒温加热系统连接快速混凝反应器,所述快速混凝反应器的出口端连接所述一级分离反应器,所述一级分离反应器的出口段分别连接所述厌氧反应器和所述氨氧化反应器,所述氨氧化反应器、反硝化反应器、后曝光反应器以及二级分离反应器依次连接,所述厌氧反应器底部设有污泥回流系统,所述污泥回流系统连接快速混凝反应器,使污泥回流至快速混凝反应器,所述二级分离反应器设有污泥回流系统,回流系统出口端连接快速混凝反应器,所述厌氧反应器还与反硝化反应器连接,所述氨氧化反应器及后曝气反应器设有曝气系统。
2.根据权利要求1所述的系统,其特征在于:所述厌氧反应器为错流式反应器,还包括进水连接管道和污泥回流连接管道,所述进水连接管道位于反应器的上部,所述污泥回流管道连接污泥回流系统,所述厌氧反应器进水连接管道及污泥回流连接管道上分别设有流量控制阀。
3.根据权利要求1所述的系统,其特征在于:所述氨氧化反应器、反硝化反应器及后曝气反应器内均设有海绵填料,所述海绵填料通过金属筛网固定在反应器内,其体积占反应器总体积的5%-15%。
4.根据权利要求1所述的系统,其特征在于:所述反硝化反应器与后曝气反应器连接管路设有热回收装置。
5.根据权利要求1所述的系统,其特征在于:快速混凝反应器、一级分离反应器、厌氧反应器、氨氧化反应器设有保温装置。
6.一种基于碳氮分离的低耗高效污水处理工艺,其特征在于,包括如下步骤:
(1)将高浓度废水进行恒温加热;
(2)将加热后的高浓度废水与回流污泥充分混合搅拌,使污水中颗粒状及胶体状有机物高效絮凝;
(3)将混凝后的污水进行固液分离,将其分成含有大量有机物的污泥和高氨氮废水。
(4)分离后的污泥进行厌氧生物反应,之后进行生物质能源回收;将产生的厌氧活性污泥作为回流污泥,将上清液进一步处理;
(5)将分离后的高氨氮废水进行好氧微生物氨氧化反应;
(6)将步骤4的流出水以及步骤3的上清液进行反硝化反应,脱氮;
(7)将步骤5的流出水进行硝化反应;
(8)将步骤6的流出水进行二次固液分离后外排,将沉淀的污泥作为回流污泥;
(9)将上述回流污泥与加热后的高浓度废水进行混合,重复步骤(2)~(8)。
7.根据权利要求6所述工艺,其特征在于:所述步骤(4)和步骤(5)分别使用厌氧反应器和氨氧化反应器,所述厌氧反应器和氨氧化反应器分别培养厌氧颗粒污泥和好氧微生物氨氧化细菌。
8.根据权利要求6所述工艺,其特征在于:所述步骤(2)在一级分离反应器中完成,所述一级分离反应器在中温30-35℃条件下运行,吸附沉淀时间10min-30min。
9.根据权利要求6或7所述工艺,其特征在于:所述的厌氧反应器在中温30-35℃条件下运行,用自身产生的沼气进行搅拌;污泥采用推流式厌氧循环方式运行,进水有机负荷在5.0-12.0kg/(m3.d)之间。
10.根据权利要求6或7所述工艺,其特征在于:所述的氨氧化反应器在中温30-35℃条件下运行,污泥浓度4000mg/l,溶解氧浓度0.3~0.5mg/l,采用连续培养挂膜方式运行,或所述步骤(7)在后曝气反应器中进行,所述后曝气反应器溶解氧控制在2~5mg/l范围。
CN201611030877.0A 2016-11-17 2016-11-17 一种基于碳氮分离的污水处理系统及工艺 Active CN106698810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611030877.0A CN106698810B (zh) 2016-11-17 2016-11-17 一种基于碳氮分离的污水处理系统及工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611030877.0A CN106698810B (zh) 2016-11-17 2016-11-17 一种基于碳氮分离的污水处理系统及工艺

Publications (2)

Publication Number Publication Date
CN106698810A true CN106698810A (zh) 2017-05-24
CN106698810B CN106698810B (zh) 2019-06-14

Family

ID=58941146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611030877.0A Active CN106698810B (zh) 2016-11-17 2016-11-17 一种基于碳氮分离的污水处理系统及工艺

Country Status (1)

Country Link
CN (1) CN106698810B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417052A (zh) * 2017-09-14 2017-12-01 广州沼能环保科技有限责任公司 一种高温化学环保厌氧系统
CN112777700A (zh) * 2020-12-16 2021-05-11 北京科技大学 厌氧活性污泥回流作为絮凝剂的黑水强化厌氧发酵系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428938A (zh) * 2008-12-04 2009-05-13 杨青淼 垃圾渗滤液处理方法
CN104058555A (zh) * 2014-07-08 2014-09-24 中国市政工程华北设计研究总院有限公司 基于厌氧氨氧化的低碳氮比城市污水脱氮系统及处理工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101428938A (zh) * 2008-12-04 2009-05-13 杨青淼 垃圾渗滤液处理方法
CN104058555A (zh) * 2014-07-08 2014-09-24 中国市政工程华北设计研究总院有限公司 基于厌氧氨氧化的低碳氮比城市污水脱氮系统及处理工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417052A (zh) * 2017-09-14 2017-12-01 广州沼能环保科技有限责任公司 一种高温化学环保厌氧系统
CN112777700A (zh) * 2020-12-16 2021-05-11 北京科技大学 厌氧活性污泥回流作为絮凝剂的黑水强化厌氧发酵系统

Also Published As

Publication number Publication date
CN106698810B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN101514064B (zh) 序批式内循环生物脱氮工艺的生物脱氮装置
CN110436704B (zh) 一种基于厌氧氨氧化的城市污水处理升级改造工艺
CN109160670B (zh) 一种基于短程反硝化+厌氧氨氧化的城市污水反硝化滤池脱氮方法
CN101786730B (zh) 交叉回流两段双膨胀颗粒污泥焦化废水处理方法及其设备
CN102295385A (zh) 一种垃圾渗滤液处理工艺
CN106673192A (zh) 厌氧氨氧化去除垃圾渗滤液中总氮的工艺及专用装置
CN101654314A (zh) 一种染料废水处理方法
CN101659500A (zh) 一种染料废水处理系统
CN105417687A (zh) 一种联合处理黑臭河道中污水和底泥的方法和装置
CN112299560A (zh) 连续流反硝化除磷串联厌氧氨氧化耦合内源反硝化的污水处理系统与方法
CN109205954A (zh) 微电解催化氧化、生化处理高浓度废水工艺
CN106698810B (zh) 一种基于碳氮分离的污水处理系统及工艺
CN105800873A (zh) 一种用自养脱氮工艺处理高浓度氨氮废水的方法
CN110697893B (zh) 一种用于可生化性差高氨氮废水的升流式水解好氧反硝化脱氮工艺
CN111747601B (zh) 一种含pta废水ro浓水的处理方法
CN205170616U (zh) 生物脱氮组合装置
CN111825216A (zh) 处理高cod高氨氮废水的系统及工艺
CN115385448B (zh) 一种一体式厌氧氨氧化处理高氨氮废水的装置及方法
CN114873851B (zh) 一种高盐高氨氮废水自养脱氮与全量化处理装置和方法
CN215855353U (zh) 一种处理有机氮废水的生物除碳脱氮的一体化反应器
CN202849200U (zh) 颗粒污泥一体化自养脱氮的装置
CN104230109A (zh) Uasb/a/mbbr结合化学法处理高有机物高氨氮废水的系统和方法
CN213357071U (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统
CN113845221A (zh) 一种处理有机氮废水的生物除碳脱氮的一体化反应器
CN114634244A (zh) 一种畜禽粪污废水甲烷发酵耦合一体式脱氮系统及其工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 266510 No. 9, Songhuajiang Road, Huangdao District, Qingdao City, Shandong Province

Patentee after: Qingdao CRRC Times New Energy Material Technology Co.,Ltd.

Address before: 266510 No. 9, Songhuajiang Road, Huangdao District, Qingdao City, Shandong Province

Patentee before: QINGDAO ZHONGCHE HUAXUAN WATER Co.,Ltd.

CP01 Change in the name or title of a patent holder