CN106671112B - 一种基于触觉阵列信息的机械手抓取稳定性判断方法 - Google Patents

一种基于触觉阵列信息的机械手抓取稳定性判断方法 Download PDF

Info

Publication number
CN106671112B
CN106671112B CN201611148470.8A CN201611148470A CN106671112B CN 106671112 B CN106671112 B CN 106671112B CN 201611148470 A CN201611148470 A CN 201611148470A CN 106671112 B CN106671112 B CN 106671112B
Authority
CN
China
Prior art keywords
training sample
tactile
time series
grabbed
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611148470.8A
Other languages
English (en)
Other versions
CN106671112A (zh
Inventor
刘华平
张光强
车君怡
方斌
郭迪
孙富春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201611148470.8A priority Critical patent/CN106671112B/zh
Publication of CN106671112A publication Critical patent/CN106671112A/zh
Application granted granted Critical
Publication of CN106671112B publication Critical patent/CN106671112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes

Abstract

本发明涉及一种基于触觉阵列信息的机械手抓取稳定性判断方法,属于机械手对物体抓取稳定性判断方法领域。该方法包括:1)采集作为训练样本的触觉阵列信息和采集作为待抓取物触觉数据的触觉阵列信息;2)将训练样本和触觉待抓取物触觉数据分别进行数据处理;3)构建待抓取物触觉数据与训练样本的欧式距离矩阵;4)构建待抓取物触觉数据与训练样本集的最小累加距离集合;5)通过最近邻算法得到该次抓取的稳定与否状态。本发明在机器学习的基础上,对基于触觉阵列信息的机械手抓取稳定性进行判断,提高了物体抓取稳定性判断的鲁棒性和准确率。

Description

一种基于触觉阵列信息的机械手抓取稳定性判断方法
技术领域
本发明涉及一种基于触觉阵列信息的机械手抓取稳定性判断方法,属于机械手对物体抓取稳定性判断方法领域。
背景技术
触觉信息在机器人精细操作过程中的作用非常重要,也是目前机器人感知领域的研究焦点。对机器人而言,触觉是获取环境信息的一种重要感知方式。触觉本身有很强的敏感性,可直接测量对象和环境的多种性质特征。同时,触觉也是人类感知外部环境的一种基本模态。因此,为机器人引入触觉感知模块,不仅在一定程度上模拟了人类的感知与认知机制,又符合实际操作应用的强烈需求。
一般来说,机器人触觉传感器主要有检测和识别功能。其中检测功能包括对操作对象的状态、机械手与操作对象的接触状态、操作对象的物理性质进行检测;识别功能是在检测的基础上提取操作对象的形状、大小、刚度、纹理、温度等特征,以进行分类和物体识别。
随着现代传感器、控制和人工智能技术的发展,科研人员对包括灵巧手触觉传感器,以及使用所采集的触觉信息结合不同算法实现对于灵巧手抓取稳定性的分析开展了广泛的研究。
发明内容
本发明的目的是提出一种基于触觉阵列信息的机械手抓取稳定性判断方法,通过对触觉信息的分析和整理,在最近邻算法的基础上,实现基于触觉阵列信息的机械手对物体的稳定抓取。
本发明提出的基于触觉阵列信息的机械手抓取稳定性判断方法,包括以下步骤:
(1)在机械手的三根手指上各设置24个触觉传感器,24个触觉传感器组成一个3x8的触点阵列;
(2)用步骤(1)的机械手抓取训练目标抓取物,获取触觉数据,以得到训练样本集Str,设训练样本集的个数为N,则训练样本集Str的表达式为:
Str={Str 1,Str 2,···,Str k,...,Str N}
其中,Str1,Str 2,···,Str k,...,Str N分别表示训练样本集Str中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本;
(3)用步骤(1)的机械手抓取待抓取物,获取待抓取物触觉数据SJ
(4)对上述步骤(2)得到的训练样本集Str进行数据处理,具体过程如下:
(4-1)记训练样本集Str中的任意一个训练样本为SI,1≤I≤N,SI由三个触点阵列数据组成,即:SI=[SI,F1,SI,F2,SI,F3],其中SI,F1,SI,F2,SI,F3分别表示一个3×8×t1的触觉时间序列,t1为训练样本触觉数据采集时间;
(4-2)通过下式,求上述步骤(4-1)得到的3×8×t1的触觉时间序列的图像矩mpq
其中,p+q=0时,mpq为触觉时间序列的0阶图像矩,p+q=1时,mpq为触觉时间序列的1阶图像矩,p+q=2时,mpq为触觉时间序列的2阶图像矩;x为3×8×t1的触觉时间序列的行坐标,0<x≤3;y为3×8×t1的触觉时间序列的列坐标,0<y≤8,x,y取正整数;f(x,y)为对应坐标点处的触觉时间序列的值,R,C分别代表3×8×t1的触觉时间序列的列数和行数,R=8,C=3;p+q=0,1,2,p和q有如下6种取值情况:p=0,q=0;p=0,q=1;p=1,q=0;p=1,q=1;p=0,q=2;p=2,q=0;
(4-3)训练样本SI经上述步骤(4-2)求图像矩mpq后,3×8×t1的触觉时间序列变为6×t1的触觉时间序列,得到训练样本SI':
SI'=[SI,F1',SI,F2',SI,F3']=[sI1',sI2',...,sIi',...,sIn']
其中,SI,F1',SI,F2',SI,F3'分别为经求图像矩后得到的6×t1的触觉时间序列,sI1',sI2',...,sIi',...,sIn'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第i个触觉向量、…、第n个触觉向量;n为训练样本SI'中的触觉向量数;
进而得到训练样本集Str':
Str'={Str1',Str 2',···,Str k',...,Str N'}
其中,Str1',Str 2',···,Str k',...,Str N'分别表示经求图像矩后得到的训练样本集Str'中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本,N为训练样本数;
(5)对上述步骤(3)得到的待抓取物触觉数据SJ进行数据处理,具体过程如下:
(5-1)待抓取物触觉数据SJ由三个触点阵列数据组成,即:SJ=[SJ,F1,SJ,F2,SJ,F3],其中SJ,F1,SJ,F2,SJ,F3分别表示3×8×t2的触觉时间序列,t2为待抓取物触觉数据采集时间;
(5-2)通过下式,求上述步骤(5-1)得到的3×8×t2的触觉时间序列的图像矩gab
其中,a+b=0时,gab为触觉时间序列的0阶图像矩,a+b=1时,gab为触觉时间序列的1阶图像矩,a+b=2时,gab为触觉时间序列的2阶图像矩;c为3×8×t2的触觉时间序列的行坐标,0<c≤3;d为3×8×t2的触觉时间序列的列坐标,0<d≤8,c,d取正整数,f(c,d)为对应坐标点处的触觉时间序列的值,G,H分别代表3×8×t2的触觉时间序列的行数和列数,G=3,H=8;a+b=0,1,2,a和b有如下6种取值情况:a=0,b=0;a=0,b=1;a=1,b=0;a=1,b=1;a=0,b=2;a=2,b=0;
(5-3)待抓取物触觉数据SJ经上述步骤(5-2)求图像矩gab后,3×8×t2的触觉时间序列变为6×t2的触觉时间序列,得到待抓取物触觉数据集合SJ':
SJ'=[SJ,F1',SJ,F2',SJ,F3']=[sJ1',sJ2',...,sJj',...,sJm']
其中,SJ,F1',SJ,F2',SJ,F3'分别为经求图像矩后得到的6×t2的触觉时间序列,sJ1',sJ2',...,sJj',...,sJm'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第j个触觉向量、…、第m个触觉向量;m为待抓取物触觉数据SJ'中的触觉向量数;
(6)根据上述步骤(4)得到的训练样本SI'和步骤(5)得到的待抓取物触觉数据SJ',构建一个n×m的欧氏距离矩阵网格,n为训练样本SI'的触觉向量数,m为待抓取物触觉数据SJ'的触觉向量数,矩阵元素(e,f)表示触觉向量sIe'与触觉向量sJf'之间的欧式距离d(sIe',sJf'):
d(sIe',sJf')=(sIe'-sJf')2
其中,sIe'为训练样本SI'中的第e个向量,sJf'为待抓取物触觉数据SJ'中的第f个向量;
(7)从上述步骤(6)中构建的n×m的欧氏距离矩阵网格的(1,1)点开始,按下式计算出每一个矩阵格点的最小累加距离,构造成一个n×m的最小累加距离矩阵网格,最小累加距离γ(u,v)为向量sIu'和sJv'的欧式距离d(sIu',sJv')与到达该点的最小邻近累加距离min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)之和:
γ(u,v)=d(sIu',sJv')+min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)}
其中,sIu'为训练样本SI'的第u个向量,sJv'为待抓取物触觉数据SJ'的第v个向量,γ(u-1,v-1)为从斜下方矩阵格点(u-1,v-1)到达当前矩阵格点(u,v)的累加距离,γ(u-1,v)为从左侧矩阵格点(u-1,v)到达当前矩阵格点(u,v)的累加距离,γ(u,v-1)为下方矩阵格点(u,v-1)到达当前矩阵格点(u,v)的累加距离;0<u≤n,0<v≤m;
到达n×m的矩阵网格的终点(n,m)后,得到训练样本SI'和待抓取物触觉数据SJ'之间的最小累加距离γ(n,m);
(8)遍历训练样本集Str',重复步骤(6)和步骤(7),分别计算待抓取物触觉数据SJ'和训练样本集Str'中的每一个训练样本之间的最小累加距离,构建一个最小累加距离集合DQ,DQ的表达式为:
DQ=[DQ,1,DQ,2,···,DQ,N]
其中,DQ,1,DQ,2,···,DQ,N分别表示待抓取物触觉数据SJ'与训练样本集Str′中的第一个训练样本之间的最小累加距离、第二个训练样本之间的最小累加距离、…、最后一个训练样本之间的最小累加距离,求出最小累加距离集合DQ表达式中的最小值DQ O,其中第二个下标O的范围为:1≤O≤N,N为训练样本数量,DQ O为待抓取物触觉数据SJ'与训练样本集Str′中的第O个训练样本之间的最小累加距离,当最小累加距离DQ O为最小累加距离集合DQ中的最小值时,表示待抓取物触觉数据SJ'与训练样本集Str′中的第O个训练样本之间的距离最短,训练样本集Str′中的第O个训练样本即为待抓取物触觉数据SJ'的最佳匹配样本,根据最近邻算法,若第O个训练样本稳定,则判定该次抓取稳定,若第O个训练样本不稳定,则判定该次抓取不稳定,完成基于触觉阵列信息的机械手对待抓取物抓取稳定的判断。
本发明提出的基于触觉阵列信息的机械手抓取稳定性判断方法,通过对触觉信息的分析和整理,在最近邻算法的基础上实现基于触觉阵列信息的机械手对物体的稳定性抓取判断,大大提高了机械手对抓取物体稳定判断的鲁棒性和准确率。而且本发明方法简单可靠,具有很强的实用性。
附图说明
图1是本发明方法中涉及的训练样本SI'和待抓取物触觉数据SJ'构建的n×m的欧氏距离矩阵网格图;
图2是本发明方法中涉及的训练样本SI'和待抓取物触觉数据SJ'构建的n×m的最小累加距离矩阵网格图;
具体实施方式
本发明提出的基于触觉阵列信息的机械手抓取稳定性判断方法,包括以下步骤:
(1)在机械手的三根手指上各设置24个触觉传感器,24个触觉传感器组成一个3x8的触点阵列;
(2)用步骤(1)的机械手抓取训练目标抓取物,获取触觉数据,以得到训练样本集Str,设训练样本集的个数为N,则训练样本集Str的表达式为:
Str={Str 1,Str 2,···,Str k,...,Str N}
其中,Str1,Str 2,···,Str k,...,Str N分别表示训练样本集Str中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本;
(3)用步骤(1)的机械手抓取待抓取物,获取待抓取物触觉数据SJ
(4)对上述步骤(2)得到的训练样本集Str进行数据处理,具体过程如下:
(4-1)记训练样本集Str中的任意一个训练样本为SI,1≤I≤N,SI由三个触点阵列数据组成,即:SI=[SI,F1,SI,F2,SI,F3],其中SI,F1,SI,F2,SI,F3分别表示一个3×8×t1的触觉时间序列,t1为训练样本触觉数据采集时间;
(4-2)通过下式,求上述步骤(4-1)得到的3×8×t1的触觉时间序列的图像矩mpq
其中,p+q=0时,mpq为触觉时间序列的0阶图像矩,p+q=1时,mpq为触觉时间序列的1阶图像矩,p+q=2时,mpq为触觉时间序列的2阶图像矩;x为3×8×t1的触觉时间序列的行坐标,0<x≤3;y为3×8×t1的触觉时间序列的列坐标,0<y≤8,x,y取正整数;f(x,y)为对应坐标点处的触觉时间序列的值,R,C分别代表3×8×t1的触觉时间序列的列数和行数,R=8,C=3;p+q=0,1,2,p和q有如下6种取值情况:p=0,q=0;p=0,q=1;p=1,q=0;p=1,q=1;p=0,q=2;p=2,q=0;
(4-3)训练样本SI经上述步骤(4-2)求图像矩mpq后,3×8×t1的触觉时间序列变为6×t1的触觉时间序列,得到训练样本SI':
SI'=[SI,F1',SI,F2',SI,F3']=[sI1',sI2',...,sIi',...,sIn']
其中,SI,F1',SI,F2',SI,F3'分别为经求图像矩后得到的6×t1的触觉时间序列,sI1',sI2',...,sIi',...,sIn'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第i个触觉向量、…、第n个触觉向量;n为训练样本SI'中的触觉向量数;
进而得到训练样本集Str':
Str'={Str1',Str 2',···,Str k',...,Str N'}
其中,Str1',Str 2',···,Str k',...,Str N'分别表示经求图像矩后得到的训练样本集Str'中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本,N为训练样本数;
(5)对上述步骤(3)得到的待抓取物触觉数据SJ进行数据处理,具体过程如下:
(5-1)待抓取物触觉数据SJ由三个触点阵列数据组成,即:SJ=[SJ,F1,SJ,F2,SJ,F3],其中SJ,F1,SJ,F2,SJ,F3分别表示3×8×t2的触觉时间序列,t2为待抓取物触觉数据采集时间;
(5-2)通过下式,求上述步骤(5-1)得到的3×8×t2的触觉时间序列的图像矩gab
其中,a+b=0时,gab为触觉时间序列的0阶图像矩,a+b=1时,gab为触觉时间序列的1阶图像矩,a+b=2时,gab为触觉时间序列的2阶图像矩;c为3×8×t2的触觉时间序列的行坐标,0<c≤3;d为3×8×t2的触觉时间序列的列坐标,0<d≤8,c,d取正整数,f(c,d)为对应坐标点处的触觉时间序列的值,G,H分别代表3×8×t2的触觉时间序列的行数和列数,G=3,H=8;a+b=0,1,2,a和b有如下6种取值情况:a=0,b=0;a=0,b=1;a=1,b=0;a=1,b=1;a=0,b=2;a=2,b=0;
(5-3)待抓取物触觉数据SJ经上述步骤(5-2)求图像矩gab后,3×8×t2的触觉时间序列变为6×t2的触觉时间序列,得到待抓取物触觉数据集合SJ':
SJ'=[SJ,F1',SJ,F2',SJ,F3']=[sJ1',sJ2',...,sJj',...,sJm']
其中,SJ,F1',SJ,F2',SJ,F3'分别为经求图像矩后得到的6×t2的触觉时间序列,sJ1',sJ2',...,sJj',...,sJm'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第j个触觉向量、…、第m个触觉向量;m为待抓取物触觉数据SJ'中的触觉向量数;
(6)根据上述步骤(4)得到的训练样本SI'和步骤(5)得到的待抓取物触觉数据SJ',构建一个n×m的欧氏距离矩阵网格,如图1所示,n为训练样本SI'的触觉向量数,m为待抓取物触觉数据SJ'的触觉向量数,矩阵元素(e,f)表示触觉向量sIe'与触觉向量sJf'之间的欧式距离d(sIe',sJf'):
d(sIe',sJf')=(sIe'-sJf')2
其中,sIe'为训练样本SI'中的第e个向量,sJf'为待抓取物触觉数据SJ'中的第f个向量;
(7)从上述步骤(6)中构建的n×m的欧氏距离矩阵网格的(1,1)点开始,按下式计算出每一个矩阵格点的最小累加距离,构造成一个n×m的最小累加距离矩阵网格,如图2所示,最小累加距离γ(u,v)为向量sIu'和sJv'的欧式距离d(sIu',sJv')与到达该点的最小邻近累加距离min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)之和:
γ(u,v)=d(sIu',sJv')+min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)}
其中,sIu'为训练样本SI'的第u个向量,sJv'为待抓取物触觉数据SJ'的第v个向量,γ(u-1,v-1)为从斜下方矩阵格点(u-1,v-1)到达当前矩阵格点(u,v)的累加距离,γ(u-1,v)为从左侧矩阵格点(u-1,v)到达当前矩阵格点(u,v)的累加距离,γ(u,v-1)为下方矩阵格点(u,v-1)到达当前矩阵格点(u,v)的累加距离;0<u≤n,0<v≤m;
到达n×m的矩阵网格的终点(n,m)后,得到训练样本SI'和待抓取物触觉数据SJ'之间的最小累加距离γ(n,m);
(8)遍历训练样本集Str',重复步骤(6)和步骤(7),分别计算待抓取物触觉数据SJ'和训练样本集Str'中的每一个训练样本之间的最小累加距离,构建一个最小累加距离集合DQ,DQ的表达式为:
DQ=[DQ,1,DQ,2,···,DQ,N]
其中,DQ,1,DQ,2,···,DQ,N分别表示待抓取物触觉数据SJ'与训练样本集Str′中的第一个训练样本之间的最小累加距离、第二个训练样本之间的最小累加距离、…、最后一个训练样本之间的最小累加距离,求出最小累加距离集合DQ表达式中的最小值DQ O,其中第二个下标O的范围为:1≤O≤N,N为训练样本数量,DQ O为待抓取物触觉数据SJ'与训练样本集Str′中的第O个训练样本之间的最小累加距离,当最小累加距离DQ O为最小累加距离集合DQ中的最小值时,表示待抓取物触觉数据SJ'与训练样本集Str′中的第O个训练样本之间的距离最短,训练样本集Str′中的第O个训练样本即为待抓取物触觉数据SJ'的最佳匹配样本,根据最近邻算法,若第O个训练样本稳定,则判定该次抓取稳定,若第O个训练样本不稳定,则判定该次抓取不稳定,完成基于触觉阵列信息的机械手对待抓取物抓取稳定的判断。

Claims (1)

1.一种基于触觉阵列信息的机械手抓取稳定性判断方法,其特征在于,该方法包括以下步骤:
(1)在机械手的三根手指上各设置24个触觉传感器,24个触觉传感器组成一个3x8的触点阵列;
(2)用步骤(1)的机械手抓取训练目标抓取物,获取触觉数据,以得到训练样本集Str,设训练样本集的个数为N,则训练样本集Str的表达式为:
Str={Str1,Str2,…,Strk,...,StrN}
其中,Str1,Str2,…,Strk,...,StrN分别表示训练样本集Str中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本;
(3)用步骤(1)的机械手抓取待抓取物,获取待抓取物触觉数据SJ
(4)对上述步骤(2)得到的训练样本集Str进行数据处理,具体过程如下:
(4-1)记训练样本集Str中的任意一个训练样本为SI,1≤I≤N,SI由三个触点阵列数据组成,即:SI=[SI,F1,SI,F2,SI,F3],其中SI,F1,SI,F2,SI,F3分别表示一个3×8×t1的触觉时间序列,t1为训练样本触觉数据采集时间;
(4-2)通过下式,求上述步骤(4-1)得到的3×8×t1的触觉时间序列的图像矩mpq
其中,p+q=0时,mpq为触觉时间序列的0阶图像矩,p+q=1时,mpq为触觉时间序列的1阶图像矩,p+q=2时,mpq为触觉时间序列的2阶图像矩;x为3×8×t1的触觉时间序列的行坐标,0<x≤3;y为3×8×t1的触觉时间序列的列坐标,0<y≤8,x,y取正整数;f(x,y)为对应坐标点处的触觉时间序列的值,R,C分别代表3×8×t1的触觉时间序列的列数和行数,R=8,C=3;p+q=0,1,2,p和q有如下6种取值情况:p=0,q=0;p=0,q=1;p=1,q=0;p=1,q=1;p=0,q=2;p=2,q=0;
(4-3)训练样本SI经上述步骤(4-2)求图像矩mpq后,3×8×t1的触觉时间序列变为6×t1的触觉时间序列,得到训练样本SI':
SI'=[SI,F1',SI,F2',SI,F3']=[sI1',sI2',...,sIi',...,sIn']
其中,SI,F1',SI,F2',SI,F3'分别为经求图像矩后得到的6×t1的触觉时间序列,sI1',sI2',...,sIi',...,sIn'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第i个触觉向量、…、第n个触觉向量;n为训练样本SI'中的触觉向量数;
进而得到训练样本集Str':
Str'={Str1',Str2',…,Strk',...,StrN'}
其中,Str1',Str2',…,Strk',...,StrN'分别表示经求图像矩后得到的训练样本集Str'中的第一个训练样本、第二个训练样本、…、第k个训练样本、…、第N个训练样本,N为训练样本数;
(5)对上述步骤(3)得到的待抓取物触觉数据SJ进行数据处理,具体过程如下:
(5-1)待抓取物触觉数据SJ由三个触点阵列数据组成,即:SJ=[SJ,F1,SJ,F2,SJ,F3],其中SJ,F1,SJ,F2,SJ,F3分别表示3×8×t2的触觉时间序列,t2为待抓取物触觉数据采集时间;
(5-2)通过下式,求上述步骤(5-1)得到的3×8×t2的触觉时间序列的图像矩gab
其中,a+b=0时,gab为触觉时间序列的0阶图像矩,a+b=1时,gab为触觉时间序列的1阶图像矩,a+b=2时,gab为触觉时间序列的2阶图像矩;c为3×8×t2的触觉时间序列的行坐标,0<c≤3;d为3×8×t2的触觉时间序列的列坐标,0<d≤8,c,d取正整数,f(c,d)为对应坐标点处的触觉时间序列的值,G,H分别代表3×8×t2的触觉时间序列的行数和列数,G=3,H=8;a+b=0,1,2,a和b有如下6种取值情况:a=0,b=0;a=0,b=1;a=1,b=0;a=1,b=1;a=0,b=2;a=2,b=0;
(5-3)待抓取物触觉数据SJ经上述步骤(5-2)求图像矩gab后,3×8×t2的触觉时间序列变为6×t2的触觉时间序列,得到待抓取物触觉数据集合SJ':
SJ'=[SJ,F1',SJ,F2',SJ,F3']=[sJ1',sJ2',...,sJj',...,sJm']
其中,SJ,F1',SJ,F2',SJ,F3'分别为经求图像矩后得到的6×t2的触觉时间序列,sJ1',sJ2',...,sJj',...,sJm'分别为经求图像矩后得到的触觉时间序列的第一个触觉向量、第二个触觉向量、…、第j个触觉向量、…、第m个触觉向量;m为待抓取物触觉数据集合SJ'中的触觉向量数;
(6)根据上述步骤(4)得到的训练样本SI'和步骤(5)得到的待抓取物触觉数据集合SJ',构建一个n×m的欧氏距离矩阵网格,n为训练样本SI'的触觉向量数,m为待抓取物触觉数据集合SJ'的触觉向量数,矩阵元素(e,f)表示触觉向量sIe'与触觉向量sJf'之间的欧式距离d(sIe',sJf'):
d(sIe',sJf')=(sIe'-sJf')2
其中,sIe'为训练样本SI'中的第e个向量,sJf'为待抓取物触觉数据集合SJ'中的第f个向量;
(7)从上述步骤(6)中构建的n×m的欧氏距离矩阵网格的(1,1)点开始,按下式计算出每一个矩阵格点的最小累加距离,构造成一个n×m的最小累加距离矩阵网格,最小累加距离γ(u,v)为向量sIu'和sJv'的欧式距离d(sIu',sJv')与到达该点的最小邻近累加距离min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)之和:
γ(u,v)=d(sIu',sJv')+min{γ(u-1,v-1),γ(u-1,v),γ(u,v-1)}
其中,sIu'为训练样本SI'的第u个向量,sJv'为待抓取物触觉数据集合SJ'的第v个向量,γ(u-1,v-1)为从斜下方矩阵格点(u-1,v-1)到达当前矩阵格点(u,v)的累加距离,γ(u-1,v)为从左侧矩阵格点(u-1,v)到达当前矩阵格点(u,v)的累加距离,γ(u,v-1)为下方矩阵格点(u,v-1)到达当前矩阵格点(u,v)的累加距离;0<u≤n,0<v≤m;
到达n×m的矩阵网格的终点(n,m)后,得到训练样本SI'和待抓取物触觉数据集合SJ'之间的最小累加距离γ(n,m);
(8)遍历训练样本集Str',重复步骤(6)和步骤(7),分别计算待抓取物触觉数据集合SJ'和训练样本集Str'中的每一个训练样本之间的最小累加距离,构建一个最小累加距离集合DQ,DQ的表达式为:
DQ=[DQ,1,DQ,2,…,DQ,N]
其中,DQ,1,DQ,2,…,DQ,N分别表示待抓取物触觉数据集合SJ'与训练样本集Str′中的第一个训练样本之间的最小累加距离、第二个训练样本之间的最小累加距离、…、最后一个训练样本之间的最小累加距离,求出最小累加距离集合DQ表达式中的最小值DQO,其中第二个下标O的范围为:1≤O≤N,N为训练样本数量,DQO为待抓取物触觉数据SJ'集合与训练样本集Str′中的第O个训练样本之间的最小累加距离,当最小累加距离DQO为最小累加距离集合DQ中的最小值时,表示待抓取物触觉数据集合SJ'与训练样本集Str′中的第O个训练样本之间的距离最短,训练样本集Str′中的第O个训练样本即为待抓取物触觉数据集合SJ'的最佳匹配样本,根据最近邻算法,若第O个训练样本稳定,则判定该次抓取稳定,若第O个训练样本不稳定,则判定该次抓取不稳定,完成基于触觉阵列信息的机械手对待抓取物抓取稳定的判断。
CN201611148470.8A 2016-12-13 2016-12-13 一种基于触觉阵列信息的机械手抓取稳定性判断方法 Active CN106671112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611148470.8A CN106671112B (zh) 2016-12-13 2016-12-13 一种基于触觉阵列信息的机械手抓取稳定性判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611148470.8A CN106671112B (zh) 2016-12-13 2016-12-13 一种基于触觉阵列信息的机械手抓取稳定性判断方法

Publications (2)

Publication Number Publication Date
CN106671112A CN106671112A (zh) 2017-05-17
CN106671112B true CN106671112B (zh) 2018-12-11

Family

ID=58868368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611148470.8A Active CN106671112B (zh) 2016-12-13 2016-12-13 一种基于触觉阵列信息的机械手抓取稳定性判断方法

Country Status (1)

Country Link
CN (1) CN106671112B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037013A1 (zh) * 2017-08-24 2019-02-28 深圳蓝胖子机器人有限公司 机器人码放货物的方法及机器人
CN108340367A (zh) * 2017-12-13 2018-07-31 深圳市鸿益达供应链科技有限公司 用于机械臂抓取的机器学习方法
CN108681412B (zh) * 2018-04-12 2020-06-02 清华大学 一种基于阵列式触觉传感器的情感识别装置及方法
CN111055279B (zh) * 2019-12-17 2022-02-15 清华大学深圳国际研究生院 基于触觉与视觉结合的多模态物体抓取方法与系统
CN111421536B (zh) * 2020-03-13 2021-07-09 清华大学 一种基于触觉信息的摇杆操作控制方法
CN111459278A (zh) * 2020-04-01 2020-07-28 中国科学院空天信息创新研究院 基于触觉阵列的机器人抓取状态判别方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191459A1 (en) * 2000-09-22 2002-03-27 Nightingale Technologies Ltd. Data clustering methods and applications
DE10237310B4 (de) * 2002-08-14 2006-11-30 Wismüller, Axel, Dipl.-Phys. Dr.med. Verfahren, Datenverarbeitungseinrichtung und Computerprogrammprodukt zur Datenverarbeitung
KR101324687B1 (ko) * 2009-08-10 2013-11-04 한국과학기술원 이미지에 햅틱 정보를 인코딩하는 방법, 이미지로부터 햅틱 정보를 디코딩하는 방법 및 이를 위한 햅틱 정보 처리 장치
CN104778755B (zh) * 2015-03-27 2017-08-25 浙江理工大学 一种基于区域划分的纹理图像三维重构方法
CN105005787B (zh) * 2015-06-24 2018-05-29 清华大学 一种基于灵巧手触觉信息的联合稀疏编码的材质分类方法
CN105718954B (zh) * 2016-01-22 2019-03-05 清华大学 一种基于视触觉融合的目标属性和类别的识别方法

Also Published As

Publication number Publication date
CN106671112A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106671112B (zh) 一种基于触觉阵列信息的机械手抓取稳定性判断方法
CN205318353U (zh) 用于操作电容式触摸屏幕的设备以及对应的装置
CN105005787B (zh) 一种基于灵巧手触觉信息的联合稀疏编码的材质分类方法
CN105718954B (zh) 一种基于视触觉融合的目标属性和类别的识别方法
CN103235947B (zh) 一种手写体数字识别方法及装置
CN107871102A (zh) 一种人脸检测方法及装置
CN103324938A (zh) 训练姿态分类器及物体分类器、物体检测的方法及装置
CN106446890B (zh) 一种基于窗口打分和超像素分割的候选区域提取方法
CN108921107A (zh) 基于排序损失和Siamese网络的行人再识别方法
Cui et al. Grasp state assessment of deformable objects using visual-tactile fusion perception
CN104102922B (zh) 一种基于上下文感知字典学习的害虫图像分类方法
CN104573621A (zh) 基于Chebyshev神经网络的动态手势学习和识别方法
CN105354841B (zh) 一种快速遥感影像匹配方法及系统
CN108776831A (zh) 一种基于动态卷积神经网络的复杂工业过程数据建模方法
CN109766813A (zh) 基于对称人脸扩充样本的字典学习人脸识别方法
CN105976397B (zh) 一种目标跟踪方法
CN108875819B (zh) 一种基于长短期记忆网络的物体和部件联合检测方法
CN111008576B (zh) 行人检测及其模型训练、更新方法、设备及可读存储介质
CN109159113A (zh) 一种基于视觉推理的机器人作业方法
CN104636748B (zh) 一种号牌识别的方法及装置
CN105869354B (zh) 一种基于吸引子传播算法的老人跌倒检测方法
Nahar et al. Fingerprint classification using deep neural network model resnet50
CN103310193B (zh) 一种记录体操视频中运动员重要技术动作时刻的方法
CN107203780A (zh) 基于深度学习的玻璃清洁度的检测方法及装置
CN107944340B (zh) 一种结合直接度量和间接度量的行人再识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant