CN106661162A - 具有高多烯烃含量的共聚物 - Google Patents

具有高多烯烃含量的共聚物 Download PDF

Info

Publication number
CN106661162A
CN106661162A CN201580022611.9A CN201580022611A CN106661162A CN 106661162 A CN106661162 A CN 106661162A CN 201580022611 A CN201580022611 A CN 201580022611A CN 106661162 A CN106661162 A CN 106661162A
Authority
CN
China
Prior art keywords
hfo
monomer
diluent
copolymer
polyene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580022611.9A
Other languages
English (en)
Other versions
CN106661162B (zh
Inventor
史蒂文·约翰·特斯特拉
保罗·恩固因
杰茜卡·沃森
吉勒斯·阿森奥尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aaron Shinco Singapore Ltd Co
Original Assignee
Aaron Shinco Singapore Ltd Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP14166577.8A external-priority patent/EP2940047A1/en
Application filed by Aaron Shinco Singapore Ltd Co filed Critical Aaron Shinco Singapore Ltd Co
Publication of CN106661162A publication Critical patent/CN106661162A/zh
Application granted granted Critical
Publication of CN106661162B publication Critical patent/CN106661162B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/25Cycloolefine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种共聚物具有高水平的多烯烃合并。用于生产具有高水平的多烯烃合并的共聚物的方法包括在至少一种路易斯酸和至少一种引发剂的存在下在稀释剂中使至少一种异烯烃单体和至少一种多烯烃和/或β‑蒎烯单体接触。该稀释剂包含含有至少三个碳原子以及至少三个氟原子的氢氟烯烃(HFO)。与饱和的氢氟烃相比,在本发明中使用的氢氟烯烃对于丁基淤浆阳离子聚合是更佳的稀释剂。

Description

具有高多烯烃含量的共聚物
技术领域
本申请涉及异烯烃和多烯烃的共聚物并且涉及包含氢氟烯烃(HFO,hydrofluorinated olefin)稀释剂的用于生产其的方法。
背景技术
丁基橡胶(IIR),一种异丁烯和异戊二烯的无规共聚物,熟知为它的优异的热稳定性、抗臭氧性和期望的阻尼特征(dampening characteristics)。在淤浆方法(slurryprocess)中使用氯代甲烷作为稀释剂以及傅-克催化剂(Friedel-Crafts catalyst)作为聚合引发剂,商业上地制备IIR。氯代甲烷提供了AlCl3,一种相对便宜的傅-克催化剂可溶于其中的优势,如同异丁烯和异戊二烯共聚单体一样。此外,丁基橡胶聚合物不可溶于氯代甲烷并且作为细颗粒沉淀于溶液之外。通常在约-90℃至-100℃的温度下进行聚合(参见美国专利第2,356,128号以及Ullmanns Encyclopedia of Industrial Chemistry,第A 23卷,1993,第288-295页,通过引证将其中的每一个的全部内容并入本文)。要求低的聚合温度以便获得足够高的用于橡胶应用的分子量。
最近,着重于寻找常规的氯化烃(氯代甲烷)的可替代的稀释剂。氢氟烃(HFC)具有与氯化烃相似的性质,并且已知为制冷剂(参见WO 2008/027518和WO 2009/042847)。这种HFC,特别是饱和的HFC,例如HFC-134a(1,1,1,2-四氟乙烷),已经被鉴定为在涉及较高温度的聚合方法中氯代甲烷的潜在代替物(参见US 7723447、US 7582715、US 7425601、US7423100、US 7332554、US 7232872、US 7214750、US 7699962、US 2008/0290049、US7781547、US 7342079、US 2007/0117939、US 2007/0299190、US 2007/0299161、US 2008/0234447、US 2008/0262180、US 7414101、US 7402636和US 7557170)。
然而,这种饱和的HFC是强烈的温室气体并且不期望使用它们。研究最多的HFC是HFC-134a(1,1,1,2-四氟乙烷),也被已知为R134a,在1990年代作为制冷剂已经将其广泛地商业化以替代为消耗臭氧的化学品的氯氟烃(CFC)和氢氯氟烃(HCFC)。目前HFC-134a的扩大使用正在造成显著的环境威胁,因而这种HFC被已知为强效的温室气体。HFC-134a的GWP(全球增温潜势)是1430。已经进行了若干国际性研讨以实现逐步淘汰HFC-134a的控制规划。
进一步地,使用HFC-134a或氯代甲烷作为稀释剂或者它们的共混物,在丁基聚合中形成了显著量的环状低聚物。由于从橡胶提取低聚物的潜力,对于医药应用,这些杂质是不期望的,如橡胶塞。此外,使用氯代甲烷作为稀释剂,在丁基聚合中形成了显著量的类异戊二烯(短链支化)结构。当生产卤丁基橡胶时,类异戊二烯结构限制了随后的卤化反应的效率。此外,当期望高的异戊二烯丁基橡胶时,常规反应需要仔细地控制方法条件以增加在丁基橡胶中的异戊二烯水平。
因此,对于不是强烈地促使温室效应和/或提供对聚合方法的改善的相对便宜的聚合载体,仍存在需要。对于具有低水平的环状低聚物、低水平的类异戊二烯结构和/或高水平的异戊二烯的丁基聚合物,也仍存在需要。
发明内容
目前令人惊讶地发现,特定种类的HFC、氢氟烯烃(HFO),并且特别是已知为四氟丙烯的HFO类,是用于丁基橡胶淤浆聚合方法的优异的介质。提供了用于生产共聚物的方法,包括:在至少一种路易斯酸以及至少一种引发剂的存在下在包含四氟丙烯的稀释剂中使至少一种异烯烃单体与至少一种多烯烃和/或β-蒎烯单体接触。进一步地提供了通过本发明的方法生产的共聚物。
还令人惊讶地发现,在丁基橡胶淤浆聚合方法中HFO和其他惰性溶剂的共混物导致具有低水平的类异戊二烯(短链支化)结构的聚合物。提供了用于生产共聚物的方法,包括:在至少一种路易斯酸以及至少一种引发剂的存在下在包含四氟丙烯和不同于四氟丙烯的惰性溶剂的共混物的稀释剂中使至少一种异烯烃单体与至少一种多烯烃和/或β-蒎烯单体接触。
当将某些HFO用作稀释剂时,这些方法有利地产生了具有高水平的合并在其中的多烯烃的聚合物。提供了至少一种异烯烃单体和至少一种多烯烃和/或β-蒎烯单体的共聚物,该共聚物具有比使用1,1,1,2-四氟乙烷作为稀释剂的在丁基橡胶淤浆方法中生产的可比较的(相当的,comparable)聚合物更高的多烯烃和/或β-蒎烯单体含量。
当将某些HFO用作稀释剂时,这些方法有利地产生了具有低水平的环状低聚物的聚合物和/或具有有利的低的C21/C13低聚物比的聚合物。提供了至少一种异烯烃单体和至少一种多烯烃和/或β-蒎烯单体的共聚物,该共聚物具有低于使用1,1,1,2-四氟乙烷作为稀释剂的在丁基橡胶淤浆方法中生产的可比较的聚合物至少10%的环状低聚物含量。
当将某些HFO用作稀释剂时,这些方法有利地产生了具有低水平的类异戊二烯(短链支化)结构的聚合物。还提供了至少一种异烯烃单体和至少一种多烯烃和/或β-蒎烯单体的共聚物,该共聚物具有低于使用1,1,1,2-四氟乙烷作为稀释剂的在丁基橡胶淤浆方法中生产的可比较的聚合物的类异戊二烯含量。
根据包括以下的方法可以生产共聚物:在至少一种路易斯酸和至少一种引发剂的存在下在稀释剂中使至少一种异烯烃单体与至少一种多烯烃和/或β-蒎烯单体接触。可以在小于或等于-75℃或小于或等于-95℃的温度下生产共聚物。稀释剂优选地包括包含至少三个碳原子和至少三个氟原子的氢氟烯烃(HFO)。稀释剂可以包含至少三个碳原子和/或至少四个氟原子。优选的稀释剂包含四个氟原子。特别优选的稀释剂是已知为包含三个碳原子和四个氟原子的四氟丙烯的一类。
与饱和的氢氟烃相比,包含四氟丙烯的氢氟烯烃是用于丁基淤浆阳离子聚合的更佳的稀释剂。例如,与HFC-134a(1,1,1,2-四氟乙烷)相比,特别是在低温(例如,-95℃)下,以及在升高的温度(例如,-75℃)下,令人惊讶地发现HFO-1234yf(2,3,3,3-四溴-1-丙烯)是用于丁基淤浆阳离子聚合的显著更佳的稀释剂。使用四氟丙烯(例如,HFO-1234yf)作为稀释剂,提供了一种或多种以下的优势:较高的聚合物产率;较高的多烯烃合并;较高的分子量聚合物链;较窄的分子量分布;较低的环状低聚物副产物;更良好的C21/C13环状低聚物比;和/或较低的类异戊二烯(短链支化)结构含量。
共聚物可以包含比在1,1,1,2-四氟乙烷中产生的丁基橡胶显著更低的类异戊二烯含量,表示降低的短链支化来源于在聚合期间的聚合物反咬式(back-biting)反应。具有较低的类异戊二烯含量的丁基橡胶将具有较高比例的可获得于用于进一步化学改性的1,4-单元取向的总不饱和度,并且期望的是在随后的卤化反应中具有更高的效率以生产卤代丁基橡胶。基于存在于聚合物中的总不饱和度,类异戊二烯含量可以是小于约15%,优选地小于约12%,更优选地约11%或更低,甚至更优选地约6%或更低。将总不饱和度定义为多烯烃(mol%)和类异戊二烯(mol%)的总和,其中mol%是基于在共聚物中的单体单元的总摩尔数。将类异戊二烯含量定义为类异戊二烯(mol%)与总不饱和度(mol%)的比值。
共聚物可以具有低于使用1,1,1,2-四氟乙烷作为稀释剂的在丁基橡胶淤浆方法中生产的可比较的聚合物至少10%的环状低聚物含量。与使用1,1,1,2-四氟乙烷作为稀释剂的在丁基橡胶淤浆方法中生产的可比较的聚合物相比,该环状低聚物含量可以是低至少25%、低至少50%、低至少60%、低至少70%或低至少75%。在共聚物中的C21/C13低聚物比可以是小于或等于2.5、2.0或1.5。总的环状低聚物含量可以是小于3200ppm,其中C21/C13低聚物比小于1.5。这些共聚物可以具有小于或等于2000ppm、小于或等于1000ppm、小于或等于700ppm或小于或等于650ppm的环状低聚物含量。
可以将共聚物溶解于适合于提取C13环状低聚物产物的溶剂中。可以除去溶剂以从共聚物脱除溶剂和C13环状低聚物产物。该溶剂可以是非极性的并且可以包含烷烃,如己烷。可以使用例如作为脱除剂(脱附剂,stripping agent)的蒸汽,在升高的温度下进行该脱除。在脱除步骤之前,可以预先地将聚合物溶解于醇,如乙醇中。在脱除之前,在聚合物中的C21/C13低聚物比可以是小于或等于7.9、7.3、2.5、1.5或1.0。
在作为稀释剂的氢氟烯烃的存在下,特别是在-90℃或更低(例如,-95℃)的温度下,可以极大地抑制环状低聚物的形成。本发明的聚合物的低聚物含量可以是比其他稀释剂,例如HFC-134a和/或氯代甲烷,低至少20%、低至少30%、低至少40%、低至少50%、低至少55%、低至少60%、低至少65%、低至少70%、低至少75%、低至少80%、低至少85%、低至少90%和/或低最高至95%。
基于聚合物的重量,本发明的聚合物的多烯烃(例如,异戊二烯)含量可以是在0.5至15mol%的范围内。与在相似的温度和转化下使用现有技术稀释剂(例如,MeCl和/或HFC-134a)生产的聚合物相比,聚合物的多烯烃含量可以是高于最高至5-10%。当比较HFO-1234yf至HFC-134a的使用时,特别是在-75℃或更低(例如,-95℃)的温度下,更高的多烯烃含量是特别明显的。多烯烃更高的合并等于更佳地利用多烯烃,表示更少的废弃物和更低的全过程成本。基于进料单体组成(f=[M1]/[M2])与共聚物组成(F=[M1]/[M2])的比值,可以比较多烯烃的合并。在本发明的方法中进料单体组成与共聚物组成(f/F)的比值优选地是大于约0.7、更优选地大于约0.8、甚至更优选地约0.85或更高、还甚至更优选地约0.9或更高。
与使用现有技术稀释剂(例如,MeCl和/或HFC-134a)生产的聚合物的分子量相比,本发明的聚合物的分子量是相似的或显著更高的。在更高的温度,例如约-75℃下,分子量是更大的,但是-90℃或更低(例如,-95℃)的温度下,本聚合物的分子量,特别是在HFO-1234yf中生产的那些,可以是显著地高于在现有技术稀释剂(例如,MeCl和/或HFC-134a)中生产的聚合物的那些。例如,在-75℃下,重均分子量(Mw)可以是大于或等于330,000g/mol或者大于或等于400g/mol,并且在-95℃下,分子量可以是大于或等于445,000g/mol或者大于或等于475,000g/mol。这是指可能地利用四氟丙烯稀释剂在更高的温度下生产期望分子量的共聚物,其导致能量成本降低、方法经济性改善以及减小对环境的影响。
在本方法中生产的聚合物的产率可以是至少与使用现有技术稀释剂(例如,MeCl和/或HFC-134a)获得的产率可比较的(相当的),以及在一些情形下可以是高出1.5倍,或者甚至高出2倍。当比较HFO-1234yf至HFC-134a的使用时,特别是在-90℃或更低(例如,-95℃)的温度下,更高的产率是特别明显的。
因此,对于给定的分子量,使用本发明的四氟丙烯稀释剂,在更高温度下生产是可能的,与使用现有技术稀释剂(例如,MeCl和/或HFC-134a)相比,可以获得更高的转化率和更有效的异戊二烯利用。这种出乎意料的有利性质的组合产生更低的全过程成本以及改善的聚合物。
此外,某些HFO具有期望的性质,但不损害臭氧(臭氧消耗潜力,ODP=0)且具有很少或不具有全球变暖的潜力。这些更加经济友好的氢氟烯烃的实例是四氟丙烯HFO-1234fy(GWP=4)以及HFO-1234ze(GWP=6),其作为用于HFC-134a(GWP=1430)的潜在替代物是特别值得注意的。
本发明的进一步的特征将在以下详细描述中描述或将变得显而易见。
附图说明
为了可以更清楚地理解本发明,目前通过实施例的方式以及参考附图将详细地描述它们的实施方式,其中:
图1A示出了在-95℃下利用纯的稀释剂组分用于反应的反应温度曲线。
图1B示出了显示在-95℃下在不同的HFO-1234yf或HFC-134A与MeCl比率下生产的聚合物的分子量的图表。
图2示出了在标准的异戊二烯水平(2.3mol%进料比)下在MeCl、HFC-134A和HFO-1234yf中生产的丁基橡胶中的总低聚物含量的图表。
图3示出了在高的异戊二烯水平(5.6mol%进料比)下在MeCl、HFC-134A和HFO-1234yf中生产的丁基橡胶中的总低聚物含量的图表。
图4示出了显示在-95℃下利用不同的进料异戊二烯浓度在MeCl、HFC-134A和HFO-1234yf中生产的丁基橡胶中的C21/C13低聚物比的图表。
图5示出了显示对于在不同的进料异戊二烯水平下在MeCl、HFC-134A和HFO-1234yf中进行的聚合的进料单体比(f)相比于共聚物比(F)的图表。
具体实施方式
在包括权利要求的本说明书中,关于项目的冠词“一个”、“一种”或“该”的使用不旨在排除在一些实施方式中包括多个该项目的可能性。对于本领域技术人员来说,在包括所附权利要求的本说明书中的至少一些情况下,显而易见的是,在至少一些实施方式中可以包括多个该项目。
通过将至少一种异烯烃单体和至少一种多烯烃单体、以及可选地另外的可共聚的单体共聚形成丁基橡胶。
本发明不局限于特定的异烯烃。然而,优选的是,在4至16个碳原子、优选地4-7个碳原子的范围内的异烯烃,如异丁烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、4-甲基-1-戊烯和它们的混合物。更优选的是异丁烯。
本发明不局限于特定的多烯烃。可以使用由本领域技术人员已知的与异烯烃可共聚的每一种多烯烃。然而,可以使用,在4-14个碳原子的范围内的多烯烃,如异戊二烯、丁二烯、2-甲基丁二烯、2,4-二甲基丁二烯、胡椒林碱(戊间二烯,piperyline)、3-甲基-1,3-戊二烯、2,4-己二烯、2-新戊基丁二烯、2-甲基-1,5-己二烯、2,5-二甲基-2,4-己二烯、2-甲基-1,4-戊二烯、2-甲基-1,6-庚二烯、环戊二烯、甲基环戊二烯、环己二烯、1-乙烯基-环己二烯以及它们的混合物,优选共轭二烯。更优选地使用异戊二烯。β-蒎烯也可以用作用于异烯烃的共聚单体。
由本领域的技术人员已知的任何与异烯烃和/或二烯烃可共聚的单体可以作为上述多烯烃的替换使用、或者甚至除了上述多烯烃之外加以使用。茚、苯乙烯衍生物或它们的混合物可以用于代替以上列出的多烯烃或者作为可选的另外的单体。优选地使用α-甲基苯乙烯、对甲基苯乙烯、氯苯乙烯或它们的混合物。更优选地使用对甲基苯乙烯。
在路易斯酸和能够引发聚合过程的引发剂的存在下,进行丁基聚合物的聚合。合适的路易斯酸是易于溶解于所选择的稀释剂中的那些。合适的路易斯酸的实例包括二氯乙基铝(EADC)、二乙基氯化铝(DEAC)、四氯化钛、四氯亚锡、三氟化硼、三氯化硼、甲基铝氧烷和/或它们的混合物。在一些实施方式中,也可以使用AlCl3。合适的引发剂包含质子源和/或阳离子原(cationogen)。合适于本发明的质子源包括当添加至所选择的路易斯酸时将产生质子的任何的化合物。可以由路易斯酸与质子源(如水、氢氯酸(HCl)、醇或苯酚)反应以产生质子和相应的副产物来产生质子。相比于其与单体的反应,在具有质子化添加剂的质子源的反应是更快的情况下,这种反应可以是优选的。其他的质子生成反应物包括硫醇、羧酸等。最优选的路易斯酸包括EADC和DEAC的混合物并且最优选的质子源是HCl。EADC/DEAC与HCl的优选比是在按重量计5:1至100:1之间。
除了质子源之外或代替质子源,可以使用能够引发聚合过程的阳离子原。合适的阳离子原包括在所存在的条件下产生碳阳离子(carbo-cation)的任何的化合物。阳离子原的优选基团包括具有下式的碳阳离子的化合物:
其中,R1、R2和R3独立地是氢,或者直链、支链或环状的芳香族或脂肪族基团,条件是R1、R2和R3中的仅一个可以是氢。优选地,R1、R2和R3独立地是C1至C20芳香族或脂肪族基团。合适的芳香族基团的非限制性实例是苯基、甲苯基、二甲苯基和联苯基。合适的脂肪族基团的非限制性实例包括甲基、乙基、丙基、丁基、戊基、己基、辛基、壬基、癸基、十二烷基、3-甲基戊基和3,5,5-三甲基己基。
阳离子原的另一个优选基团包括具有下式的取代的甲硅烷鎓(三配位硅,silylium)阳离子化合物:
其中,R1、R2和R3独立地是氢,或者直链、支链或环状的芳香族或脂肪族基团,条件是R1、R2和R3中的仅一个可以是氢。优选地,R1、R2和R3中无一个是氢。优选地,R1、R2和R3独立地是C1至C20芳香族或脂肪族基团。更优选地,R1、R2和R3独立地是C1至C8烷基基团。有用的芳香族基团的实例是苯基、甲苯基、二甲苯基和联苯基。有用的脂肪族基团的非限制性实例包括甲基、乙基、丙基、丁基、戊基、己基、辛基、壬基、癸基、十二烷基、3-甲基戊基和3,5,5-三甲基己基。反应性取代的甲硅烷鎓阳离子的优选的基团包括三甲基甲硅烷鎓、三乙基甲硅烷鎓和苄基二甲基甲硅烷鎓。这类阳离子可以这样制备,例如,通过将R1R2R3Si-H的氢化物基团与非配位的阴离子(NCA)如Ph3C+B(pfp)4 -交换生成如R1R2R3SiB(pfp)4的组合物,在合适的溶剂中获得阳离子。
根据本发明,Ab-表示阴离子。优选的阴离子包括包含具有带电荷的金属或非金属(准金属,metalloid)核的单配位复合物的那些,使该核带负电荷到平衡在当将两种组分合并时可以形成的活性催化剂物质上的电荷所必需的程度。更优选地,Ab-对应于具有通式[MQ4]-的化合物,其中M是以+3正规氧化态的硼、铝、镓或铟;并且Q独立地是氢化物、二烷基酰胺基、卤化物、烃基、烃氧基、卤代烃基、卤代烃氧基或卤代甲硅烷基烃基基团。
优选地,制备丁基聚合物的单体混合物包含在按重量计约80%至约99%的范围内的至少一种异烯烃单体以及在按重量计约1.0%至约20%的范围内的至少一种多烯烃单体和/或β-蒎烯。更优选地,单体混合物包含在按重量计约83%至约98%的范围内的至少一种异烯烃单体以及在按重量计约2.0%至约17%的范围内的多烯烃单体或β-蒎烯。最优选地,单体混合物包含在按重量计约85%至约97%的范围内的至少一种异烯烃单体以及在按重量计约3.0%至约15%的范围内的至少一种多烯烃单体或β-蒎烯。
优选地在约-120℃至约-50℃的范围内、优选地在约-100℃至约-70℃的范围内,更优选地在约-98℃至约-75℃的范围内,例如约-98℃至约-90℃的温度下,单体通常是阳离子聚合的。约-98℃和约-75℃的操作温度是特别显著的。优选的压力是在0.1至4巴的范围内。
与间歇反应器(批次反应器)相反的连续反应器的使用对该方法似乎具有积极的效果。优选地,在至少一种具有0.1m3和100m3之间、更优选地1m3和10m3之间的体积的连续反应器中进行该方法。利用至少以下的进料流股优选地进行该连续过程:
I)包含四氟丙烯+异烯烃(优选地异丁烯)+多烯烃(优选地二烯,如异戊二烯)的溶剂/稀释剂;以及,
II)包含路易斯酸和质子源的引发剂系统。
为了经济性生产,如在美国专利第5,417,930号中所描述的,在淤浆(悬浮液)中在稀释剂中进行的连续过程是期望的,通过引证将其全部内容并入本文。
该稀释剂优选地包含至少一种含有至少三个碳原子和至少三个氟原子的氢氟烯烃,如由式I描述的:
CxHyFz (I)
其中,x是具有3或更大的值的整数,z是具有3或更大的值的整数,并且y+z是2x。x的值优选地是3至6、更优选地3至5、还更优选地3。Z的值优选地是3至8、更优选地4至6、还更优选地4。Y是具有2x-z的值的整数并且可以是在例如2至10、3至9、4至8或4至6的范围内。y的值优选地是2。
具有三个或更多个碳原子以及三个或更多个氟原子的合适的稀释剂的实例包括1,1,2-三氟丙烯;1,1,3-三氟丙烯;1,2,3-三氟丙烯;1,3,3-三氟丙烯;2,3,3-三氟丙烯;3,3,3-三氟丙烯;1,3,3,3-四氟-1-丙烯;2,3,3,3-四氟-1-丙烯;1,1,3,3-四氟-1-丙烯、1,1,2,3-四氟-1-丙烯、1,2,3,3-四氟-1-丙烯、1,1,2,3-四氟-1-丁烯;1,1,2,4-四氟-1-丁烯;1,1,3,3-四氟-1-丁烯;1,1,3,4-四氟-1-丁烯;1,1,4,4-四氟-1-丁烯;1,2,3,3-四氟-1-丁烯;1,2,3,4-四氟-1-丁烯;1,2,4,4-四氟-1-丁烯;1,3,3,4-四氟-1-丁烯;1,3,4,4-四氟-1-丁烯;1,4,4,4-四氟-1-丁烯;2,3,3,4-四氟-1-丁烯;2,3,4,4-四氟-1-丁烯;2,4,4,4-四氟-1-丁烯;3,3,4,4-四氟-1-丁烯;3,4,4,4-四氟-1-丁烯;1,1,2,3,3-五氟-1-丁烯;1,1,2,3,4-五氟-1-丁烯;1,1,2,4,4-五氟-1-丁烯;1,1,3,3,4-五氟-1-丁烯;1,1,3,4,4-五氟-1-丁烯;1,1,4,4,4-五氟-1-丁烯;1,2,3,3,4-五氟-1-丁烯;1,2,3,4,4-五氟-1-丁烯;1,2,4,4,4-五氟-1-丁烯;2,3,3,4,4-五氟-1-丁烯;2,3,4,4,4-五氟-1-丁烯;3,3,4,4,4-五氟-1-丁烯;1,1,2,3,3,4-六氟-1-丁烯;1,1,2,3,4,4-六氟-1-丁烯;1,1,2,4,4,4-六氟-1-丁烯;1,2,3,3,4,4-六氟-1-丁烯;1,2,3,4,4,4-六氟-1-丁烯;2,3,3,4,4,4-六氟-1-丁烯;1,1,2,3,3,4,4-七氟-1-丁烯;1,1,2,3,4,4,4-七氟-1-丁烯;1,1,3,3,4,4,4-七氟-1-丁烯;1,2,3,3,4,4,4-七氟-1-丁烯;1,1,1,2-四氟-2-丁烯;1,1,1,3-四氟-2-丁烯;1,1,1,4-四氟-2-丁烯;1,1,2,3-四氟-2-丁烯;1,1,2,4-四氟-2-丁烯;1,2,3,4-四氟-2-丁烯;1,1,1,2,3-五氟-2-丁烯;1,1,1,2,4-五氟-2-丁烯;1,1,1,3,4-五氟-2-丁烯;1,1,1,4,4-五氟-2-丁烯;1,1,2,3,4-五氟-2-丁烯;1,1,2,4,4-五氟-2-丁烯;1,1,1,2,3,4-六氟-2-丁烯;1,1,1,2,4,4-六氟-2-丁烯;1,1,1,3,4,4-六氟-2-丁烯;1,1,1,4,4,4-六氟-2-丁烯;1,1,2,3,4,4-六氟-2-丁烯;1,1,1,2,3,4,4-七氟-2-丁烯;1,1,1,2,4,4,4-七氟-2-丁烯;以及它们的混合物。
具有四个或更多个氟原子和三个或更多个碳原子的HFO的实例是1,3,3,3-四氟-1-丙烯;2,3,3,3-四氟-1-丙烯;1,1,3,3-四氟-1-丙烯、1,1,2,3-四氟-1-丙烯、1,2,3,3-四氟-1-丙烯;1,1,2,3-四氟-1-丁烯;1,1,2,4-四氟-1-丁烯;1,1,3,3-四氟-1-丁烯;1,1,3,4-四氟-1-丁烯;1,1,4,4-四氟-1-丁烯;1,2,3,3-四氟-1-丁烯;1,2,3,4-四氟-1-丁烯;1,2,4,4-四氟-1-丁烯;1,3,3,4-四氟-1-丁烯;1,3,4,4-四氟-1-丁烯;1,4,4,4-四氟-1-丁烯;2,3,3,4-四氟-1-丁烯;2,3,4,4-四氟-1-丁烯;2,4,4,4-四氟-1-丁烯;3,3,4,4-四氟-1-丁烯;3,4,4,4-四氟-1-丁烯;1,1,2,3,3-五氟-1-丁烯;1,1,2,3,4-五氟-1-丁烯;1,1,2,4,4-五氟-1-丁烯;1,1,3,3,4-五氟-1-丁烯;1,1,3,4,4-五氟-1-丁烯;1,1,4,4,4-五氟-1-丁烯;1,2,3,3,4-五氟-1-丁烯;1,2,3,4,4-五氟-l-丁烯;1,2,4,4,4-五氟-1-丁烯;2,3,3,4,4-五氟-1-丁烯;2,3,4,4,4-五氟-1-丁烯;3,3,4,4,4-五氟-1-丁烯;1,1,2,3,3,4-六氟-1-丁烯;1,1,2,3,4,4-六氟-1-丁烯;1,1,2,4,4,4-六氟-1-丁烯;1,2,3,3,4,4-六氟-1-丁烯;1,2,3,4,4,4-六氟-1-丁烯;2,3,3,4,4,4-六氟-1-丁烯;1,1,2,3,3,4,4-七氟-1-丁烯;1,1,2,3,4,4,4-七氟-1-丁烯;1,1,3,3,4,4,4-七氟-1-丁烯;1,2,3,3,4,4,4-七氟-1-丁烯;1,1,1,2-四氟-2-丁烯;1,1,1,3-四氟-2-丁烯;1,1,1,4-四氟-2-丁烯;1,1,2,3-四氟-2-丁烯;1,1,2,4-四氟-2-丁烯;1,2,3,4-四氟-2-丁烯;1,1,1,2,3-五氟-2-丁烯;1,1,1,2,4-五氟-2-丁烯;1,1,1,3,4-五氟-2-丁烯;1,1,1,4,4-五氟-2-丁烯;1,1,2,3,4-五氟-2-丁烯;1,1,2,4,4-五氟-2-丁烯;1,1,1,2,3,4-六氟-2-丁烯;1,1,1,2,4,4-六氟-2-丁烯;1,1,1,3,4,4-六氟-2-丁烯;1,1,1,4,4,4-六氟-2-丁烯;1,1,2,3,4,4-六氟-2-丁烯;1,1,1,2,3,4,4-七氟-2-丁烯;1,1,1,2,4,4,4-七氟-2-丁烯;以及它们的混合物。
具有四个氟原子以及三个碳原子的四氟丙烯是值得特别注意的。实例是1,3,3,3-四氟-1-丙烯(HFO-1234ze)、2,3,3,3-四氟-1-丙烯(HFO-1234yf)、1,1,3,3-四氟-1-丙烯、1,1,2,3-四氟-1-丙烯、1,2,3,3-四氟-1-丙烯和它们的混合物。四氟丙烯可以以Z或E异构形式或者作为Z和E异构形式的混合物存在。1,3,3,3-四氟-1-丙烯(HFO-1234ze)和2,3,3,3-四氟-1-丙烯(HFO-1234yf)是特别优选的。HFO-1234yf(2,3,3,3-四氟-1-丙烯)是最优选的。
稀释剂也可以包含用于丁基聚合的本领域技术人员所已知的一种或多种其他的惰性溶剂。这种其他的惰性溶剂可以是,例如,不同于氢氟烃的卤代烃(例如,氯代甲烷、二氯甲烷或它们的混合物)。
实施例:
在干燥的、惰性的气氛中完成所有的聚合。在配备有由外部电驱动搅拌器驱动的顶置(overhead)4叶片的不锈钢叶轮的600mL不锈钢反应容器中,将聚合以分批反应进行。通过热电偶测量反应温度。通过沉浸组装的反应器至戊烷冷却浴中,将反应器冷却至在表中列出的期望的反应温度。将搅拌的烃浴的温度控制于±2℃。在使用之前,将与反应介质液体接触的所有设备在150℃下干燥至少6小时并且在真空-氮气气氛交替室中冷却。高纯度的异丁烯和氯代甲烷来源于LANXESS制造工厂并且原样使用。氢氟烃1,1,1,2-四氟乙烷(>99.9%纯度)(HFC-134a,Genetron@134a)和氢氟烯烃(E)-1,3,3,3-四氟-1-丙烯(>99.99%纯度)(HFO-1234ze,Solstice@1234ze制冷等级)和2,3,3,3-四氟-1-丙烯(>99.99%纯度)(HFO-1234yf,Solstice@1234yf机动车等级)购买自Honeywell并且按照接收的使用。将全部浓缩并且作为液体收集于干燥的盒子中。将异戊二烯(Sigma-Aldrich,>99.5%纯度)在活化的3A分子筛上干燥几天并且在氮气下蒸馏。按照接收的使用1.0M的在己烷中二氯化乙基铝的溶液(Sigma-Aldrich)。通过使无水HCl气体(Sigma-Aldrich,99%纯度)鼓泡通过预干燥的包含无水CH2Cl2的Sure/SealTM瓶(VWR)来制备HCl/CH2Cl2的溶液。然后,使用0.1N NaOH(VWR)标准溶液滴定HCl/CH2Cl2溶液以测定它的浓度。
通过进料单体、共聚单体和液化稀释剂(在每一个实施例中给定的)至在聚合温度下的冷冻反应容器中进行淤浆聚合(slurry polymerization),并且在500至900rpm之间的预定搅拌速度下搅拌。在氯代甲烷中制备引发剂/共引发剂溶液。通过稀释HCl/CH2Cl2溶液至氯代甲烷的等分部分中并且添加1.0M的二氯乙基铝溶液至1:4摩尔比的HCl:EADC中,随后温和地搅拌,在如同反应容器的相同温度条件下制备引发剂/共引发剂溶液。立即地使用引发剂/共引发剂溶液。使用骤冷的玻璃巴斯德吸液管,将引发剂/共引发剂溶液添加至聚合。允许反应运行5分钟,并且通过添加2mL的在乙醇溶液中的1%氢氧化钠停止反应。将转化率报道为在聚合温度下转化成聚合物的单体的重量百分数。
使用Waters 2690/5分离组件以及Waters 2414折射指数检测器,通过GPC(凝胶渗透色谱法)测定聚合物的分子量。利用一系列的三个Agilent PL凝胶10μm Mixed-B LS300x 5.7mm柱,将四氢呋喃用作洗脱液(0.8mL/min,35℃)。
通过1H-NMR谱测定异戊二烯合并。使用Bruker DRX 500MHz谱仪(500.13MHz),使用具有残余的CHCl3峰(用作内参)的聚合物的CDCl3溶液,获得NMR测量。
使用Agilent 6890Series Plus使用配备有HP 7683系列自动进样器的Agilent J+W VF-1ms 30x 0.25(1.0)柱(进口275℃,22.5psi)以及300℃的FID温度通过GC-FID,进行低聚物水平测量。
实施例A:在-95℃下用纯的稀释剂聚合
表1列出了在-95℃下在氯代甲烷(实施例1和2)、HFO-1234ze(实施例3和4)、HFO-1234yf(实施例5和6)和HFC-134a(实施例7和8)中进行的聚合的结果。如以上报道的在600mL不锈钢容器中使用HCl/EADC作为引发剂/共引发剂,一致地进行所有的聚合。用180mL的稀释剂、20mL的异丁烯以及0.6mL的异戊二烯(在进料中的异戊二烯含量=2.3mol%)运行聚合。在40mL MeCl中使用6mL的0.16M HCl/CH2Cl2溶液以及4mL的1.0M二氯乙基铝(EADC)的己烷溶液,制备引发剂/共引发剂溶液。在表1中在所有的实施例中使用相同体积的引发剂/共引发剂溶液(5ml),在每个实施例中对低聚物组合物其还提供了更多的详情。
表1
1)总不饱和度=1,4-异戊二烯+类异戊二烯。
参照图1A,与在氯代甲烷(MeCl)中的聚合相比,在HFO-1234yf中的聚合示出了具有适度的温度尖峰(spike)和延伸的反应时间的优异的温度曲线。
使用MeCl的聚合在反应容器的壁、温度探针和搅拌杆周围产生了显著的污垢,以及在反应介质中形成橡胶球。使用氢氟烃和氢氟烯烃两者的聚合在反应容器、温度探针和搅拌杆上产生最小量的污垢或不产生污垢。HFO-1234yf产生了非常稳定的、均匀的橡胶淤浆,不具有聚合物凝聚。
在相同的反应条件下在-95℃的反应温度下,虽然稍微地低于传统的稀释剂氯代甲烷的那些(平均90%转化率),但是在HFO-1234yf中的聚合反应性是优异的(平均83%转化率)并且是非常可比较的。然而,对于氢氟烃HFC-134a相比于氢氟烯烃HFO-1234yf,结果示出了在聚合反应性上的显著差别。与HFC-134a(平均地34%的转化率)的聚合物产率相比,在HFO-1234yf中完成的反应(平均地83%的转化率)给出了显著更高的聚合物产率。氢氟烯烃异构体(E)HFO-1234ze示出了与HFC-134a的那些相似的聚合反应性(平均地30%的转化率)。
除了高聚合物转化率之外,由HFO-1234yf稀释剂获得的丁基聚合物样品给出了最佳的性质组合,如高分子量、窄分子量分布、高异戊二烯合并以及低水平的环状低聚物副产物(表1)。可清楚看出的是,使用HFO-1234yf作为稀释剂生产的橡胶,与在HFC-134A中生产的那些相比具有显著更高的重均分子量(Mw),具有与在HFO-1234ze中生产的那些相似的Mw,以及具有比在MeCl中生产的那些更低的Mw。当比较重复反应的平均值时,与对于MeCl的567,000的平均值(实施例1&2)、对于HFC-134A的273,000(实施例7&8)以及对于HFO1234ze的471,000(实施例3&4)相比,对于在-95℃下进行的HFO-1234yf聚合(实施例5&6)获得的Mw是462,000。
众所周知的是,在丁基聚合过程期间,环状低聚物也就是C13H24和C21H40化合物固有地形成为副产物。以下在方案1中示出了这些环状低聚物的分子结构,其中C13H24异构体包含1分子的异戊二烯以及2分子的异丁烯,并且C21H40异构体包含1分子的异戊二烯以及4分子的异丁烯。这些环状低聚物以微量存在于常规的丁基成品中。在医药应用中,在丁基橡胶中C13H24和C21H40的存在是目前的担忧。在某些医药橡胶塞制剂中,这些物质是主要的可提取物。
方案1-环状低聚物的分子结构
除了提供令人惊讶的低水平的低聚物之外,四氟丙烯稀释剂的使用还产生了令人惊讶地良好的C21/C13低聚物比。例如,HFO-1234yf的使用提供了1.32和1.47的比值,然而HFC-134a的使用提供了7.11和8.19的比值。既然在蒸汽脱除和橡胶干燥操作期间优先除去较低分子量的C13低聚物,那么低比值是有利的,因为可以以甚至较低水平的总低聚物制备成品。
由于HFO-1234ze稀释剂倾向于给出较低的共聚物转化率,由这种稀释剂生产的丁基聚合物样品在分子量、异戊二烯合并和环状低聚物含量方面示出了优异的性质。总体上,四氟丙烯、HFO-1234yf和HFO-1234ze两者,示出了更佳的性能并且比HFC-134a在低温下更适合于丁基淤浆聚合。
尽管在此没有示出NMR数据,但是总体上发现,当使用HFO-1234yf稀释剂时,出现了较低的聚合物支化,同时HFO-1234ze稀释剂生产的聚合物具有与HFC-134a稀释剂相似的支化。
实施例B:在-75℃下用纯的稀释剂聚合
表2列出了在-75℃下在氯代甲烷(实施例9和10)、HFO-1234ze(实施例11和12)、HFO-1234yf(实施例13和14)和HFC-134a(实施例15和16)中进行的聚合的结果。如以上报道的在600mL不锈钢容器中使用HCl/EADC和引发剂/共引发剂,一致地进行所有的聚合。用180mL稀释剂、20mL的异丁烯和0.6mL的异戊二烯(在进料中的异戊二烯含量=2.3mol%)运行聚合。在40mL MeCl中使用6mL的0.16M HCl/CH2Cl2溶液以及4mL的1.0M二氯乙基铝(EADC)的己烷溶液制备引发剂/共引发剂溶液。对于所有的聚合,使用相同体积的引发剂/共引发剂溶液(5mL)。
表2
1)总不饱和度=1,4-异戊二烯+类异戊二烯。
在-75℃的较高反应温度下,在HFC-134a中的聚合变为反应性显著更强,目前转化率水平(平均地89%转化率)与HFO-1234yf(平均地85%转化率)的那些是可比较的。在HFC-134a和HFO-1234yf中进行的实验示出了可比较的反应性;然而,这些稀释剂与传统的稀释剂氯代甲烷相比,两者都示出了稍微更低的反应转化率。由于尽管反应温度更高但这种稀释剂仍表现出不良的反应性,因此温度对于HFO-1234ze不具有影响。
在较高的聚合温度下,在HFO-1234yf中生产的聚合物具有最高的Mw。当比较在-75℃下进行的重复聚合的平均值时,HFO-1234yf(实施例13&14)生产的聚合物具有Mw=371,000,HFC-134A(实施例15&16)Mw=245,000,HFO-1234ze(实施例11&12)Mw=216,000以及MeCl(实施例9&10)Mw=319,000。由于甚至在较高的反应器温度下,可以将高Mw和相关期望的物理性质保持在产物中,因此对于连续的丁基生产过程其是重要的优点。
比较在表1和2中示出的数据,较高的反应温度的总体影响是降低聚合物链分子量(Mw)以及显著增加环状低聚物含量。对于所有的稀释剂,该影响遵循相同的趋势,然而,相对于HFC-134a,由HFO-1234yf生产的丁基聚合物样品保持更高的聚合物分子量。相比于HFC-134a(平均地2.0mol%),HFO-1234yf(平均地2.1mol%)的总不饱和度水平是稍微更高的,然而相比于HFC-134a(平均地4148ppm),HFO-1234yf(平均地3679ppm)的环状低聚物水平是更低的。与利用HFC-134a相比,利用HFO-1234yf的C21/C13比是更良好的。相似地,在共聚物分子量方面,可以进行观察,比较HFO-1234yf与氯代甲烷。
相比于氯代甲烷,在HFO-1234yf中生产的丁基聚合物样品的总不饱和度水平和因此的异戊二烯水平显著更高。如在表1和2中看出的,当在用于反应的混合进料中使用相等浓度的异戊二烯时,与其他的稀释剂相比,使用HFO-1234yf作为稀释剂所生产的橡胶包含显著更多的来自合并的异戊二烯的不饱和度。当比较重复反应的平均值时,与对于MeCl的1.77mol%的平均值(实施例1&2)、对于HFC-134A的1.76mol%(实施例7&8)以及对于HFO-1234ze的2.08mol%(实施例3&4)相比,对于在-95℃下进行的HFO-1234yf聚合的总不饱和度(实施例5&6)是2.25mol%。由于在-95℃温度下的低转化率,对于HFC-134A的异戊二烯合并在此温度下受限。当比较在高温(-75℃)下进行的重复聚合的平均值时,存在相同的趋势,其中HFO-1234yf(实施例13&14)平均地合并2.11mol%的总异戊二烯、HFC-134A(实施例15&16)2.00mol%、HFO-1234ze(实施例11&12)1.68mol%以及MeCl(实施例9&10)1.44mol%。由于在-75℃温度下的低转化率,对于HFO-1234ze的异戊二烯合并在该温度下受限。改善的异戊二烯合并至丁基橡胶中导致在进料流股中所要求的较低浓度的异戊二烯以在成品中达到等效的不饱和度水平,导致连续的淤浆制备方法的成本节省。此外,相比于HFO-1234yf和HFC-134a,在氯代甲烷中的环状低聚物水平是显著更高的,并且C21/C13比也是不期望地更高。总体上,在不同的反应温度下,即在-95℃和-75℃下,HFO-1234yf的聚合性能和优点是适用的。
实施例C:在-95℃下利用50:50的稀释剂混合物的聚合
表3列出了在-95℃下在50:50的MeCl:HFO-1234ze混合物(实施例17和18)以及50:50的MeCl:HFO-1234yf混合物(实施例19和20)中进行的聚合的结果。如以上报道的在600mL不锈钢容器中使用HCl/EADC和引发剂/共引发剂,一致地进行所有的聚合。用180mL稀释剂、20mL的异丁烯和0.6mL的异戊二烯(在进料中的异戊二烯含量=2.3mol%)运行聚合。在40mL MeCl中使用6mL的0.16M HCl/CH2Cl2溶液以及4mL的1.0M二氯乙基铝(EADC)的己烷溶液制备引发剂/共引发剂溶液。相同体积的引发剂/共引发剂溶液(5mL)用于所有的聚合。
表3
1)总不饱和度=1,4-异戊二烯+类异戊二烯。
在-95℃的反应温度下,如在纯的稀释剂中观察的那些,通常,使用稀释剂的混合物生产的聚合具有相似的趋势。因此,与氯代甲烷/HFO-1234ze的共混物(平均地38%转化率)相比,在50:50的氯代甲烷/HFO-1234yf的共混物(平均地68%转化率)中的反应是反应性更强的。与在氯代甲烷/HFO-1234ze稀释剂混合物中的相比,由氯代甲烷/HFO-1234yf获得的丁基聚合物样品还表现出更高的分子量以及更高的异戊二烯合并。与在氯代甲烷/HFO-1234ze的情况下相比,对于氯代甲烷/HFO-1234yf,环状低聚物水平是降低的。此外,与含氯代甲烷/HFO-1234ze的稀释剂混合物相比,对于氯代甲烷/HFO-1234yf,C21/C13比更低。
在具有HFO-1234yf的MeCl共混物中生产的丁基橡胶比在HFO-1234ze中的具有显著更高的Mw。当比较在-95℃下进行的重复聚合的平均值时,MeCl与HFO1234yf的共混物(实施例19&20)生产的聚合物具有Mw=457,000,同时HFO1234ze(实施例17&18)生产的聚合物具有Mw=241,000。对于用于丁基橡胶生产的连续淤浆方法,这是重要的优点。与100%的HFO-1234yf相比,甚至利用HFO-1234yf和MeCl的共混物,在不损失氟化稀释剂系统的其他优点的情况下,可以保持高Mw,产生更低的运行成本。对于所有的情况,在与反应混合物接触的表面上观察到最小量的污垢至无污垢。经比较,在氯代甲烷中的聚合在反应器壁、温度探针和搅拌杆上产生厚重的聚合物涂层,以及大量的在反应介质中的聚合物凝聚体。
实施例D:在-75℃下利用50:50的稀释剂混合物的聚合
表4列出了在-75℃下在50:50的MeCl:HFO-1234ze混合物(实施例21和22)以及50:50的MeCl:HFO-1234yf混合物(实施例23和24)中进行的聚合的结果。如以上报道的在600mL不锈钢容器中使用HCl/EADC和引发剂/共引发剂,一致地进行所有的聚合。用180mL稀释剂、20mL的异丁烯和0.6mL的异戊二烯(在进料中的异戊二烯含量=2.3mol%)运行聚合。在61mL MeCl中使用11mL的0.18M HCl/CH2Cl2溶液以及8mL的1.0M二氯乙基铝(EADC)的己烷溶液制备引发剂/共引发剂溶液。相同体积的引发剂/共引发剂溶液(5mL)用于所有的聚合。
表4
1)总不饱和度=1,4-异戊二烯+类异戊二烯。
对于所有的稀释剂混合物,使用稀释剂混合物在-75℃下的聚合产生了显著的污垢。MeCl/HFO-1234ze混合物导致一种聚合物仅仅在搅拌杆周围积垢,然而MeCl/HFO-1234yf在搅拌杆上产生了厚重的污垢以及在反应介质中形成橡胶球(ball,球状物)。经比较,在氯代甲烷中的聚合在反应器壁、温度探针和搅拌杆上产生了沉重的聚合物涂层,以及大量的在反应介质中的聚合物凝聚体。
再次在这种情况下,对于涉及氯代甲烷/HFO-1234ze的反应,温度对聚合物转化率相对地具有很少的影响。利用氯代甲烷/HFO-1234yf获得了最高的转化率和分子量。
在具有HFO-1234yf的共混物中生产的丁基橡胶具有比在HFO-1234ze中的更高的Mw。当比较在-75℃下进行的重复聚合的平均值时,MeCl与HFO-1234yf的共混物(实施例21&22)生产的聚合物具有Mw=457,000,同时HFO-1234ze(实施例23&24)生产的聚合物具有Mw=241,000。对于用于丁基橡胶生产的连续淤浆方法,这是重要的优点,证明了利用在MeCl中的HFO-1234yf的共混物甚至在较高的聚合温度下保持高Mw。
实施例E:在聚合物上的蒸汽脱除(蒸汽脱附、蒸汽汽提,steam stripping)以降低C13环状低聚物含量的效果
对于根据所选择的实验性条件生产的聚合物,将蒸汽脱除进行为完成步骤(终末步骤,finishing step)以降低C13环状低聚物含量,并且从而降低来自聚合物的总可提取环状低聚物。这种完成步骤具有对于使用本发明的HFO生产的聚合物观察到的有利的低C21/C13比的优点以生产具有期望降低的总低聚物含量的聚合物。
对于每种样品,将2g的聚合物(已经被预先凝集于乙醇中并且在室温下蒸发)溶解于20mL的己烷中。应当指明的是,乙醇凝集步骤导致了一些环状低聚物的提取;对于这些样品,这导致比以上报道的更低的初始总低聚物水平以及更高的C21/C13比。己烷溶剂从样品中溶解了C13低聚物并且通过蒸汽脱除三十分钟,除去溶剂以及低聚物。回收聚合物并且再溶解于己烷中,用于通过GC/MS的随后的低聚物分析。在表5中提供了分析结果。
表5
通过使用蒸汽脱除作为完成过程,可能的是生产具有来自使用HFO稀释剂生成的聚合物的低的总低聚物含量的聚合物。如可以从表5中看出的,与使用HFC-134a稀释剂生产的那些相比,蒸汽脱除将使用HFO-1234yf稀释剂生产的样品的总低聚物含量降低至较低的水平。尽管对于在所有温度下生产的聚合物,观察到环状低聚物水平降低,但是最明显的是在-95℃的较低温度下生产的那些,由于在该温度下对于HFO稀释剂的C21/C13比是良好的。利用在-95℃使用HFO-1234yf生产的聚合物获得了最低的总环状低聚物水平。使用蒸汽脱除方法,生产了具有小于125ppm的总环状低聚物的丁基聚合物。由于提取了C13,在所有的情形下,在蒸汽脱除之后C21/C13比增加。使用蒸汽脱除完成过程生产的聚合物是新颖的,因为它们具有最高的纯度和最低的总环状低聚物的总体水平,其在医药应用中是有利的。
在作为稀释剂的氯代甲烷(MeCl)、HFC-134A和HFO1234yf中在反应进料中的不同的异戊二烯含量下进行一系列的聚合。除了为了高的异戊二烯聚合(在进料中的异戊二烯含量=5.6mol%)将1.5mL的异戊二烯用于进料之外,如之前所描述的进行聚合。对于直接从反应容器中取出的或者在蒸汽脱除反应混合物之后的聚合物样品,测量低聚物含量,以模拟在工厂生产过程中的条件。在表6中示出了结果。
表6
1)总不饱和度=1,4-异戊二烯+类异戊二烯。
2)在直接地来自聚合物反应器或者在蒸汽脱除之后的样品上测量的低聚物。
如在表6中看出的,与MeCl和HFC-134A相比,作为用于聚合的稀释剂的HFO1234yf的使用产生了具有显著更低量的环状低聚物的丁基橡胶。用于直接地从聚合移出的样品所测量的低聚物水平是在反应期间形成的总低聚物的真实的测量结果。如在表5的数据中所观察到的,对于直接从聚合移出的样品在表6中示出的低聚物数据示出了相同的趋势。可清楚看出的是,与在MeCl(实施例25)或HFC-134A(实施例27)中生产的那些相比,使用HFO1234yf(实施例29)作为稀释剂生产的橡胶包含显著更少的总低聚物。图2比较了用标准的异戊二烯水平进行的反应的总低聚物含量(实施例25、27和29)。为了评估在连续的丁基橡胶制造过程中发生的产物纯化,进行了蒸汽脱除纯化步骤。观察到蒸汽脱除步骤降低C13含量,更优先地用于在所有稀释剂中在相似的速率下生产的丁基橡胶。由于C13低聚物已知在完成过程中被蒸汽脱除,因而这是预期到的。
如在表6中进一步地看出的,与合并更高水平的异戊二烯的MeCl和HFC-134A相比,作为用于聚合的稀释剂的HFO1234yf的使用导致丁基橡胶具有显著更低量的环状低聚物。在增加进料浓度的异戊二烯的存在下利用不同的稀释剂进行聚合以生产具有高合并的异戊二烯含量的丁基橡胶。与观察到的在标准的异戊二烯水平下进行的反应相似,与MeCl(实施例26)或HFC-134A(实施例28)相比,在稀释剂HFO-1234yf(实施例30)中获得了低的低聚物含量。图3比较了用于高异戊二烯进料含量反应的总低聚物含量。在蒸汽脱除之后,与用于在HFC-134A和MeCl中制备的纯化聚合物所测量的那些相比,在HFO-1234yf稀释剂中形成的具有高异戊二烯合并的聚合物包含显著更低的低聚物。
如在表7和图4中看出的,与在0-8mol%的异戊二烯含量的范围内的HFC-134A相比,HFO-1234yf作为在聚合反应中的稀释剂的使用产生了更低的C21/C13低聚物比。在图4中,利用如在表7中列出的不同的在单体进料中的异戊二烯比进行聚合(实施例31-42),并且将用于直接地取样于反应器的聚合物所测量的C21与C13低聚物比,针对利用从2.3至8.6mol%变化的进料异戊二烯浓度进行的聚合进行比较。与在所有水平的异戊二烯下的HFC-134A相比,对于在HFO-1234yf中生产的丁基,观察到较低的C21/C13比。与在MeCl中进行的反应相比,观察到的C21/C13比与用于HFO-1234yf材料的那些非常相似。已知的是,在丁基橡胶的连续制造过程中,在橡胶分离和干燥过程期间,优先地除去C13低聚物。因此,对于直接地取样于聚合反应器的丁基橡胶,低C21/C13比是期望的,以产生具有低的总低聚物含量的成品丁基橡胶。
表7
1)总不饱和度=1,4-异戊二烯+类异戊二烯
2)在直接地来自聚合物反应器或者在蒸汽脱除之后的样品上测量的低聚物。
实施例F:在丁基橡胶中减少的类异戊二烯含量
为了测定稀释剂对丁基共聚物的类异戊二烯(短链支化)含量的效果,分析在实施例1-16中生产的丁基橡胶。在表8中提供了结果。实施例1-16与以上在表1和2中的相同。
表8
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
2)类异戊二烯含量=类异戊二烯(mol%)/总不饱和度(mol%)。
如在表8中看出的,当在用于反应的混合进料中使用相等浓度的异戊二烯时,与MeCl相比,使用100%HFO-1234yf、HFC-134A或HFO-1234ze作为稀释剂生产的橡胶包含较低的测量的类异戊二烯含量(短链支化)。更显著地,看出的是,当比较重复反应的平均值时,在-95℃下在HFO-1234yf中的聚合产生较大幅度减小的类异戊二烯含量。与对于MeCl的15%的平均值(实施例1&2)、对于HFC-134A的10%(实施例7&8)以及对于HFO-1234ze的8%(实施例3&4)相比,在-95℃下在HFO-1234yf中生产的聚合物的类异戊二烯含量是5.0%(实施例5&6)。这是意义重大的,因为具有较低类异戊二烯含量的丁基共聚物将具有更高比例的可用于进一步化学改性的1,4-单元取向的总不饱和度,且期望在随后的卤化反应中具有更高的效率以生产卤代丁基橡胶。
由反应性链末端至其本身上的反咬合反应(back-biting reaction)出现短链支化以形成连接至小部分的沿着主链的1,4-异戊二烯单元的5碳侧链。贯穿整个本文献,这些取代的1,4-异戊二烯单元被称为类异戊二烯单元。由于取代的类异戊二烯不可用于通过卤化的化学改性,所以这部分的这些单元对于生产氯代丁基橡胶是意义重大的。如在表8中观察到的,在标准的丁基聚合条件下使用MeCl作为稀释剂,生产的丁基的类异戊二烯含量是15%。因此,在这些标准的条件下,仅85%的所添加的异戊二烯单元是以1,4-单元结构并且可用于参与进一步的聚合物改性反应,如卤化。因此,期望的是,利用包含较低的类异戊二烯含量的丁基共聚物,卤化过程将进行为更高的效率,该类异戊二烯含量对于卤代丁基橡胶的连续生产过程是重要的因素。
当比较在高温(-75℃)下进行的重复聚合的平均值时,存在相同的趋势,其中在HFO-1234yf中制备的材料包含平均地9.0%的类异戊二烯(实施例13&14)、HFC-134A(实施例15&16)12%、HFO-1234ze(实施例11&12)19%以及MeCl(实施例9&10)24%。这证实了,同样在较高的温度下在HFO-1234yf或HFC-134A中进行的聚合生产了包含显著更短链支化的丁基橡胶,并且与在其他稀释剂体系中制备的材料相比,将期望进行更有效的卤化。
利用在反应进料中的高含量的异戊二烯在纯的稀释剂中进行聚合系列以制备高异戊二烯丁基橡胶。表9列出了利用在进料中的标准的异戊二烯摩尔比(2.3mol%)或者高的异戊二烯(5.6mol%)在-95℃下在纯的稀释剂中进行的聚合的结果。
表9
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
2)类异戊二烯含量=类异戊二烯(mol%)/总不饱和度(mol%)。
如从表9中看出的,在标准的在混合进料中的异戊二烯比(2.3mol%)下,在-95℃下使用HFO-1234yf(实施例49&50)或者HFC-134A(实施例45&46)作为稀释剂生产的橡胶比MeCl(实施例1&2)包含更低的类异戊二烯含量。同样,使用HFO-1234yf作为稀释剂(实施例49&50)生产的橡胶比HFC-134A(实施例45&46)包含更低的类异戊二烯含量。更显著地,在高的异戊二烯进料比(5.6mol%)下趋势是一致的,其中与对于MeCl的12%(实施例43&44)相比,HFO-1234yf和HFC-134A分别地产生6%(实施例51&52)和8%(实施例47&48)的平均类异戊二烯含量。与在标准的异戊二烯水平下进行的反应相似,与在HFC-134A中进行的聚合相比,在HFO-1234yf中生产的高异戊二烯丁基橡胶包含显著更低的类异戊二烯含量。
还利用MeCl作为稀释剂在氟化溶剂的共混物中进行聚合。在标准条件下在-95℃下使用不同的HFO-1234yf与MeCl的共混比进行了一系列的聚合,与100%MeCl相比,产生了在所有的共混比下的具有降低的类异戊二烯含量的丁基。表10列出了在-95℃下以不同的HFO-1234yf与MeCl的共混比进行的聚合的结果。
表10
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
2)类异戊二烯含量=类异戊二烯(mol%)/总不饱和度(mol%)。
如在表10中看出的,与100%MeCl相比,以所有的MeCl与HFO-1234yf共混比获得了显著更低的类异戊二烯含量。
此外,在-75℃至-95℃的温度范围下,使用50/50的MeCl与HFO-1234yf的共混物作为稀释剂进行了聚合系列。进料的异戊二烯含量是2.3mol%。表11列出了在-75℃至-95℃的温度范围下以50/50的MeCl与HFO-1234yf的共混比进行的聚合的结果。如在表11中看出的,由于由聚合物反咬合反应的短链支化,横跨温度范围以50/50的HFO-1234yf与MeCl的共混物进行的聚合生产了具有更低的类异戊二烯含量的丁基。
表11
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
2)类异戊二烯含量=类异戊二烯(mol%)/总不饱和度(mol%)。
当比较在-95℃下的聚合时,与在纯的MeCl稀释剂中的聚合(参见表8:平均值=15%)相比,HFO-1234yf与MeCl的共混生产了包含最低含量的类异戊二烯的丁基(实施例69&70,平均值=11%)。在-75℃下在MeCl与HFO-1234yf的共混物中进行的聚合也生产了具有较低的类异戊二烯含量的丁基(实施例61&62,平均值=18%)。在所有的温度下,与100%MeCl相比,利用HFO-1234yf的共混物生产的丁基物质产生了降低的类异戊二烯含量。
实施例G:在丁基橡胶中异戊二烯含量增加
在-75℃至-95℃的温度范围下在标准的反应条件下以50/50的MeCl与HFO-1234ze或HFO-1234yf的共混也进行了聚合系列。表12列出了在-75℃至-95℃范围的不同温度下在氟化稀释剂与MeCl的混合物中进行的聚合的结果。
表12
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
如在表12中看出的,用于具有MeCl的氟化溶剂的混合稀释剂体系的数据遵循与在表1和2中示出的用于纯的稀释剂聚合的数据相似的趋势。在反应进料中的异戊二烯的相似浓度下,与在所有的低于-75℃的温度下利用MeCl与HFO-1234ze的共混物进行的聚合相比,MeCl/HFO-1234yf共混物生产了具有更高的总异戊二烯合并的聚合物。与在纯的稀释剂中观察到的结果相似,在MeCl与HFO-1234yf的共混物中进行的聚合在所有的温度下产生了最高水平的聚合物不饱和。
基于进料单体组成(f=[M1]/[M2])与共聚物组合物(F=[M1]/[M2])的比值,比较了异戊二烯的合并。熟知的是,在文献中,可能在Quirk RP,Gomochak-Pickel DL.;The Science and Technology of Rubber,第三版,第二章中描述了用于2种单体的共聚合的速率常数。
M1*+M1→M1*(速率=k11)
M1*+M2→M2*(速率=k12)
M2*+M2→M2*(速率=k22)
M2*+M1→M1*(速率=k21)
单体反应性比源自于以下的速率常数,并且表示具有与“其他”单体相比的它们“自身”单体类型的增长链末端的两种类型中的每一种的相对反应性:
r1=k11/k12;r2=k22/k12
使用以下的Mayo-Lewis方程式,可以测定相对于进料单体浓度的共聚物的瞬时组成(instantaneous composition):
其中:
f=[M1]/[M2](单体进料比)
F=d[M1]/d[M2](共聚物组成)
在其中r1>>1>>r2的情形下,将发生贯穿反应所形成的聚合物的组成的偏移,其中优先地在反应初期添加单体1。在大多数单体1被消耗之后的随后的聚合阶段期间,第二单体将反应更多。实际上,熟知的是,在MeCl中的异丁烯/异戊二烯共聚的反应性比是r1=2.5和r2=0.4,导致f/F比接近0.6。为了获得更加无规的共聚物,反应性比应当是等于或接近1。(r1=r2=1)在这种受限的情形下,f-比(f/F)将更接近1.0。
表13列出了利用在2.3至8.6mol%的范围内的进料异戊二烯含量在-95℃下在纯的稀释剂中进行的聚合的结果。与在表12中的实施例相似,在所有的进料异戊二烯含量下与其他稀释剂体系相比,在-95℃下使用HFO-1234yf作为稀释剂生产的橡胶包含显著更多的来自合并的异戊二烯的不饱和。图5比较了用于在-95℃下在纯的稀释剂中聚合的进料和共聚物单体比(f-比)。观察到的是,对于在HFO-1234yf中生产的丁基共聚物,通过数据的拟合线给出了0.88的f-比。相比地,对于HFC-134A的f-比拟合线是0.74以及对于MeCl的f-比拟合线是0.58。因此,清楚的是,在HFO-1234yf中的反应性比是更紧密匹配的,导致在聚合期间异戊二烯的合并增加,且因此导致更无规的共聚物。与HFC-134A(f/F=0.8)或MeCl(f/F=0.6)相比,HFO-1234yf导致异戊二烯的合并增加(f/F=0.9)。
表13
1)总不饱和度=1,4-异戊二烯(mol%)+类异戊二烯(mol%)。
根据本发明的详细描述的审查,本发明的新颖特征对于本领域的技术人员将是显而易见的。然而,应当理解的是,不应该通过在实施例中阐述的优选的实施方式限制权利要求的范围,而是应当与作为整体的说明书一致地给出最宽的解释。

Claims (15)

1.至少一种异烯烃单体和至少一种多烯烃和/或β-蒎烯单体的共聚物,相比于使用1,1,1,2-四氟乙烷作为稀释剂在丁基橡胶淤浆方法中生产的可比较的聚合物,所述共聚物具有更高的多烯烃和/或β-蒎烯单体含量。
2.根据权利要求1所述的共聚物,其中,所述多烯烃和/或β-蒎烯单体的含量基于所述共聚物的重量是在0.5至15mol%的范围内。
3.根据权利要求1所述的共聚物,其中,以大于0.8、优选0.85或更大或者优选0.9或更大的进料单体组成与共聚物组成的比率(f/F),将所述多烯烃和/或β-蒎烯单体合并入所述共聚物中。
4.根据权利要求1至3中任一项所述的共聚物,其中,通过在至少一种路易斯酸和至少一种引发剂的存在下在稀释剂中在小于或等于-75℃的温度下使至少一种异烯烃单体与至少一种多烯烃和/或β-蒎烯单体接触来生产所述共聚物,所述稀释剂包含氢氟烯烃(HFO),所述HFO包含至少三个碳原子以及至少三个氟原子。
5.根据权利要求1至4中任一项所述的共聚物,其中,通过在至少一种路易斯酸和至少一种引发剂的存在下在稀释剂中在小于或等于-95℃的温度下使至少一种异烯烃单体与至少一种多烯烃和/或β-蒎烯单体接触来生产所述共聚物,所述稀释剂包含氢氟烯烃(HFO),所述HFO包含至少三个碳原子以及至少三个氟原子。
6.根据权利要求4或5所述的共聚物,其中,所述HFO包括1,3,3,3-四氟-1-丙烯(HFO-1234ze)、2,3,3,3-四氟-1-丙烯(HFO-1234yf)或它们的混合物。
7.根据权利要求6或7所述的共聚物,其中,所述HFO包括2,3,3,3-四氟-1-丙烯(HFO-1234yf)。
8.根据权利要求1至7中任一项所述的共聚物,其中,所述至少一种异烯烃单体包括具有4至16个碳原子的异烯烃并且所述至少一种异烯烃单体包括具有4至7个碳原子的异烯烃。
9.根据权利要求1至8中任一项所述的共聚物,其中,所述至少一种异烯烃单体包括异丁烯、2-甲基-1-丁烯、3-甲基-1-丁烯、2-甲基-2-丁烯、4-甲基-1-戊烯或它们的混合物。
10.根据权利要求1至9中任一项所述的共聚物,其中,所述至少一种多烯烃和/或β-蒎烯单体包括具有4-14个碳原子的多烯烃。
11.根据权利要求1至10中任一项所述的共聚物,其中,所述至少一种多烯烃和/或β-蒎烯单体包括异戊二烯、丁二烯、2-甲基丁二烯、2,4-二甲基丁二烯、胡椒林碱、3-甲基-1,3-戊二烯、2,4-己二烯、2-新戊基丁二烯、2-甲基-1,5-己二烯、2,5-二甲基-2,4-己二烯、2-甲基-1,4-戊二烯、2-甲基-1,6-庚二烯、环戊二烯、甲基环戊二烯、环己二烯、1-乙烯基-环己二烯或它们的混合物。
12.根据权利要求1至11中任一项所述的共聚物,其中,所述至少一种多烯烃和/或β-蒎烯单体包括茚、α-甲基苯乙烯、对甲基苯乙烯、氯苯乙烯或它们的混合物。
13.根据权利要求1至12中任一项所述的共聚物,其中,所述至少一种多烯烃和/或β-蒎烯单体包括对甲基苯乙烯。
14.根据权利要求1至13中任一项所述的共聚物,进一步包括将至少一种另外的单体与所述至少一种异烯烃单体和至少一种多烯烃和/或β-蒎烯单体接触。
15.根据权利要求14所述的共聚物,其中,所述至少一种另外的单体包括茚、α-甲基苯乙烯、对甲基苯乙烯、氯苯乙烯或它们的混合物。
CN201580022611.9A 2014-04-30 2015-04-28 具有高多烯烃含量的共聚物 Expired - Fee Related CN106661162B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14166577.8 2014-04-30
EP14166577.8A EP2940047A1 (en) 2014-04-30 2014-04-30 Copolymer having high multiolefin content
EP14174870.7 2014-06-30
EP14174870 2014-06-30
PCT/CA2015/050352 WO2015164963A1 (en) 2014-04-30 2015-04-28 Copolymer having high multiolefin content

Publications (2)

Publication Number Publication Date
CN106661162A true CN106661162A (zh) 2017-05-10
CN106661162B CN106661162B (zh) 2020-09-08

Family

ID=54357948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580022611.9A Expired - Fee Related CN106661162B (zh) 2014-04-30 2015-04-28 具有高多烯烃含量的共聚物

Country Status (10)

Country Link
US (1) US10077326B2 (zh)
EP (1) EP3137521A4 (zh)
JP (1) JP6779135B2 (zh)
KR (1) KR102351738B1 (zh)
CN (1) CN106661162B (zh)
CA (1) CA2947046A1 (zh)
RU (1) RU2708081C2 (zh)
SA (1) SA516380188B1 (zh)
SG (1) SG11201608796VA (zh)
WO (1) WO2015164963A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738843A (zh) * 2002-12-20 2006-02-22 埃克森美孚化学专利公司 具有新序列分布的聚合物
WO2009029366A1 (en) * 2007-08-31 2009-03-05 Exxonmobil Chemical Patents Inc. Method for reducing depositions in polymerization vessels
WO2011089083A1 (en) * 2010-01-20 2011-07-28 Lanxess International Sa Process for production of halobutyl ionomers

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356128A (en) 1939-10-20 1944-08-22 Jasco Inc Mixed olefinic polymerization process and product
US2534698A (en) * 1944-11-29 1950-12-19 Standard Oil Dev Co Polymerization of olefins in fluorinated diluent
JP2612538B2 (ja) 1991-07-29 1997-05-21 エクソン・ケミカル・パテンツ・インク 重合体反応器
WO2004058836A1 (en) * 2002-12-20 2004-07-15 Exxonmobil Chemical Patents Inc. Polymers with new sequence distributions
CA2510847C (en) 2002-12-20 2010-07-13 Exxonmobil Chemical Patents Inc. Polymers with new sequence distributions
RU2345095C2 (ru) * 2002-12-20 2009-01-27 Эксонмобил Кемикэл Пейтентс Инк. Сополимеры с новыми распределениями последовательностей
US7723447B2 (en) 2002-12-20 2010-05-25 Exxonmobil Chemical Patents Inc. Polymerization processes
WO2004058828A1 (en) * 2002-12-20 2004-07-15 Exxonmobil Chemical Patents Inc. Polymerization processes
US7425601B2 (en) 2002-12-20 2008-09-16 Exxonmobil Chemical Patents Inc. Polymers with new sequence distributions
WO2006009981A1 (en) 2004-06-21 2006-01-26 Exxonmobil Chemical Patents Inc. Polymeriyation process and reactor system
JP2008504388A (ja) 2004-06-23 2008-02-14 エクソンモービル・ケミカル・パテンツ・インク スラリー成分を分離する方法
WO2006009553A1 (en) 2004-06-23 2006-01-26 Exxonmobil Chemical Patents Inc. Methods for separating mixture components
CN1972974B (zh) 2004-06-25 2010-05-12 埃克森美孚化学专利公司 使用氢氟烃的聚合方法
US7351779B2 (en) 2005-11-22 2008-04-01 Exxonmobil Chemical Patents Inc. Polymerization process and reactor system
CA2635708C (en) * 2005-12-28 2011-02-01 Exxonmobil Chemical Patents Inc. Halogenation processes
US8148450B2 (en) 2006-06-23 2012-04-03 Exxonmobil Chemical Patents Inc. Process to produce a hydrocarbon rubber cement utilizing a hydrofluorocarbon diluent
US7629397B2 (en) 2006-06-23 2009-12-08 Exxonmobil Chemical Patents Inc. Phase separation process utilizing a hydrofluorocarbon
US8097181B2 (en) 2006-09-01 2012-01-17 E.I. Du Pont De Nemours And Company Ascorbic acid, terephthalate and nitromethane stabilizers for fluoroolefins
US7402636B1 (en) 2007-03-23 2008-07-22 Exxonmobil Chemical Patents Inc Method and apparatus for decreasing polymer deposition
US7893176B2 (en) 2007-03-23 2011-02-22 Exxonmobil Chemical Patents Inc. Polydispersity-controlled isoolefin polymerization with polymorphogenates
US7981991B2 (en) 2007-04-20 2011-07-19 Exxonmobil Chemical Patents Inc. Separation of polymer slurries
EP2190488A1 (en) 2007-09-28 2010-06-02 E. I. du Pont de Nemours and Company Ionic liquid stabilizer compositions
US8927666B2 (en) * 2012-11-08 2015-01-06 Honeywell International Inc. Polymerization of monomers using fluorinated propylene solvents
US8987399B2 (en) * 2012-11-08 2015-03-24 Honeywell International Inc. Azeotropes of isobutylene with fluoro-olefins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738843A (zh) * 2002-12-20 2006-02-22 埃克森美孚化学专利公司 具有新序列分布的聚合物
WO2009029366A1 (en) * 2007-08-31 2009-03-05 Exxonmobil Chemical Patents Inc. Method for reducing depositions in polymerization vessels
WO2011089083A1 (en) * 2010-01-20 2011-07-28 Lanxess International Sa Process for production of halobutyl ionomers

Also Published As

Publication number Publication date
JP6779135B2 (ja) 2020-11-04
KR20170002497A (ko) 2017-01-06
CA2947046A1 (en) 2015-11-05
CN106661162B (zh) 2020-09-08
SA516380188B1 (ar) 2020-12-27
EP3137521A1 (en) 2017-03-08
WO2015164963A1 (en) 2015-11-05
SG11201608796VA (en) 2016-11-29
RU2016146795A (ru) 2018-05-30
JP2017514953A (ja) 2017-06-08
KR102351738B1 (ko) 2022-01-14
US20170121435A1 (en) 2017-05-04
RU2708081C2 (ru) 2019-12-04
RU2016146795A3 (zh) 2018-10-31
US10077326B2 (en) 2018-09-18
EP3137521A4 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
CN106573996B (zh) 作为用于丁基橡胶生产的稀释剂的氢氟烯烃(hfo)
JP6626457B2 (ja) 低いイソプレノイド含量を有するコポリマー
CN106661158A (zh) 具有低环状低聚物含量的共聚物
CN106661162A (zh) 具有高多烯烃含量的共聚物
EP2940050A1 (en) Copolymer having low cyclic oligomer content
EP2940048A1 (en) Copolymer having low isoprenoid content
EP2940046A1 (en) Hydrofluorinated Olefins (HFO's) as diluents for Butyl rubber production
EP2940047A1 (en) Copolymer having high multiolefin content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200908