CN106446890B - 一种基于窗口打分和超像素分割的候选区域提取方法 - Google Patents

一种基于窗口打分和超像素分割的候选区域提取方法 Download PDF

Info

Publication number
CN106446890B
CN106446890B CN201610625310.1A CN201610625310A CN106446890B CN 106446890 B CN106446890 B CN 106446890B CN 201610625310 A CN201610625310 A CN 201610625310A CN 106446890 B CN106446890 B CN 106446890B
Authority
CN
China
Prior art keywords
super
algorithm
pixel
image
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610625310.1A
Other languages
English (en)
Other versions
CN106446890A (zh
Inventor
陈健
曾磊
周利莉
贾涛
乔凯
徐一夫
海金金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA Information Engineering University
Original Assignee
PLA Information Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA Information Engineering University filed Critical PLA Information Engineering University
Priority to CN201610625310.1A priority Critical patent/CN106446890B/zh
Publication of CN106446890A publication Critical patent/CN106446890A/zh
Application granted granted Critical
Publication of CN106446890B publication Critical patent/CN106446890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明属于图像中的目标检测技术领域,具体的涉及一种基于窗口打分和超像素分割的候选区域提取方法,包括窗口打分算法和超像素分割算法,该候选区域提取方法包含以下步骤:1采用超像素算法对图像进行分割获得初始区域集合;2依据真值区域和初始区域设定正负样本,提取特征训练SVM;3对图像根据1提取初始区域,提取初始区域特征,采用2中训练得到的SVM进行分类,得到最终的候选区域。GS算法对于目标边缘良好的捕捉能力,在结合进BING算法的32种尺度图像中以后,能够尽可能的帮助捕捉任意尺度大小的目标。另外,将BING算法和GS算法进行结合实现了自顶向下的学习分类算法和自底向上的分割算法的结合,这样学习到的结果更利于对目标与背景进行区分。

Description

一种基于窗口打分和超像素分割的候选区域提取方法
技术领域
本发明属于图像中的目标检测技术领域,具体的涉及一种基于窗口打分和超像素分割的候选区域提取方法。
背景技术
目标检测又称物体检测,是计算机视觉的基本任务之一,在监控系统、图片搜索、医学导航手术、自动驾驶、军事目标检测等领域有着广泛的应用。传统方法多采用滑动窗方式从图像中提取出大量的图像区域,然后对区域中的图像提取特征进行分类,完成目标检测的流程。滑动窗方式产生的图像区域数量过于庞大,许多鲁棒性较好但是比较复杂的特征在实际应用中会由于计算量大而产生目标检测效率很低的问题,但是使用简单的特征又难以达到较好的目标检测精度。随着当前图像的分辨率的不断提升,这种矛盾更加凸显。
近些年来,为了使用强分类器提高目标检测的性能,同时为了提高检测效率,许多候选框生成算法被提出来以减少要分类的图像区域数量。当前的候选框生成算法主要有两类,基于融合的算法和基于窗口打分的算法。基于融合的方法大都是基于分割结果做一些融合处理得到候选区域,如2012年提出的selective search方法,此类方法虽然平均召回率一般很高,但是计算比较耗时。基于窗口打分的方法多是先从图像中采用滑动窗的方式采样得到大量的区域,然后对区域中的图像采用一定的方法进行打分排序进行筛选得到候选区域,如BING方法,此类方法需要保留大量的候选框才能保持较高的平均召回率,而过多的候选区域数量又限制着目标检测的整体效率。因此,在提高候选区域提取环节的计算效率的同时,如何在较少的候选区域数量下得到较高的平均召回率来保证最终的目标检测效率和准确率,成为当前目标检测中的一个问题。
发明内容
本发明针对现有技术存在此类方法需要保留大量的候选框才能保持较高的平均召回率,而过多的候选区域数量又限制着目标检测的整体效率等问题,提出一种基于窗口打分和超像素分割的候选区域提取方法。
本发明的技术方案是:一种基于窗口打分和超像素分割的候选区域提取方法,包括窗口打分算法和超像素分割算法,该候选区域提取方法包含以下步骤:
步骤1:采用超像素算法对图像进行分割获得初始区域集合;
步骤2:依据真值区域和初始区域设定正负样本,提取特征训练SVM;
步骤3:对图像根据步骤1提取初始区域,提取初始区域特征,采用步骤2中训练得到的SVM进行分类,得到最终的候选区域。
所述的基于窗口打分和超像素分割的候选区域提取方法,所述步骤1的具体方法为:
步骤101:使用真值框和随机生成的框组成正负样本训练得到线性模板w;
步骤102:使用GS在32种尺度图像上进行超像素分割,并将每个超像素缩放到8×8,计算梯度范数特征;
步骤103:使用w对分割得到的每个超像素进行打分排序;
步骤104:使用对应尺度下的打分结果和对应的候选框作为训练样本进行训练得到vi,ti,利用公式ol=visl+ti到每个超像素包含目标的确定度,其中,vi,ti为第i种尺度下的分值系数和偏置,通过学习得到。
所述的基于窗口打分和超像素分割的候选区域提取方法,考虑到超像素分割效率和对边缘的保持能力,采用基于图的超像素分割方法进行超像素分割;对每种尺度图像进行超像素分割时,设置为尺度图像长度与宽度乘积的平方根为r,在分割时k值取r的多个倍数进行分割,倍数集合为{1/4,1/2,1,2,4,8,16,32},最小区域大小则根据尺度图像的大小从集合{64,256,1024,4096}中动态选取1到3个逐步将较小的区域进行融合,并将每次融合后得到的所有超像素都加入到初始区域集合中。
所述的基于窗口打分和超像素分割的候选区域提取方法,所述步骤2中提取特征训练SVM的具体过程为:真值区域图像和初始区域集合中与真值区域交并比在0.7以上的区域图像作为正样本,初始区域中集合中与真值区域交并比在0.4以下的区域图像作为负样本,然后对每个区域图像缩放到8×8大小,并提取梯度范数特征,然后放入SVM进行训练,训练完成后得到一个分类器。
所述的基于窗口打分和超像素分割的候选区域提取方法,所述窗口打分算法又称为二值化梯度范数,窗口打分算法具体为:目标都有一个封闭的边界,缩小到一个合适的尺度大小后,梯度范数特征能够将目标与周围的背景区分开来,窗口打分算法选择32种尺度进行缩放,然后对缩小后的图像计算梯度范数,计算公式为min(|gx|+|gy|,255),其中gx和gy分别为水平方向和垂直方向上的梯度;窗口打分算法将目标缩小后的固定大小定为8×8,将8×8窗口内的64个梯度范数值作为特征,称为梯度范数(Normed Gradients,NG)特征;然后通过一个64维的线性模型对缩放后的图像中的每一个窗口进行打分,公式为:sl=<w,gl>,l=(i,x,y)
其中,sl,w,gl,i,x,y分别为分值、学习得到的线性分类模板、梯度范数特征、缩放后的尺度和位置。
本发明的有益效果是:1、本发明提出将超像素分割方法加入到基于窗口打分类候选区域提取方法的框架中替代滑动窗方式的采样方法来提取候选区域,并在PASCAL VOC2007上进行了实验,实验硬件为Think Station D30内存64G,处理器为XeonE5-2650V2,主频2.6GHz,32核心,实验结果如表1。从实验结果中可以看出,本发明方法最终提取的候选区域数量较少,平均召回率较高,计算效率较高,有利于提高整体目标检测的效率和正确率。
表1本发明方法在PASCAL VOC 2007数据集上的实验结果
2、GS算法对于目标边缘良好的捕捉能力,在结合进BING算法的32种尺度图像中以后,能够尽可能的帮助捕捉任意尺度大小的目标。另外,将BING算法和GS算法进行结合实现了自顶向下的学习分类算法和自底向上的分割算法的结合,这样学习到的结果更利于对目标与背景进行区分,借助GS对目标实际边缘的捕捉,最终生成的候选框尽管数量少,但是平均召回率高,对提高最终的目标分类结果有一定的帮助。
说明书附图
图1交并比阈值为0.5时的召回率曲线示意图;
图2交并比阈值为0.6时的召回率曲线示意图;
图3交并比阈值为0.7时的召回率曲线示意图;
图4交并比阈值为0.8时的召回率曲线示意图;
图5交并比阈值为0.9时的召回率曲线示意图;
图6平均召回率曲线示意图;
图7为生成候选框结果示意图。
具体实施方式
实施例1:一种基于窗口打分和超像素分割的候选区域提取方法,包括窗口打分算法和超像素分割算法,该候选区域提取方法包含以下步骤:
步骤1:采用超像素算法对图像进行分割获得初始区域集合;
所述步骤1的具体方法为:步骤101:使用真值框和随机生成的框组成正负样本训练得到线性模板w;
步骤102:使用GS在32种尺度图像上进行超像素分割,并将每个超像素缩放到8×8,计算梯度范数特征;
步骤103:使用w对分割得到的每个超像素进行打分排序;
步骤104:使用对应尺度下的打分结果和对应的候选框作为训练样本进行训练得到vi,ti,利用公式ol=visl+ti到每个超像素包含目标的确定度,其中,vi,ti为第i种尺度下的分值系数和偏置,通过学习得到。
考虑到超像素分割效率和对边缘的保持能力,采用基于图的超像素分割方法进行超像素分割;对每种尺度图像进行超像素分割时,设置为尺度图像长度与宽度乘积的平方根为r,在分割时k值取r的多个倍数进行分割,倍数集合为{1/4,1/2,1,2,4,8,16,32},最小区域大小则根据尺度图像的大小从集合{64,256,1024,4096}中动态选取1到3个逐步将较小的区域进行融合,并将每次融合后得到的所有超像素都加入到初始区域集合中。
步骤2:依据真值区域和初始区域设定正负样本,提取特征训练SVM;SVM的具体过程为:真值区域图像和初始区域集合中与真值区域交并比在0.7以上的区域图像作为正样本,初始区域中集合中与真值区域交并比在0.4以下的区域图像作为负样本,然后对每个区域图像缩放到8×8大小,并提取梯度范数特征,然后放入SVM进行训练,训练完成后得到一个分类器。
步骤3:对图像根据步骤1提取初始区域,提取初始区域特征,采用步骤2中训练得到的SVM进行分类,得到最终的候选区域。
窗口打分算法又称为二值化梯度范数,窗口打分算法具体为:目标都有一个封闭的边界,缩小到一个合适的尺度大小后,梯度范数特征能够将目标与周围的背景区分开来,窗口打分算法选择32种尺度进行缩放,然后对缩小后的图像计算梯度范数,计算公式为min(|gx|+|gy|,255),其中gx和gy分别为水平方向和垂直方向上的梯度;窗口打分算法将目标缩小后的固定大小定为8×8,将8×8窗口内的64个梯度范数值作为特征,称为梯度范数(Normed Gradients,NG)特征;然后通过一个64维的线性模型对缩放后的图像中的每一个窗口进行打分,公式为:sl=<w,gl>,l=(i,x,y)
其中,sl,w,gl,i,x,y分别为分值、学习得到的线性分类模板、梯度范数特征、缩放后的尺度和位置。
GS算法:超像素分割算法有Graph-based Segmentation,简称GS算法,对于一张图像,GS算法首先构建无向图G=(V,E),vi∈V为图的顶点,每个顶点对应图像中的一个像素,(vi,vj)∈E为相邻顶点间的边,每条边有一个权重w((vi,vj)),为相邻顶点(即像素)间的一种非负的相似性度量。
首先定义区域的区域内差异Int(C)为区域的最小生成树MST(C,E)的最大权重,即公式(3),表示区域内最小生成树所能容忍的最大差异。然后定义两个区域的区域间差异Dif(C1,C2)为连接两个区域的最小权重,即公式(5),如果C1和C2没有边进行连接,则令Dif(C1,C2)=∞。
通过检查两个区域间的差异是否至少大于两个区域的区域内差异中的一个来判断两个区域之间是否存在边界,这种检查通过一个阈值函数来控制。为此,定义推断函数:
其中,最小区域间差异的计算公式为:
MInt(C1,C2)=min(Int(C1)+τ(C1),Int(C2)+τ(C2)) (4)
阈值函数τ控制着两个区域间的差异大于区域内差异的程度。区域比较小的时候,并不能很好的估计局部特征,因此,为了约束生成的区域不至于过小,使用的阈值函数为:
τ(C)=k/|C| (5)
|C|为区域大小,k为常量参数,控制区域大小的趋势。
算法输入为n个顶点m个边的图,输出为一系列区域。
实验及结果分析
实验环境为:Think Station D30,内存64G,处理器为XeonE5-2650V2,主频2.6GHz,32核心。实验选用PASCAL VOC 2007数据集,共有5011张训练图像和4952张测试图像;评价方法采用了文献所应用的不同交并比阈值下的召回率和最终的平均召回率。召回率(Recall)是候选框生成算法最常用的评价指标,具体计算公式为
Recall=N/G (6)
其中,N表示在一定交并比阈值下检测到的目标数量,G为实际的目标数量,当交并比阈值为0.5时,PASCAL VOC将其定义为检测率(Detection Rate,DR),即只要交并比阈值大于0.5,就认为找到了目标。平均召回率(Average Recall,AR)为文献[1]提出的用于评价候选框生成算法综合性能的指标,与最终的目标检测结果成正线性相关,其定义为:
其中,o,IoU(gti)都代表与真值框最接近的候选框与真值框的交并比,n为真值框个数。
GS算法中,常数参数k控制着生成的超像素的大小的趋势,即控制着得到的候选框的在某种尺度图像上的大小。在本文的实验中,GS中的常数参数k根据每种尺度图像大小进行动态设置,最小区域大小也一样。设置基础k值其中分别为第i种尺度下的图像的宽和高,在对第i种尺度下的图像进行超像素分割时选用,k值的取值为base_k(为行文方便起见,省略下标i,后文于此相同)的整数倍,倍数的取值集合为m={1,2,4,8,16,32,64},最小区域大小的取值集合为{64,256,1024,4096},实际中根据缩小后的图像的大小以一定规则从集合中取1到4个最小区域大小值,强制小区域按照最小区域大小进行逐级融合,设置每种尺度下得到的候选框数量上限为400.为了充分评价算法的性能,本文还比较了本文算法在k值取base_k的多个倍数共同作用下的结果和每种尺度图像最大容许的候选框数量为1000时的BING算法的结果。
图1到图5分别为各算法及不同参数条件下的结果在交并比阈值为0.5到0.9时的召回率曲线,图6为平均召回率曲线,其中,BING-1000为每种尺度下的候选框数量限制为1000条件下的结果,M4为k取base_k的4倍条件下的结果,M-ALL为k值取上述base_k所有倍数条件下的结果,为了得到更多的候选框,M-ALL+在M-ALL的基础上,在倍数集合中添加了96,在最小区域大小集合中添加了25。从图1中可以看出,在交并比阈值取0.5时,BING算法在不同候选框数量下的召回率总是高于本文算法中所有条件下的召回率,然而,从图2到图5中可以看出,交并比阈值取到0.6时,本文算法在k取base_k单一倍数值时,结果大都与BING算法相当,综合多k值的结果要远优于BING算法,从图3到图5中可以看出,随着交并比阈值取0.6以上时,本文算法在候选框数量大于100时,不同条件下的召回率都要大于BING算法,候选框的精度相比于BING算法得到了很大的提升。从图6中可以看出,在候选框数量大于100时,本文算法在所有条件下的平均召回率也都大于BING算法。另外,从图1-6以及表2中可以看出,BING算法随着候选框数量的增多,并没有多少性能提升;本文算法k取在base_k单一倍数的情况下生成的候选框数量少,精度高,而且将多个base_k倍数件下的结果叠加时,召回率和平均召回率都得到了很大的提升,最高平均召回率能够达到60.4%,而BING算法的平均召回率最高为35.8%。本文算法在多k值多最小区域下的部分结果与BING的部分结果如图7,其中第一行为原始BING得到的结果,第二行为本文算法的结果。从图中可以看出本文算法大部分时候都能够有效的提升候选框与真值框的吻合程度,但是从最后一张图的结果中可以看出,由于GS算法在超像素的融合过程中只采用最简单的大小和位置信息,也会产生一些质量不高的候选框,但是候选框仍能够包含目标的整体,一般不会像BING一样容易对目标进行截断。
本文算法和BING算法在各种条件下的计算时间以及平均每张图片生成的候选框数量和最高平均召回率如表2。从表2中可以看出,在k值取base_k单一倍数的情况下,本文算法处理每张图片的平均时间大约为BING算法的4到5倍,多个倍数叠加的情况下,计算用约为单一倍数条件下的叠加。虽然本文算法相比于BING算法计算效率上有所下降,但是从具体时间上可以看出本文算法的计算效率也很高。由于叠加时没有相互之间的数据交换,因此多个倍数叠加的情况也可以在后续工作中进行并行加速处理,这样算法的计算效率可以进一步得到提升。另外,本文算法在k值取base_k单一倍数的情况下,平均每张图片得到的候选框数量不到1000,有效减少了后续分类器的分类负担。
从以上结果中可以看出,GS算法对于目标边缘良好的捕捉能力,在结合进BING算法的32种尺度图像中以后,能够尽可能的帮助捕捉任意尺度大小的目标。另外,将BING算法和GS算法进行结合实现了自顶向下的学习分类算法和自底向上的分割算法的结合,这样学习到的结果更利于对目标与背景进行区分,借助GS对目标实际边缘的捕捉,最终生成的候选框尽管数量少,但是平均召回率高,对提高最终的目标分类结果有一定的帮助。

Claims (4)

1.一种基于窗口打分和超像素分割的候选区域提取方法,包括窗口打分算法和超像素分割算法,其特征在于:该候选区域提取方法包含以下步骤:
步骤1:采用超像素算法对图像进行分割获得初始区域集合;
步骤2:依据真值区域和初始区域设定正负样本,提取特征训练SVM;
步骤3:对图像根据步骤1提取初始区域,提取初始区域特征,采用步骤2中训练得到的SVM进行分类,得到最终的候选区域;
所述步骤1的具体方法为:
步骤101:使用真值框和随机生成的框组成正负样本训练得到线性模板w;
步骤102:使用GS在32种尺度图像上进行超像素分割,并将每个超像素缩放到8×8,计算梯度范数特征;
步骤103:使用w对分割得到的每个超像素进行打分排序;
步骤104:使用对应尺度下的打分结果和对应的候选框作为训练样本进行训练得到vi,ti,利用公式ol=visl+ti到每个超像素包含目标的确定度,其中,sl为尺度l下的分值,vi,ti为第i种尺度下的分值系数和偏置,通过学习得到。
2.根据权利要求1所述的基于窗口打分和超像素分割的候选区域提取方法,其特征在于:考虑到超像素分割效率和对边缘的保持能力,采用基于图的超像素分割方法进行超像素分割;对每种尺度图像进行超像素分割时,设置为尺度图像长度与宽度乘积的平方根为r,在分割时k值取r的多个倍数进行分割,倍数集合为{1/4,1/2,1,2,4,8,16,32},最小区域大小则根据尺度图像的大小从集合{64,256,1024,4096}中动态选取1到3个逐步将较小的区域进行融合,并将每次融合后得到的所有超像素都加入到初始区域集合中;其中,k表示用于控制生成的超像素大小的参数。
3.根据权利要求1所述的基于窗口打分和超像素分割的候选区域提取方法,其特征在于:所述步骤2中提取特征训练SVM的具体过程为:真值区域图像和初始区域集合中与真值区域交并比在0.7以上的区域图像作为正样本,初始区域中集合中与真值区域交并比在0.4以下的区域图像作为负样本,然后对每个区域图像缩放到8×8大小,并提取梯度范数特征,然后放入SVM进行训练,训练完成后得到一个分类器。
4.根据权利要求1所述的基于窗口打分和超像素分割的候选区域提取方法,其特征在于:所述窗口打分算法又称为二值化梯度范数,窗口打分算法具体为:目标都有一个封闭的边界,缩小到一个合适的尺度大小后,梯度范数特征能够将目标与周围的背景区分开来,窗口打分算法选择32种尺度进行缩放,然后对缩小后的图像计算梯度范数,计算公式为min(|gx|+|gy|,255),其中gx和gy分别为水平方向和垂直方向上的梯度;窗口打分算法将目标缩小后的固定大小定为8×8,将8×8窗口内的64个梯度范数值作为特征,称为梯度范特征;然后通过一个64维的线性模型对缩放后的图像中的每一个窗口进行打分,公式为:sl=<w,gl>,l=(i,x,y)
其中,sl,w,gl,i,x,y分别为分值、学习得到的线性分类模板、梯度范数特征、缩放后的尺度和位置。
CN201610625310.1A 2016-10-28 2016-10-28 一种基于窗口打分和超像素分割的候选区域提取方法 Active CN106446890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610625310.1A CN106446890B (zh) 2016-10-28 2016-10-28 一种基于窗口打分和超像素分割的候选区域提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610625310.1A CN106446890B (zh) 2016-10-28 2016-10-28 一种基于窗口打分和超像素分割的候选区域提取方法

Publications (2)

Publication Number Publication Date
CN106446890A CN106446890A (zh) 2017-02-22
CN106446890B true CN106446890B (zh) 2019-09-06

Family

ID=58184850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610625310.1A Active CN106446890B (zh) 2016-10-28 2016-10-28 一种基于窗口打分和超像素分割的候选区域提取方法

Country Status (1)

Country Link
CN (1) CN106446890B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108664478B (zh) * 2017-03-27 2021-07-20 华为技术有限公司 目标物检索方法及装置
CN108804978B (zh) * 2017-04-28 2022-04-12 腾讯科技(深圳)有限公司 一种版面分析方法及装置
CN107145905B (zh) * 2017-05-02 2020-04-21 重庆大学 电梯紧固螺帽松动的图像识别检测方法
CN107844750B (zh) * 2017-10-19 2020-05-19 华中科技大学 一种水面全景图像目标检测识别方法
CN108734200B (zh) * 2018-04-24 2022-03-08 北京师范大学珠海分校 基于bing特征的人体目标视觉检测方法和装置
CN110188811A (zh) * 2019-05-23 2019-08-30 西北工业大学 基于赋范梯度特征与卷积神经网络的水下目标检测方法
CN112306243A (zh) * 2020-11-19 2021-02-02 深圳前海微众银行股份有限公司 数据处理方法、装置、设备及存储介质
CN113837171B (zh) * 2021-11-26 2022-02-08 成都数之联科技有限公司 候选区域提取方法及系统及装置及介质及目标检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200236B (zh) * 2014-08-22 2018-10-26 浙江生辉照明有限公司 基于dpm的快速目标检测方法
CN104573719B (zh) * 2014-12-31 2017-10-24 国家电网公司 基于图像智能分析的山火检测方法
CN105528575B (zh) * 2015-11-18 2019-03-19 首都师范大学 基于上下文推理的天空检测方法
CN105513066B (zh) * 2015-12-02 2018-02-27 中山大学 一种基于种子点选取与超像素融合的通用物体检测方法
CN105574527B (zh) * 2015-12-14 2019-03-29 北京工业大学 一种基于局部特征学习的快速物体检测方法

Also Published As

Publication number Publication date
CN106446890A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106446890B (zh) 一种基于窗口打分和超像素分割的候选区域提取方法
WO2020253629A1 (zh) 检测模型训练方法、装置、计算机设备和存储介质
WO2019140767A1 (zh) 安检识别系统及其控制方法
CN103413347B (zh) 基于前景背景融合的单目图像深度图提取方法
CN104143079B (zh) 人脸属性识别的方法和系统
CN104156734B (zh) 一种基于随机蕨分类器的全自主在线学习方法
CN105160317B (zh) 一种基于区域分块行人性别识别方法
CN103136504B (zh) 人脸识别方法及装置
CN108647741A (zh) 一种基于迁移学习的图像分类方法和系统
CN106529448A (zh) 利用聚合通道特征进行多视角人脸检测的方法
CN107506703A (zh) 一种基于无监督局部度量学习和重排序的行人再识别方法
CN104063713B (zh) 一种基于随机蕨分类器的半自主在线学习方法
CN105160310A (zh) 基于3d卷积神经网络的人体行为识别方法
CN106355188A (zh) 图像检测方法及装置
CN108647625A (zh) 一种表情识别方法及装置
CN109344851B (zh) 图像分类显示方法和装置、分析仪器和存储介质
CN104239902B (zh) 基于非局部相似性和稀疏编码的高光谱图像分类方法
KR20170006355A (ko) 모션벡터 및 특징벡터 기반 위조 얼굴 검출 방법 및 장치
CN103810490A (zh) 一种确定人脸图像的属性的方法和设备
CN108256462A (zh) 一种商场监控视频中的人数统计方法
CN106156777A (zh) 文本图片检测方法及装置
CN104794455B (zh) 一种东巴象形文字识别方法
CN106650667A (zh) 一种基于支持向量机的行人检测方法及系统
CN103745233B (zh) 基于空间信息迁移的高光谱图像分类方法
KR20130058286A (ko) 보행자 검출기의 보행자 검출 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant