CN106683666B - 一种基于深度神经网络的领域自适应方法 - Google Patents
一种基于深度神经网络的领域自适应方法 Download PDFInfo
- Publication number
- CN106683666B CN106683666B CN201611201651.2A CN201611201651A CN106683666B CN 106683666 B CN106683666 B CN 106683666B CN 201611201651 A CN201611201651 A CN 201611201651A CN 106683666 B CN106683666 B CN 106683666B
- Authority
- CN
- China
- Prior art keywords
- neural network
- field
- deep neural
- domain
- mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000003062 neural network model Methods 0.000 claims abstract description 46
- 238000012549 training Methods 0.000 claims abstract description 20
- 230000004913 activation Effects 0.000 claims description 12
- 239000000284 extract Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 5
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 210000004218 nerve net Anatomy 0.000 description 4
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000004704 glottis Anatomy 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/06—Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
- G10L15/063—Training
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/16—Speech classification or search using artificial neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
- G10L25/30—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/60—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Quality & Reliability (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611201651.2A CN106683666B (zh) | 2016-12-23 | 2016-12-23 | 一种基于深度神经网络的领域自适应方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611201651.2A CN106683666B (zh) | 2016-12-23 | 2016-12-23 | 一种基于深度神经网络的领域自适应方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106683666A CN106683666A (zh) | 2017-05-17 |
CN106683666B true CN106683666B (zh) | 2019-11-08 |
Family
ID=58870974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611201651.2A Active CN106683666B (zh) | 2016-12-23 | 2016-12-23 | 一种基于深度神经网络的领域自适应方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106683666B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108109619B (zh) * | 2017-11-15 | 2021-07-06 | 中国科学院自动化研究所 | 基于记忆和注意力模型的听觉选择方法和装置 |
CN108134979B (zh) * | 2017-12-04 | 2020-04-14 | 东南大学 | 基于深度神经网络的小基站开关控制方法 |
CN108847249B (zh) * | 2018-05-30 | 2020-06-05 | 苏州思必驰信息科技有限公司 | 声音转换优化方法和系统 |
CN109145815B (zh) * | 2018-08-21 | 2022-05-03 | 深圳大学 | 一种sar目标识别方法、装置、计算机设备及存储介质 |
CN109934081A (zh) * | 2018-08-29 | 2019-06-25 | 厦门安胜网络科技有限公司 | 一种基于深度神经网络的行人属性识别方法、装置及存储介质 |
CN109840691B (zh) * | 2018-12-31 | 2023-04-28 | 天津求实智源科技有限公司 | 基于深度神经网络的非侵入式分项电量估计方法 |
CN109979436B (zh) * | 2019-04-12 | 2020-11-13 | 南京工程学院 | 一种基于频谱自适应法的bp神经网络语音识别系统及方法 |
CN110007265A (zh) * | 2019-04-30 | 2019-07-12 | 哈尔滨工业大学 | 一种基于深度神经网络的波达方向估计方法 |
CN111508470B (zh) * | 2020-04-26 | 2024-04-12 | 北京声智科技有限公司 | 一种语音合成模型的训练方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101727903A (zh) * | 2008-10-29 | 2010-06-09 | 中国科学院自动化研究所 | 基于多特征和多系统融合的发音质量评估和错误检测方法 |
CN102760153A (zh) * | 2011-04-21 | 2012-10-31 | 帕洛阿尔托研究中心公司 | 将词典知识合并入svm学习以改进情感分类 |
CN103729648A (zh) * | 2014-01-07 | 2014-04-16 | 中国科学院计算技术研究所 | 领域自适应模式识别方法及系统 |
WO2016045810A1 (en) * | 2014-09-26 | 2016-03-31 | Nokia Solutions And Networks Oy | Lower and upper bounds for flow-control data requests between network nodes |
CN105931650A (zh) * | 2016-04-20 | 2016-09-07 | 深圳市航盛电子股份有限公司 | 一种基于音频特征提取的自适应降噪方法 |
CN106104673A (zh) * | 2014-03-07 | 2016-11-09 | 微软技术许可有限责任公司 | 深度神经网络的低资源占用适配和个性化 |
WO2016182674A1 (en) * | 2015-05-08 | 2016-11-17 | Qualcomm Incorporated | Adaptive selection of artificial neural networks |
-
2016
- 2016-12-23 CN CN201611201651.2A patent/CN106683666B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101727903A (zh) * | 2008-10-29 | 2010-06-09 | 中国科学院自动化研究所 | 基于多特征和多系统融合的发音质量评估和错误检测方法 |
CN102760153A (zh) * | 2011-04-21 | 2012-10-31 | 帕洛阿尔托研究中心公司 | 将词典知识合并入svm学习以改进情感分类 |
CN103729648A (zh) * | 2014-01-07 | 2014-04-16 | 中国科学院计算技术研究所 | 领域自适应模式识别方法及系统 |
CN106104673A (zh) * | 2014-03-07 | 2016-11-09 | 微软技术许可有限责任公司 | 深度神经网络的低资源占用适配和个性化 |
WO2016045810A1 (en) * | 2014-09-26 | 2016-03-31 | Nokia Solutions And Networks Oy | Lower and upper bounds for flow-control data requests between network nodes |
WO2016182674A1 (en) * | 2015-05-08 | 2016-11-17 | Qualcomm Incorporated | Adaptive selection of artificial neural networks |
CN105931650A (zh) * | 2016-04-20 | 2016-09-07 | 深圳市航盛电子股份有限公司 | 一种基于音频特征提取的自适应降噪方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106683666A (zh) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106683666B (zh) | 一种基于深度神经网络的领域自适应方法 | |
Yin et al. | Speech-based cognitive load monitoring system | |
CN108899047B (zh) | 音频信号的掩蔽阈值估计方法、装置及存储介质 | |
CN105632501B (zh) | 一种基于深度学习技术的自动口音分类方法及装置 | |
CN107633842A (zh) | 语音识别方法、装置、计算机设备及存储介质 | |
CN112006697B (zh) | 一种基于语音信号的梯度提升决策树抑郁程度识别系统 | |
CN106297773A (zh) | 一种神经网络声学模型训练方法 | |
CN108922513A (zh) | 语音区分方法、装置、计算机设备及存储介质 | |
CN108986798B (zh) | 语音数据的处理方法、装置及设备 | |
CN104765996B (zh) | 声纹密码认证方法及系统 | |
CN105654944B (zh) | 一种融合了短时与长时特征建模的环境声识别方法及装置 | |
CN107919137A (zh) | 远程审批方法、装置、设备及可读存储介质 | |
CN108922541A (zh) | 基于dtw和gmm模型的多维特征参数声纹识别方法 | |
CN108615525A (zh) | 一种语音识别方法及装置 | |
Yin et al. | Automatic cognitive load detection from speech features | |
CN109300339A (zh) | 一种英语口语的练习方法及系统 | |
CN107240394A (zh) | 一种动态自适应语音分析技术以用于人机口语考试的方法及系统 | |
Yılmaz et al. | Articulatory features for asr of pathological speech | |
CN113450830A (zh) | 具有多重注意机制的卷积循环神经网络的语音情感识别方法 | |
Wöllmer et al. | Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting | |
Ling | An acoustic model for English speech recognition based on deep learning | |
Guo et al. | Speaker Verification Using Short Utterances with DNN-Based Estimation of Subglottal Acoustic Features. | |
Gomes et al. | i-vector algorithm with Gaussian Mixture Model for efficient speech emotion recognition | |
CN106971712A (zh) | 一种自适应的快速声纹识别方法及系统 | |
Mansour et al. | A comparative study in emotional speaker recognition in noisy environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20170929 Address after: 200233 Shanghai City, Xuhui District Guangxi 65 No. 1 Jinglu room 702 unit 03 Applicant after: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY CO.,LTD. Address before: 200233 Shanghai, Qinzhou, North Road, No. 82, building 2, layer 1198, Applicant before: SHANGHAI YUZHIYI INFORMATION TECHNOLOGY Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A domain adaptive method based on deep neural network Effective date of registration: 20201201 Granted publication date: 20191108 Pledgee: Bank of Hangzhou Limited by Share Ltd. Shanghai branch Pledgor: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY Co.,Ltd. Registration number: Y2020310000047 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Date of cancellation: 20220307 Granted publication date: 20191108 Pledgee: Bank of Hangzhou Limited by Share Ltd. Shanghai branch Pledgor: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY CO.,LTD. Registration number: Y2020310000047 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Domain Adaptive Method Based on Deep Neural Network Effective date of registration: 20230210 Granted publication date: 20191108 Pledgee: Bank of Hangzhou Limited by Share Ltd. Shanghai branch Pledgor: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY CO.,LTD. Registration number: Y2023310000028 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20191108 Pledgee: Bank of Hangzhou Limited by Share Ltd. Shanghai branch Pledgor: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY CO.,LTD. Registration number: Y2023310000028 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Domain Adaptation Method Based on Deep Neural Networks Granted publication date: 20191108 Pledgee: Bank of Hangzhou Limited by Share Ltd. Shanghai branch Pledgor: YUNZHISHENG (SHANGHAI) INTELLIGENT TECHNOLOGY CO.,LTD. Registration number: Y2024310000165 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |