CN106676390A - 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法 - Google Patents

一种应用于厚大截面的低碳马氏体铸钢及其热处理方法 Download PDF

Info

Publication number
CN106676390A
CN106676390A CN201710192386.4A CN201710192386A CN106676390A CN 106676390 A CN106676390 A CN 106676390A CN 201710192386 A CN201710192386 A CN 201710192386A CN 106676390 A CN106676390 A CN 106676390A
Authority
CN
China
Prior art keywords
low
cast steel
carbon martensite
martensite cast
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710192386.4A
Other languages
English (en)
Inventor
任美康
杨瑞青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Hopesun New Material Co Ltd
Original Assignee
Ningbo Hopesun New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Hopesun New Material Co Ltd filed Critical Ningbo Hopesun New Material Co Ltd
Priority to CN201710192386.4A priority Critical patent/CN106676390A/zh
Publication of CN106676390A publication Critical patent/CN106676390A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及一种应用于厚大截面的低碳马氏体铸钢,按质量百分数计,其化学成分组成为:C 0.15%~0.25%,Si 1.2%~2.5%,Mn1.5%~3.5%,Cr 1.0%~2.5%,Mo 0.1%~0.5%,V 0.01%~0.5%,P≤0.03%,S≤0.03%,Fe余量;还涉及该低碳马氏体铸钢的热处理方法。与现有技术相比,本发明通过各种成分的合理组配,通过优化Si、Mn含量,抑制铁素体析出,通过添加少量、适量匹配的Mo、V元素,极大地提高了钢的机械性能。本发明中的低碳马氏体铸钢的淬透性高,临界淬透直径计算值超过300mm,最高可达1000mm,远高于同类低碳铸钢,并且其拉伸强度超过1400Mpa,硬度超过44HRC,冲击韧性AKv超过38J,最高达到65J。

Description

一种应用于厚大截面的低碳马氏体铸钢及其热处理方法
技术领域
本发明涉及钢铁技术领域,尤其涉及一种应用于厚大截面的低碳马氏体铸钢及其热处理方法。
背景技术
随着国内外工程机械日益朝高速化、大型化、专业化方向发展,具有厚大截面的铸钢构件日益增多。如大型矿山开采、挖掘用斗齿座单体重量可超过1t,最大截面厚度超过300mm,连续使用寿命要求超过15d,可靠性要求极高,使用中不能发生破碎、断裂等。受力分析表明整个斗齿座构件位于工作部位前端,受力力臂长,兼受冲击载荷,强韧性要求极高。一般心部抗拉强度要求大于1000MPa,V型缺口冲击韧性AKv不小于20J,另外根据安装需要还要求一定的焊接性。因此对相应材质的淬透性要求极高,整个厚大截面要尽可能淬透,以保证整体强度,而成分上则要求含碳量尽可能低,保证高韧性和焊接性。这种强度、淬透性与韧性、焊接性的矛盾对材料的设计、制备提出了极高的要求,现有钢铁市场上的铸钢材料难以满足。
钢铁材料的淬透性可由临界淬透直径Di(mm)表示,即在水冷条件下,直径超过Di的构件中心部位不能淬透。材料的Di可由实验测定,根据大量实验研究,科研人员总结出钢铁材料的淬透性与碳含量和合金含量的关系如下:Di=DiC×2.21(Mn%)×1.40(Si%)×2.13(Cr%)×3.275(Mo%)×1.47(Ni%),该表达式可以较准确地判断材料的淬透性,其中DiC值与碳含量和晶粒度有关。对铸钢而言,DiC大致分别为10(当C%=0.1%时)、12(当C%=0.15%时)、12.5(当C%=0.2%时)、14(当C%=0.25%时)或15.5(当C%=0.3%时)。
目前,市场上抗拉强度超过1000MPa的低碳铸钢很少,如申请号为201210550734.8(申请公布号为CN 103014529 A)的中国发明专利公开了一种铁道货车车钩用低碳马氏体铸钢材料;又如申请号为201510271380.7(申请公布号为CN 104988425 A)的中国发明专利公开了一种超高强度高韧性低碳马氏体铸钢及其制备方法。虽然上述专利均公开了抗拉强度超过1000MPa的低碳铸钢,但是上述专利中的马氏体铸钢的临界淬透直径均较小,无法应用于具有厚大截面的工程构件。
发明内容
本发明所要解决的第一个技术问题是针对现有技术而提供一种抗拉强度强、临界淬透直径大的应用于厚大截面的低碳马氏体铸钢。
本发明所要解决的第二个技术问题是针对现有技术而提供一种上述低碳马氏体铸钢的热处理方法。
本发明解决上述第一个技术问题所采用的技术方案为:一种应用于厚大截面的低碳马氏体铸钢,其特征在于,按质量百分数计,其化学成分组成为:C 0.15%~0.25%,Si1.2%~2.5%,Mn 1.5%~3.5%,Cr 1.0%~2.5%,Mo 0.1%~0.5%,V 0.01%~0.5%,P ≤0.03%,S≤0.03%,Fe余量。
钢的淬透性因子DiC随C含量的增加而增加,当C含量超过0.25%后,虽然材料的淬透性、硬度提高,但冲击韧性、可焊接性降低,生产中还易产生淬火裂纹,因此本发明中C含量为0.15%~0.25%。Cr能大幅提高材料的淬透性,但高Cr含量也会导致严重的组织偏析,因此为在不危害力学性能的前提下充分发挥了Cr元素的有益作用,本发明将Cr元素含量控制在1.0%~2.5%。
作为优选,上述Mn和Si的含量满足以下关系式:Mn%≥Si%+0.3%。Mn元素强烈增加淬透性,当Mn含量超过3.0%以后将引起偏析和Mn脆,会影响产品的韧性,因此本申请优选地将Mn含量限制在上述范围中。此外,本发明中将Mn含量限制在上述范围也能有效避免高Si含量引起铁素体生成以及对产品韧性的影响。
作为优选,上述Mo和V的含量满足以下关系式:Mo%≥V%+0.03%,其中Mo 0.18%~0.38%,V 0.15%~0.35%。V起沉淀强化的作用,但V含量过高又会降低钢的韧性,Mo除了强烈提高钢的淬透性、强度、硬度和回火稳定性外还具有破坏晶界和马氏体板条间碳化物膜(包括多余VC在内)的作用,有利于冲击韧性,本发明将Mo和V的含量限定在上述关系式中,能使Mo、V二种元素相互配合充分发挥有益作用,极大提高了钢的机械性能,特别是冲击韧性。
作为优选,所述低碳马氏体铸钢的临界淬透直径为300mm~1000mm。
作为优选,所述低碳马氏体铸钢的拉伸强度超过1400Mpa,硬度超过44HRC,冲击韧性达38J~65J。
本发明解决上述第二个技术问题所采用的技术方案为:一种上述低碳马氏体铸钢的热处理方法,按上述化学成分组成将各原料混料,经常规熔炼、浇注制成初产品,然后对该初产品进行热处理,其特征在于,所述热处理工艺包括以下步骤:
(1)正火:将初产品由室温加热至1000℃~1050℃,然后根据厚度保温1~5h,空冷至室温;
(2)淬火:正火后,将其加热至900℃~950℃,然后根据厚度保温1~5h,水淬至室温;
(3)回火:淬火后,将其再经200℃~250℃回火,然后根据厚度保温2~5h,出炉空冷或水冷得所需的低碳马氏体铸钢成品。
与现有技术相比,本发明的优点在于:本发明通过各种成分的合理组配,通过优化Si、Mn含量,抑制铁素体析出;V是一种强碳化物形成元素,在高温下能析出细小、均布的VC沉淀,这些沉淀除增加基体强度外,还可以作为额外形核点,细化原奥氏体晶粒和其他相变产物,此外,VC沉淀取代部分渗碳体形成,能抑制粗大渗碳体的出现,具有抵抗“氢脆”的作用,本发明通过添加少量、适量匹配的Mo、V元素,极大地提高了钢的机械性能。本发明中的低碳马氏体铸钢的淬透性高,临界淬透直径计算值超过300mm,最高可达1000mm,远高于同类低碳铸钢,并且其拉伸强度超过1400Mpa,硬度超过44HRC,冲击韧性AKv超过38J,最高达到65J。
附图说明
图1为本发明实施例1中制备的低碳马氏体铸钢的端淬实验结果;
图2为本发明实施例1中制备的低碳马氏体铸钢的金相图;
图3为本发明实施例1中制备的低碳马氏体铸钢的扫描电镜图;
图4为本发明实施例2中制备的低碳马氏体铸钢的金相图;
图5为本发明实施例2中制备的低碳马氏体铸钢的扫描电镜图;
图6为本发明中的低碳马氏体铸钢的Mo、V含量与其冲击韧性之间的关系图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明中的低碳马氏体铸钢,按质量百分数计,其化学成分组成为:C 0.15%~0.25%,Si 1.2%~2.5%,Mn 1.5%~3.5%,Cr 1.0%~2.5%,Mo 0.1%~0.5%,V0.01%~0.5%,P≤0.03%,S≤0.03%,Fe余量。进一步,优选地,上述Mn和Si的含量满足以下关系式:Mn%≥Si%+0.3%;上述Mo和V的含量满足以下关系式:Mo%≥V%+0.03%,其中Mo 0.18%~0.38%,V 0.15%~0.35%。实施例1~12以及对比例1~3的化学成分组成以及临界淬透直径如表1所述。
按上述化学成分成将各原料混料,经常规工艺熔炼、浇注制成初产品,然后对该初产品进行热处理,该热处理工艺包括以下步骤:
(1)正火:将初产品由室温加热至1000℃~1050℃,然后根据厚度保温1~5h,空冷至室温;
(2)淬火:正火后,将其加热至900℃~950℃,然后根据厚度保温1~5h,水淬至室温;
(3)回火:淬火后,将其再经200℃~250℃回火,然后根据厚度保温2~5h,出炉空冷或水冷得所需的低碳马氏体铸钢成品。
实施例1~12以及对比例1~3的热处理工艺参数以及各试验例制备的产品的机械性能如表2所述。
由表1可见,本发明所制备的低碳马氏体铸钢的淬透性很高,实施例1~12中临界淬透直径计算值均超过300mm,其中实施例8的合金含量最高,临界淬透直径高达1000mm,远高于同类低碳铸钢。
本发明的低碳马氏体铸钢的高淬透性与Si,Mn,Cr含量有关,由图1可见,实施例1中的低碳马氏体铸钢的淬透性很高,在距离喷水淬火表面150mm处,硬度依然达到了39HRC,金相检查显示此处绝大部分依然为马氏体板条(如图2和图3所示)。端淬实验结果显示实施例1的低碳马氏体铸钢临界淬透直径超过300mm,与计算值吻合。此外,从图1中还可以看出,相同碳含量的低碳Cr-Mo钢和低碳Cr-Ni-Mo钢的淬透性远不及本发明中的低碳马氏体铸钢。
由上述表1和表2中可见,除Mn含量不同外,实施例1和实施例2的成分、铸造及热处理工艺相同。图2和图3分别为实施例1的金相组织图和扫描电镜图,由图1和图2可看到组织为板条马氏体。实施例2的Mn含量较低,图4和图5分别为实施例2的金相组织图和扫描电镜图,由图4和图5可看到组织中除含板条马氏体外,还含有一定数量的铁素体(见图4和图5中箭头所指处),该铁素体对低碳马氏体钢而言为有害相。
实施例1的力学性能为:抗拉强度1439MPa,延伸率5.6%,硬度44HRC,冲击韧性AKv最高达到了65J。然而,实施例2的抗拉强度仅为1224MPa,冲击韧性仅为34J,虽然实施例2尚可应用,但其硬度和延伸率较实施例1大为降低。同理,对比例1、2、3中制备的钢的冲击韧性分别相对于实施例3、4、5中制备的钢大为下降。上述实施例2、对比例1、2、3中制备的钢机械性能的下降与钢中出现铁素体有关,根据前述相变动力学的研究,主要原因是钢中Si含量较高,Mn含量相对较低,Si促进了高温奥氏体向铁素体的转变。进一步研究可达,若钢的成分满足下列要求:Mn%≥Si%+0.3%,则钢的金相组织中不出现铁素体,从而保证其机械性能。
进一步,对含碳量0.3%~0.55%的马氏体钢而言,当抗拉强度大致相同时,Cr-Ni-Mo钢和Cr-Mo钢的冲击韧性整体优于Cr钢和Ni-Cr钢,显示出Mo对合金钢的增韧作用,其主要原因是Mo具有破坏晶界和马氏体板条间碳化物膜的作用。分析表1和表2中的数据可得,实施例1~8中除均添加了V元素外,其化学成分还满足以下条件:Mo%≥0.18%,V%≥0.15%且Mo%≥V%+0.03%。除实施例2外,上述实施例的机械性能特别是冲击韧性都非常高,缺口冲击韧性AKv均大于38J,绝大部分超过50J。这是因为除了有效利用了V的有益作用,实施例1~8中还配合添加了Mo元素,发挥了Mo增加韧性的作用。Mo打碎了在晶界和板条间形成的包括多余VC在内的碳化物膜。实施例9和11中未添加V,不能发挥V的多种有益作用,冲击韧性AKv≤35J。实施例10,12中V元素含量超过Mo元素,即不满足Mo%≥V%+0.03%的原则。Mo含量过低,V的沉淀强化作用过于突出,已形成碳化物膜,最终影响到冲击韧性,实验结果AKv≤33J。
图6为本发明中的低碳马氏体铸钢的Mo、V含量与其冲击韧性之间的关系图,图6中以圆环大小代表冲击韧性的高低。由图6可见,冲击韧性超过38J的铸钢成分均集中在Mo%≥0.18%,V≥0.15%且Mo%≥V%+0.03%的A区,可见合理添加V可以大幅提高冲击韧性。B区的试验点较少,冲击韧性在20~35J之间,不及A区,可见仅添加Mo不加V或V添加量过低对冲击韧性的提高有限。图中A、B区以外区域的冲击韧性实验值均小于38J,显示出仅添加V或Mo含量过少对韧性的提升也有限。图6中的数据表明要使钢材具有优异的冲击韧性,最优的化学成分要满足下列原则:Mo%≥0.18%,V%≥0.15%且Mo%≥V%+0.03%。
以上所述仅为本发明的优选及备选实施例,对本发明而言仅是说明性的,而非限制性的;在本发明权利要求所限定的精神和范围内对其进行的改变、修改、甚至等效变更等,都将落入本发明的保护范围内。
表1 各试验例的化学成分组成和临界淬透直径值
表2 各试验例的热处理工艺和机械性能

Claims (5)

1.一种应用于厚大截面的低碳马氏体铸钢,其特征在于,按质量百分数计,其化学成分组成为:C 0.15%~0.25%,Si 1.2%~2.5%,Mn 1.5%~3.5%,Cr 1.0%~2.5%,Mo0.1%~0.5%,V 0.01%~0.5%,P≤0.03%,S≤0.03%,Fe余量。
2.如权利要求1所述的低碳马氏体铸钢,其特征在于,上述Mn和Si的含量满足以下关系式:Mn%≥Si%+0.3%。
3.如权利要求1或2所述的低碳马氏体铸钢,其特征在于,上述Mo和V的含量满足以下关系式:Mo%≥V%+0.03%,其中Mo 0.18%~0.38%,V 0.15%~0.35%。
4.如权利要求3所述的低碳马氏体铸钢,其特征在于,所述低碳马氏体铸钢的临界淬透直径为300mm~1000mm。
5.一种如权利要求1所述的低碳马氏体铸钢的热处理方法,按上述化学成分组成将各原料混料,经常规工艺熔炼、浇注制成初产品,然后对该初产品进行热处理,其特征在于,所述热处理工艺包括以下步骤:
(1)正火:将初产品由室温加热至1000℃~1050℃,然后根据厚度保温1~5h,空冷至室温;
(2)淬火:正火后,将其加热至900℃~950℃,然后根据厚度保温1~5h,水淬至室温;
(3)回火:淬火后,将其再经200℃~250℃回火,然后根据厚度保温2~5h,出炉空冷或水冷得所需的低碳马氏体铸钢成品。
CN201710192386.4A 2017-03-28 2017-03-28 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法 Pending CN106676390A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710192386.4A CN106676390A (zh) 2017-03-28 2017-03-28 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710192386.4A CN106676390A (zh) 2017-03-28 2017-03-28 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法

Publications (1)

Publication Number Publication Date
CN106676390A true CN106676390A (zh) 2017-05-17

Family

ID=58828475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710192386.4A Pending CN106676390A (zh) 2017-03-28 2017-03-28 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法

Country Status (1)

Country Link
CN (1) CN106676390A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215376A (zh) * 2021-04-28 2021-08-06 徐工集团工程机械股份有限公司科技分公司 一种装载机斗齿及其热处理方法
CN113388791A (zh) * 2020-03-13 2021-09-14 钢铁研究总院 一种高强韧性回火马氏体辙叉钢及其热处理方法
CN114606443A (zh) * 2022-03-17 2022-06-10 襄阳金耐特机械股份有限公司 一种高淬透性铸钢
CN114635086A (zh) * 2022-03-17 2022-06-17 襄阳金耐特机械股份有限公司 一种高强韧性铸钢

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216014A (en) * 1977-11-22 1980-08-05 Kawasaki Jukogyo Kabushiki Kaisha Low temperature steel alloy
JP2001140039A (ja) * 1999-11-18 2001-05-22 Kobe Steel Ltd 耐摩耗鋳鋼及びその製造方法
CN1718829A (zh) * 2005-06-22 2006-01-11 宁波浙东精密铸造有限公司 一种薄膜奥氏体增韧的马氏体耐磨铸钢及其制造方法
CN102312159A (zh) * 2010-07-06 2012-01-11 泰州汇能不锈钢制品有限公司 马氏体耐磨铸钢的热处理工艺
CN103834771A (zh) * 2014-03-07 2014-06-04 湖州市千金宝云机械铸件有限公司 耐磨铸钢的热处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216014A (en) * 1977-11-22 1980-08-05 Kawasaki Jukogyo Kabushiki Kaisha Low temperature steel alloy
JP2001140039A (ja) * 1999-11-18 2001-05-22 Kobe Steel Ltd 耐摩耗鋳鋼及びその製造方法
CN1718829A (zh) * 2005-06-22 2006-01-11 宁波浙东精密铸造有限公司 一种薄膜奥氏体增韧的马氏体耐磨铸钢及其制造方法
CN102312159A (zh) * 2010-07-06 2012-01-11 泰州汇能不锈钢制品有限公司 马氏体耐磨铸钢的热处理工艺
CN103834771A (zh) * 2014-03-07 2014-06-04 湖州市千金宝云机械铸件有限公司 耐磨铸钢的热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨瑞青等: "钼钒对1400MPa级贝氏体/马氏体复相铸钢力学性能的影响", 《铸造技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388791A (zh) * 2020-03-13 2021-09-14 钢铁研究总院 一种高强韧性回火马氏体辙叉钢及其热处理方法
CN113388791B (zh) * 2020-03-13 2022-05-13 钢铁研究总院 一种高强韧性回火马氏体辙叉钢及其热处理方法
CN113215376A (zh) * 2021-04-28 2021-08-06 徐工集团工程机械股份有限公司科技分公司 一种装载机斗齿及其热处理方法
CN113215376B (zh) * 2021-04-28 2021-10-15 徐工集团工程机械股份有限公司科技分公司 一种装载机斗齿及其热处理方法
CN114606443A (zh) * 2022-03-17 2022-06-10 襄阳金耐特机械股份有限公司 一种高淬透性铸钢
CN114635086A (zh) * 2022-03-17 2022-06-17 襄阳金耐特机械股份有限公司 一种高强韧性铸钢

Similar Documents

Publication Publication Date Title
CN101603119B (zh) 用热轧卷板制造高强度高韧性钢板的方法
CN100443617C (zh) 珠光体类热处理钢轨及其生产方法
CN102220545B (zh) 耐磨性和塑性优良的高碳高强热处理钢轨及其制造方法
CN101775539B (zh) 一种高韧性耐磨钢板及其制造方法
CN102021492B (zh) 一种低碳低合金耐磨钢及其生产方法
CN102392186B (zh) 一种hb500级低锰耐磨钢板的制造方法
CN101906588B (zh) 一种空冷下贝氏体/马氏体复相耐磨铸钢的制备方法
CN104388821B (zh) TiC粒子增强型复相组织高塑性耐磨钢板及制造方法
US8926768B2 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
CN105543676B (zh) 一种马氏体‑铁素体双相耐磨钢板及其制备方法
CN102337480B (zh) 抗环境脆性及疲劳性能优良的超高强度钢板及其制造方法
JP4238832B2 (ja) 耐摩耗鋼板及びその製造方法
CN106319389B (zh) 低成本、高机械加工性的工程机械用钢及其制造方法
JP7163888B2 (ja) 耐疲労特性に優れた耐摩耗鋼材の製造方法
CN108018492A (zh) 一种布氏硬度大于550hb的高级别低合金耐磨钢板及制造方法
JP2005256169A (ja) 低温靱性に優れた耐摩耗鋼板およびその製造方法
CN106676390A (zh) 一种应用于厚大截面的低碳马氏体铸钢及其热处理方法
CN105039861B (zh) 一种中锰含硼低合金耐磨钢板及其制备方法
CN101624681B (zh) 一种超高强度贝氏体装甲用钢及其制造方法
CN104451403A (zh) 低温用hb450级复相组织耐磨钢及其生产方法
CN102234743A (zh) 一种低碳马氏体钢板及其制造方法
CN109652624A (zh) 一种超高强度防护钢及其制造方法
CN106756489A (zh) 布氏硬度450级抗裂纹高强度耐磨钢及其制造方法
CN102312174B (zh) 一种非调质的高强耐磨钢及其生产方法
CN107502832B (zh) 一种双淬火配分工艺高速锤头用耐磨钢用钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170517

RJ01 Rejection of invention patent application after publication