CN106654029B - An organic light emitting display panel and device - Google Patents
An organic light emitting display panel and device Download PDFInfo
- Publication number
- CN106654029B CN106654029B CN201611152979.XA CN201611152979A CN106654029B CN 106654029 B CN106654029 B CN 106654029B CN 201611152979 A CN201611152979 A CN 201611152979A CN 106654029 B CN106654029 B CN 106654029B
- Authority
- CN
- China
- Prior art keywords
- organic light
- display panel
- light emitting
- emitting display
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010168 coupling process Methods 0.000 claims abstract description 50
- 238000005859 coupling reaction Methods 0.000 claims abstract description 50
- 230000008878 coupling Effects 0.000 claims abstract description 49
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 36
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000002834 transmittance Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 48
- 230000003287 optical effect Effects 0.000 claims description 31
- 229910052709 silver Inorganic materials 0.000 claims description 16
- 239000004332 silver Substances 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 230000005525 hole transport Effects 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 3
- 150000001335 aliphatic alkanes Chemical group 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 abstract description 12
- 238000002347 injection Methods 0.000 abstract description 10
- 239000007924 injection Substances 0.000 abstract description 10
- 239000000243 solution Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 14
- 230000008033 biological extinction Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005689 Fowler Nordheim tunneling Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/865—Intermediate layers comprising a mixture of materials of the adjoining active layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/818—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/826—Multilayers, e.g. opaque multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/858—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/38—Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80517—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
- H10K85/6565—Oxadiazole compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明实施例公开了一种有机发光显示面板及装置,该有机发光显示面板包括:层叠设置的第一电极和第二电极,所述第一电极和/或所述第二电极为出光侧电极;有机发光层,位于所述第一电极和所述第二电极之间;电子传输层,位于所述有机发光层和所述第二电极之间,其中所述电子传输层包含镱,且所述镱的体积分数≤3%;光耦合层,位于所述出光侧电极背离所述有机发光层的一侧。利用本发明实施例技术方案可以降低有机发光显示面板电子传输层与阴极之间的界面能障,提高电子注入能力,提高有机发光显示面板的光线透过率以及有机发光显示面板性能的目的。
The embodiment of the present invention discloses an organic light emitting display panel and a device. The organic light emitting display panel includes: a first electrode and a second electrode arranged in layers, and the first electrode and/or the second electrode are electrodes on the light emitting side an organic light emitting layer located between the first electrode and the second electrode; an electron transport layer located between the organic light emitting layer and the second electrode, wherein the electron transport layer comprises ytterbium, and the The volume fraction of ytterbium is less than or equal to 3%; the light coupling layer is located on the side of the light-emitting side electrode away from the organic light-emitting layer. Utilizing the technical solutions of the embodiments of the present invention can reduce the interface energy barrier between the electron transport layer and the cathode of the organic light emitting display panel, improve the electron injection capability, improve the light transmittance of the organic light emitting display panel and the performance of the organic light emitting display panel.
Description
技术领域technical field
本发明实施例涉及有机发光显示技术,尤其涉及一种有机发光显示面板及装置。Embodiments of the present invention relate to organic light emitting display technology, and in particular to an organic light emitting display panel and device.
背景技术Background technique
有机发光显示(Organic light Emitting Display),由于其具有不需背光源、对比度高、厚度薄、视角广、反应速度快等技术优点,已经成为显示行业发展的重点方向之一。Organic light emitting display (OLED) has become one of the key development directions of the display industry due to its technical advantages such as no need for backlight, high contrast ratio, thin thickness, wide viewing angle, and fast response speed.
现有的有机发光显示面板包括:阴极、电子传输层、发光层、空穴传输层、阳极和基板。工作时,在有机发光显示面板的阳极和阴极之间施加一偏置电压,空穴和电子突破界面能障,分别从空穴传输层和电子传输层向发光层迁移,在发光层上,电子和空穴复合产生激子,激子不稳定,释放出能量,将能量传递给发光层中有机发光物质的分子,使其从基态跃迁到激发态。激发态很不稳定,受激分子从激发态回到基态,辐射跃迁而产生发光现象。在有机发光显示面板中,有机材料与电极之间界面能障的高低决定了注入载流子的数量、有机发光显示面板的亮度以及效率。但现在的有机发光显示面板中,由于电子传输层与阴极之间的界面能障过高,电子的注入能力较低,这将会使得有机发光显示面板的性能较差。Existing organic light-emitting display panels include: a cathode, an electron transport layer, a light-emitting layer, a hole transport layer, an anode and a substrate. When working, a bias voltage is applied between the anode and the cathode of the organic light-emitting display panel, and the holes and electrons break through the interface energy barrier and migrate from the hole transport layer and the electron transport layer to the light-emitting layer respectively. On the light-emitting layer, the electrons Combined with holes to generate excitons, the excitons are unstable, release energy, and transfer energy to the molecules of organic light-emitting substances in the light-emitting layer, making them transition from the ground state to the excited state. The excited state is very unstable, and the excited molecules return to the ground state from the excited state, and the radiative transition produces luminescence. In the organic light emitting display panel, the level of the interface energy barrier between the organic material and the electrode determines the quantity of injected carriers, the brightness and the efficiency of the organic light emitting display panel. However, in the current organic light emitting display panel, because the interface energy barrier between the electron transport layer and the cathode is too high, the injection ability of electrons is low, which will make the performance of the organic light emitting display panel poor.
发明内容Contents of the invention
本发明提供一种有机发光显示面板及装置,以实现降低电子传输层与阴极之间的界面能障,提高有机发光显示面板性能的目的。The present invention provides an organic light emitting display panel and a device to achieve the purpose of reducing the interface energy barrier between an electron transport layer and a cathode and improving the performance of the organic light emitting display panel.
第一方面,本发明实施例提供了一种有机发光显示面板,该有机发光显示面板包括:In a first aspect, an embodiment of the present invention provides an organic light emitting display panel, the organic light emitting display panel comprising:
层叠设置的第一电极和第二电极,所述第一电极和/或所述第二电极为出光侧电极;A first electrode and a second electrode arranged in layers, the first electrode and/or the second electrode are electrodes on the light-emitting side;
有机发光层,位于所述第一电极和所述第二电极之间;an organic light-emitting layer located between the first electrode and the second electrode;
电子传输层,位于所述有机发光层和所述第二电极之间,其中所述电子传输层包含镱,且所述镱的体积分数≤3%;An electron transport layer located between the organic light-emitting layer and the second electrode, wherein the electron transport layer contains ytterbium, and the volume fraction of ytterbium is ≤3%;
光耦合层,位于所述出光侧电极背离所述有机发光层的一侧。The light coupling layer is located on the side of the light-emitting electrode away from the organic light-emitting layer.
第二方面,本发明实施例还提供了一种有机发光显示装置,该有机发光显示装置包括本发明实施例提供的任意一种有机发光显示面板。In a second aspect, an embodiment of the present invention further provides an organic light emitting display device, which includes any organic light emitting display panel provided in the embodiments of the present invention.
本发明实施例通过在电子传输层掺杂镱,且镱的体积分数≤3%,解决了现有的有机发光显示面板中电子传输层与阴极之间的界面能障过高,有机发光显示面板性能低的问题,实现了降低有机发光显示面板电子传输层与阴极之间的界面能障,提高电子注入能力,以及有机发光显示面板性能的目的。此外本发明实施例通过在有机发光显示面板中增设光耦合层,可以有效提高有机发光显示面板的光线透过率,可以进一步提高有机发光显示面板的性能。In the embodiments of the present invention, the electron transport layer is doped with ytterbium, and the volume fraction of ytterbium is ≤ 3%, which solves the problem that the interface energy barrier between the electron transport layer and the cathode in the existing organic light-emitting display panel is too high, and the organic light-emitting display panel The problem of low performance achieves the purpose of reducing the interface energy barrier between the electron transport layer and the cathode of the organic light-emitting display panel, improving the electron injection capability, and the performance of the organic light-emitting display panel. In addition, the embodiment of the present invention can effectively improve the light transmittance of the organic light emitting display panel by adding an optical coupling layer in the organic light emitting display panel, and can further improve the performance of the organic light emitting display panel.
附图说明Description of drawings
图1为本发明实施例提供的一种有机发光显示面板的结构示意图;FIG. 1 is a schematic structural diagram of an organic light emitting display panel provided by an embodiment of the present invention;
图2a-图2d为本发明实施例提供的有机发光显示面板与现有的有机发光显示面板的性能参数对比图;2a-2d are comparison diagrams of performance parameters between the organic light emitting display panel provided by the embodiment of the present invention and the existing organic light emitting display panel;
图3a-图3c为本发明实施例提供的有机发光显示面板的性能参数对比图;3a-3c are comparison diagrams of performance parameters of organic light-emitting display panels provided by embodiments of the present invention;
图4a为光耦合层的折射率随该光耦合层厚度的变化关系图;Figure 4a is a graph showing the relationship between the refractive index of the optical coupling layer and the thickness of the optical coupling layer;
图4b为光耦合层消光系数随该光耦合层厚度的变化关系图;Figure 4b is a graph showing the variation of the extinction coefficient of the optical coupling layer with the thickness of the optical coupling layer;
图5为本发明提供的有机发光显示面板的光线透过率随光耦合层的厚度的变化关系图;FIG. 5 is a graph showing the relationship between the light transmittance of the organic light emitting display panel and the thickness of the light coupling layer according to the present invention;
图6a和图6b本发明实施例提供的有机发光显示面板的性能参数对比图;Figure 6a and Figure 6b are comparison diagrams of performance parameters of organic light-emitting display panels provided by the embodiments of the present invention;
图7为本发明实施例提供的另一种有机发光显示面板的结构示意图;FIG. 7 is a schematic structural diagram of another organic light emitting display panel provided by an embodiment of the present invention;
图8为本发明实施例提供的又一种有机发光显示面板的结构示意图;FIG. 8 is a schematic structural diagram of another organic light-emitting display panel provided by an embodiment of the present invention;
图9为本发明实施例提供的又一种有机发光显示面板的结构示意图;FIG. 9 is a schematic structural diagram of another organic light-emitting display panel provided by an embodiment of the present invention;
图10为本发明实施例提供的又一种有机发光显示面板的结构示意图;FIG. 10 is a schematic structural diagram of another organic light-emitting display panel provided by an embodiment of the present invention;
图11为本发明实施例提供的一种有机发光显示装置的结构示意图。FIG. 11 is a schematic structural diagram of an organic light emitting display device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.
图1为本发明实施例提供的一种有机发光显示面板的结构示意图。参见图1,该有机发光显示面板包括:层叠设置的第一电极11和第二电极12,第一电极11和/或第二电极12为出光侧电极(图1中示例性地仅以第二电极12为出光侧电极);有机发光层13,位于第一电极11和第二电极12之间;电子传输层14,位于有机发光层13和第二电极12之间,其中,电子传输层14包含镱(Yb),且镱的体积分数≤3%;以及光耦合层20,位于出光侧电极(第二电极12)背离有机发光层13的一侧。第一电极11为阳极,第二电极12为阴极。FIG. 1 is a schematic structural diagram of an organic light emitting display panel provided by an embodiment of the present invention. Referring to FIG. 1 , the organic light-emitting display panel includes: a first electrode 11 and a second electrode 12 arranged in layers, and the first electrode 11 and/or the second electrode 12 are electrodes on the light-emitting side (in FIG. The electrode 12 is the light-emitting side electrode); the organic light-emitting layer 13 is located between the first electrode 11 and the second electrode 12; the electron transport layer 14 is located between the organic light-emitting layer 13 and the second electrode 12, wherein the electron transport layer 14 It contains ytterbium (Yb), and the volume fraction of ytterbium is ≤3%; and the optical coupling layer 20 is located on the side of the light-emitting side electrode (second electrode 12 ) away from the organic light-emitting layer 13 . The first electrode 11 is an anode, and the second electrode 12 is a cathode.
根据FN隧穿模型(Fowler-Nordheim tunneling model),可知,设置电子传输层14包含镱可以降低电子传输层14与第二电极12之间的界面能障。According to the Fowler-Nordheim tunneling model, it can be seen that setting the electron transport layer 14 to contain ytterbium can reduce the interface energy barrier between the electron transport layer 14 and the second electrode 12 .
由于现有的有机发光显示面板中电子传输层14不包含镱,分别制作两个有机发光显示面板的局部器件,其中第一个器件B中电子传输层14不包含镱,第二个器件A中电子传输层14包含镱,对两个器件的电子注入能力进行研究,其结果如图2a所示。图2a中,横轴表示器件的电流密度J,单位为毫安每平方厘米(mA/cm2),纵轴表示器件的电压U,单位为伏特(V)。参见图2a,在相同电流密度J下,第二个器件A的电压U要比第一器件B的电压U低的多,这说明设置电子传输层14包含镱确实有助于降低界面能障,有利于电子的注入。Since the electron transport layer 14 in the existing organic light emitting display panel does not contain ytterbium, two partial devices of the organic light emitting display panel are manufactured respectively, wherein the electron transport layer 14 in the first device B does not contain ytterbium, and in the second device A The electron-transporting layer 14 comprises ytterbium, and the electron-injection capabilities of the two devices were investigated, the results of which are shown in Figure 2a. In Fig. 2a, the horizontal axis represents the current density J of the device in milliamperes per square centimeter (mA/cm 2 ), and the vertical axis represents the voltage U of the device in volts (V). Referring to Fig. 2a, under the same current density J, the voltage U of the second device A is much lower than the voltage U of the first device B, which shows that setting the electron transport layer 14 to contain ytterbium does help to reduce the interface energy barrier, Facilitate the injection of electrons.
图2b-2d为本发明实施例提供的有机发光显示面板与现有的有机发光显示面板的性能曲线对比图。其中,D表示本发明实施例提供的有机发光显示面板,C表示现有的有机发光显示面板,在现有的有机发光显示面板C中,电子传输层14不包含镱。2b-2d are graphs comparing the performance curves of the organic light emitting display panel provided by the embodiment of the present invention and the existing organic light emitting display panel. Wherein, D represents the organic light emitting display panel provided by the embodiment of the present invention, C represents a conventional organic light emitting display panel, and in the conventional organic light emitting display panel C, the electron transport layer 14 does not contain ytterbium.
图2b中,横轴表示有机发光显示面板的电流密度J,单位为毫安每平方厘米(mA/cm2),纵轴表示有机发光显示面板上所施加的偏置电压U,单位为伏(V)。从图2b中可以发现,在相同的电流密度J下,本发明实施例提供的有机发光显示面板D需要的偏置电压U比现有的有机发光显示面板C所需要的偏置电压U低得多。这说明设置电子传输层14包含镱确实有助于降低电子传输层14与第二电极12(即阴极)之间的界面能障,有利于从第二电极12注入更多的电子,促进有机发光显示面板中载流子平衡,进而降低有机发光显示面板的工作电压(即偏置电压U)。In FIG. 2b, the horizontal axis represents the current density J of the organic light emitting display panel, and the unit is mA/cm 2 , and the vertical axis represents the bias voltage U applied on the organic light emitting display panel, and the unit is volts ( V). It can be seen from FIG. 2b that under the same current density J, the bias voltage U required by the organic light emitting display panel D provided by the embodiment of the present invention is much lower than the bias voltage U required by the existing organic light emitting display panel C. many. This shows that setting the electron transport layer 14 to contain ytterbium does help to reduce the interfacial energy barrier between the electron transport layer 14 and the second electrode 12 (i.e. the cathode), which is conducive to injecting more electrons from the second electrode 12 and promoting organic light emission. Carriers in the display panel are balanced, thereby reducing the operating voltage (ie, the bias voltage U) of the organic light emitting display panel.
图2c中,横轴表示有机发光显示面板的电流密度J,单位为毫安每平方厘米(mA/cm2),纵轴表示有机发光显示面板的发光效率E,单位为坎德拉每安培(cd/A)。参见图2c,在相同的电流密度J下,本发明实施例提供的有机发光显示面板D的发光效率E明显高于现有的有机发光显示面板C的发光效率E。这说明设置电子传输层14包含镱确实有助于提升有机发光显示面板的性能。In Fig. 2c, the horizontal axis represents the current density J of the organic light emitting display panel in milliamperes per square centimeter (mA/cm 2 ), and the vertical axis represents the luminous efficiency E of the organic light emitting display panel in candela per ampere (cd/cm 2 ). A). Referring to FIG. 2c, under the same current density J, the luminous efficiency E of the organic light emitting display panel D provided by the embodiment of the present invention is obviously higher than that of the existing organic light emitting display panel C. This shows that setting the electron transport layer 14 to contain ytterbium does help to improve the performance of the organic light emitting display panel.
图2d中,横轴表示有机发光显示面板的工作时长,单位为小时(h)。纵轴表示有机发光显示面板发光亮度L与初始亮度L0的比值。参见图2d,改进后有机发光显示面板D的亮度L从初始亮度L0(对应纵坐标为100)衰减到初始亮度L0的75%(对应纵坐标为75)这个过程中,本发明实施例提供的有机发光显示面板D的工作时长约等于370h,而现有的有机发光显示面板C工作时长约等于160h。显然,本发明实施例提供的有机发光显示面板D工作时长比现有的有机发光显示面板C工作时长长的多。这说明相对于现有的有机发光显示面板C,本发明实施例提供的有机发光显示面板D寿命更长。换言之,设置电子传输层14包含镱确实有助于延长有机发光显示面板的寿命。In FIG. 2d, the horizontal axis represents the working time of the organic light emitting display panel, and the unit is hour (h). The vertical axis represents the ratio of the luminance L of the organic light emitting display panel to the initial luminance L 0 . Referring to Fig. 2d, during the process that the luminance L of the improved organic light-emitting display panel D decays from the initial luminance L 0 (corresponding to 100 on the ordinate) to 75% of the initial luminance L 0 (corresponding to 75 on the ordinate), the embodiment of the present invention The working time of the provided organic light emitting display panel D is approximately equal to 370 hours, while the working time of the existing organic light emitting display panel C is approximately equal to 160 hours. Apparently, the working time of the organic light emitting display panel D provided by the embodiment of the present invention is much longer than that of the existing organic light emitting display panel C. This shows that compared with the existing organic light emitting display panel C, the lifespan of the organic light emitting display panel D provided by the embodiment of the present invention is longer. In other words, setting the electron transport layer 14 to contain ytterbium does help to prolong the lifetime of the OLED panel.
图3a-图3c为本发明实施例提供的有机发光显示面板的性能参数对比图,其中,F为电子传输层14中镱的体积分数为1%的有机发光显示面板,G为电子传输层14中镱的体积分数为3%的有机发光显示面板,H为电子传输层14中镱的体积分数为5%的有机发光显示面板,J为电子传输层14中镱的体积分数为7%的有机发光显示面板,K为电子传输层14中镱的体积分数为9%的有机发光显示面板。3a-3c are comparison diagrams of performance parameters of the organic light emitting display panel provided by the embodiment of the present invention, wherein, F is an organic light emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 1%, and G is the electron transport layer 14 The organic light-emitting display panel in which the volume fraction of ytterbium is 3%, H is the organic light-emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 5%, and J is the organic light-emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 7%. For a light-emitting display panel, K is an organic light-emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 9%.
图3a中,横轴表示有机发光显示面板的电流密度J,单位为毫安每平方厘米(mA/cm2),纵轴表示有机发光显示面板上所施加的偏置电压U,单位为伏(V)。从图3a中可以发现,在相同的电流密度J下,各有机发光显示面板按照所施加的偏置电压U由低到高的顺序排列,结果为:有机发光显示面板G<有机发光显示面板F<有机发光显示面板H<有机发光显示面板J<有机发光显示面板K。In Fig. 3a, the horizontal axis represents the current density J of the organic light emitting display panel, and the unit is mA/cm 2 , and the vertical axis represents the bias voltage U applied on the organic light emitting display panel, and the unit is volts ( V). It can be found from Fig. 3a that under the same current density J, the OLED panels are arranged in descending order according to the applied bias voltage U, and the result is: OLED panel G<OLED panel F <Organic light emitting display panel H<Organic light emitting display panel J<Organic light emitting display panel K.
图3b中,横轴表示有机发光显示面板的电流密度J,单位为毫安每平方厘米(mA/cm2),纵轴表示有机发光显示面板的发光效率E,单位为坎德拉每安培(cd/A)。参见图3b,在相同的电流密度J下,各有机发光显示面板按照发光效率E由高到低的顺序排列,结果为:有机发光显示面板G>有机发光显示面板F>有机发光显示面板H>有机发光显示面板J>有机发光显示面板K。In Fig. 3b, the horizontal axis represents the current density J of the organic light-emitting display panel in milliamperes per square centimeter (mA/cm 2 ), and the vertical axis represents the luminous efficiency E of the organic light-emitting display panel in candela per ampere (cd/cm 2 ). A). Referring to Fig. 3b, under the same current density J, the organic light emitting display panels are arranged in descending order of luminous efficiency E, and the result is: organic light emitting display panel G > organic light emitting display panel F > organic light emitting display panel H > Organic light emitting display panel J > organic light emitting display panel K.
图3c中,横轴表示有机发光显示面板的工作时长,单位为小时(h),纵轴表示有机发光显示面板发光亮度L与初始亮度L0的比值。参见图3c,有机发光显示面板发光亮度L与初始亮度L0的比值相同时,有机发光显示面板G、有机发光显示面板F以及有机发光显示面板H的工作时长明显长于有机发光显示面板J或有机发光显示面板K的工作时长。In FIG. 3c, the horizontal axis represents the working time of the organic light emitting display panel in hours (h), and the vertical axis represents the ratio of the luminance L of the organic light emitting display panel to the initial luminance L0 . Referring to Fig. 3c, when the ratio of the luminance L of the OLED panel to the initial brightness L0 is the same, the working hours of the OLED panel G, the OLED panel F, and the OLED panel H are significantly longer than those of the OLED panel J or the OLED panel. The working time of the luminous display panel K.
综上说明,有机发光显示面板中传输层14中镱含量不同,有机发光显示面板的性能存在一定差别。在具体设置时,可以根据待制作有机发光显示面板的性能需求,选取合适的镱的体积分数值。可选地,设置镱的体积分数≤3%,结合图3a-图3c,可以理解,这样设置可以更加有效的降低肖特基势垒,提高电子的注入能力,从而促进有机发光显示面板中载流子的平衡,提高有机发光显示面板的性能。To sum up, different ytterbium contents in the transport layer 14 in the organic light emitting display panel have different performances of the organic light emitting display panel. In specific settings, an appropriate volume fraction of ytterbium can be selected according to the performance requirements of the organic light-emitting display panel to be fabricated. Optionally, the volume fraction of ytterbium is set to ≤3%, and it can be understood by referring to Fig. 3a-Fig. The balance of flow particles improves the performance of organic light-emitting display panels.
继续参见图1,在具体使用时,光线在有机发光层13处形成后,经出光侧电极(第二电极12)出射。考虑若有机发光显示面板不包括光耦合层20,光线由出光侧电极(第二电极12)射入到空气中的过程,实质上是光线由光密介质射入到光疏介质的过程,光线在出光侧电极(第二电极12)与空气的交界面易发生反射,进而使的光线的透过率低。本申请技术方案中设置光耦合层20的实质是,改变有机发光显示面板出光侧与空气接触的面的折射率,以抑制光的反射,进而提高光线的透光率。Continuing to refer to FIG. 1 , in specific use, after the light is formed at the organic light-emitting layer 13 , it exits through the light-emitting side electrode (second electrode 12 ). Considering that if the organic light-emitting display panel does not include the optical coupling layer 20, the process of light entering the air from the light-emitting electrode (second electrode 12) is essentially the process of light entering the light from the optically denser medium to the optically thinner medium. Reflection tends to occur at the interface between the light-emitting side electrode (second electrode 12 ) and the air, thereby reducing the light transmittance. The essence of disposing the optical coupling layer 20 in the technical solution of the present application is to change the refractive index of the surface of the organic light-emitting display panel in contact with the air on the light-emitting side, so as to suppress the reflection of light and further increase the light transmittance of light.
研究表明,在出光侧电极背离有机发光层13的一侧沉积光耦合层20,可以使得从出光侧电极发出的光的透光率至少提升10%。此外沉积有光耦合层20的出光侧电极的方块电阻比未沉积有光耦合层20的出光侧电极的方块电阻至少减小0.2Ω/□。Studies have shown that depositing the light coupling layer 20 on the side of the light-emitting electrode away from the organic light-emitting layer 13 can increase the transmittance of light emitted from the light-emitting electrode by at least 10%. In addition, the sheet resistance of the electrode on the light-emitting side deposited with the optical coupling layer 20 is at least 0.2 Ω/□ lower than the sheet resistance of the electrode on the light-emitting side not deposited with the optical coupling layer 20 .
在具体使用时,可用作光耦合层20的材料有多种,例如,光耦合层20的材料的结构式的通式为In specific use, there are many kinds of materials that can be used as the optical coupling layer 20, for example, the general formula of the structural formula of the material of the optical coupling layer 20 is
其中,Ar1、Ar2、Ar3以及Ar4为芳香基团,R1-R28为烷烃基团或芳香基团,A为有机基团。示例性地,该光耦合层20的材料可以为: Wherein, Ar 1 , Ar 2 , Ar 3 and Ar 4 are aromatic groups, R 1 -R 28 are alkane groups or aromatic groups, and A is an organic group. Exemplarily, the material of the optical coupling layer 20 can be:
进一步地,该光耦合层20的厚度可以为任意数值,在具体设置时,可以根据待制作的有机发光显示面板的性能需求而定。Further, the thickness of the light coupling layer 20 can be any value, and the specific setting can be determined according to the performance requirements of the organic light emitting display panel to be fabricated.
图4a为光耦合层20的折射率随该光耦合层20厚度的变化关系图。其中,横轴表示光耦合层20的厚度,单位为纳米(nm),纵轴表示光耦合层20的折射率。参见图4a,当光耦合层20的厚度为时,光耦合层20的折射率趋于稳定。FIG. 4 a is a graph showing the relationship between the refractive index of the light coupling layer 20 and the thickness of the light coupling layer 20 . Wherein, the horizontal axis represents the thickness of the optical coupling layer 20 in nanometers (nm), and the vertical axis represents the refractive index of the optical coupling layer 20 . Referring to Fig. 4a, when the thickness of the optical coupling layer 20 is , the refractive index of the light coupling layer 20 tends to be stable.
图4b为光耦合层20消光系数随该光耦合层20厚度的变化关系图。其中,横轴表示光耦合层20的厚度,单位为纳米(nm),纵轴表示光耦合层20的消光系数。消光系数可以反映该光耦合层20对光线的吸收情况,消光系数越大,该光耦合层20对光线的吸收越多。参见图4b,当光耦合层20的厚度为时,该光耦合层20的消光系数趋于稳定。FIG. 4 b is a graph showing the relationship between the extinction coefficient of the light coupling layer 20 and the thickness of the light coupling layer 20 . Wherein, the horizontal axis represents the thickness of the optical coupling layer 20 in nanometers (nm), and the vertical axis represents the extinction coefficient of the optical coupling layer 20 . The extinction coefficient can reflect the absorption of light by the optical coupling layer 20 , the larger the extinction coefficient, the more the optical coupling layer 20 absorbs light. Referring to Fig. 4b, when the thickness of the optical coupling layer 20 is , the extinction coefficient of the optical coupling layer 20 tends to be stable.
结合图4a和图4b,可选地,设置光耦合层20的厚度为 4a and 4b, optionally, the thickness of the optical coupling layer 20 is set to
图5为本发明实施例提供的有机发光显示面板的光线透过率随光耦合层20的厚度的变化关系图。其中,横轴表示光耦合层20的厚度,单位为纳米(nm),纵轴表示有机发光显示面板出光侧光线的透过率T%。参见图5,虽然随着光耦合层20的厚度的逐渐增加,光线的透过率略有降低,但在误差允许的范围内。总体而言,当光耦合层20的厚度在的范围内时,该有机发光显示面板的光线透过率较为理想。FIG. 5 is a graph showing the relationship between the light transmittance of the organic light emitting display panel and the thickness of the light coupling layer 20 according to the embodiment of the present invention. Wherein, the horizontal axis represents the thickness of the light coupling layer 20 in nanometers (nm), and the vertical axis represents the transmittance T% of light at the light emitting side of the organic light emitting display panel. Referring to FIG. 5 , although the light transmittance decreases slightly as the thickness of the light coupling layer 20 gradually increases, it is within the allowable range of error. Overall, when the thickness of the optical coupling layer 20 is In the range of , the light transmittance of the organic light emitting display panel is ideal.
为了使得有机发光显示面板具有的较好的显示效果,可选地,出光侧电极的透过率为30%-50%。出光侧电极与光耦合层20叠合后的透过率≥65%。In order to make the organic light-emitting display panel have a better display effect, optionally, the transmittance of the electrode on the light-emitting side is 30%-50%. The transmittance of the electrode on the light emitting side and the optical coupling layer 20 after being laminated is ≥ 65%.
图6a和图6b为本发明实施例提供的有机发光显示面板的性能参数曲线图。图6a和图6b中,L为电子传输层14中镱的体积分数为1%且包括光耦合层20的有机发光显示面板,M为电子传输层14中镱的体积分数为3%且包括光耦合层20的有机发光显示面板,N为电子传输层14中镱的体积分数为5%且包括光耦合层20的有机发光显示面板,P为电子传输层14中镱的体积分数为10%且包括光耦合层20的有机发光显示面板。Fig. 6a and Fig. 6b are performance parameter curves of the organic light emitting display panel provided by the embodiment of the present invention. In FIG. 6a and FIG. 6b, L is an organic light-emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 1% and includes the light coupling layer 20, and M is the volume fraction of ytterbium in the electron transport layer 14 is 3% and includes light The organic light-emitting display panel of the coupling layer 20, N is the organic light-emitting display panel in which the volume fraction of ytterbium in the electron transport layer 14 is 5% and includes the optical coupling layer 20, P is the volume fraction of ytterbium in the electron transport layer 14 is 10%, and An organic light emitting display panel including an optical coupling layer 20 .
图6a中,横轴表示有机发光显示面板发出的光线的波长,单位为纳米(nm),纵轴表示有机发光显示面板出光侧光线的透过率T%。从图6a可以发现,随着电子传输层14中镱的体积分数的不断提高,有机发光显示面板的透过率出现一定程度的下降。In FIG. 6 a , the horizontal axis represents the wavelength of light emitted by the organic light emitting display panel, in nanometers (nm), and the vertical axis represents the transmittance T% of the light on the light emitting side of the organic light emitting display panel. It can be found from FIG. 6a that, with the continuous increase of the volume fraction of ytterbium in the electron transport layer 14, the transmittance of the organic light-emitting display panel decreases to a certain extent.
图6b中,横轴表示不同的有机发光显示面板,纵轴表示有机发光显示面板出光侧电极与光耦合材料层的方块电阻,单位为欧姆每方块(Ω/□)。从图6b可以发现,与其余有机发光显示面板相比,电子传输层14中镱的体积分数为3%且包括光耦合层20的有机发光显示面板M的方块电阻最小,这有利于减小有机发光显示面板的所需的偏置电压。事实上,该有机发光显示面板的方块电阻仅为现有的有机发光显示面板方块电阻的一半。In FIG. 6 b , the horizontal axis represents different organic light emitting display panels, and the vertical axis represents the sheet resistance of the light-emitting side electrode and the optical coupling material layer of the organic light emitting display panel, and the unit is ohm per square (Ω/□). It can be found from FIG. 6b that, compared with other organic light emitting display panels, the sheet resistance of the organic light emitting display panel M with the volume fraction of ytterbium in the electron transport layer 14 being 3% and including the light coupling layer 20 is the smallest, which is beneficial to reduce the organic light emitting display panel M. The required bias voltage for an illuminated display panel. In fact, the sheet resistance of the organic light emitting display panel is only half of that of the existing organic light emitting display panel.
上述数据再次说明,选取镱的体积分数≤3%,且在有机发光显示面板出光侧增设光耦合层20,可以有效提高有机发光显示面板的光线透过率,降低有机发光显示面板的偏置电压,提高有机发光显示面板的性能。The above data again shows that selecting the volume fraction of ytterbium ≤ 3%, and adding an optical coupling layer 20 on the light-emitting side of the organic light-emitting display panel can effectively improve the light transmittance of the organic light-emitting display panel and reduce the bias voltage of the organic light-emitting display panel , to improve the performance of the organic light emitting display panel.
图7为本发明实施例提供的另一种有机发光显示面板的结构示意图。示例性地,如图7所示,该有机发光显示面板仅将第二电极12作为出光侧电极,光线在有机发光层13处形成后,经电子传输层14以及第二电极12出射。具体地,第一电极11可以包含第一导电透明薄膜111、第二导电透明薄膜112和位于第一导电透明薄膜111和第二导电透明薄膜112之间的反射膜113,第二电极12的材料可以为银或者含银的合金。可选地,在具体设计时,第一电极11的各膜层的材料和厚度可以有多种,只要能确保第一电极11具有很好的空穴注入能力以及很好的反射效果即可。例如,第一电极11中第一导电透明薄膜111和第二导电透明薄膜112材料可以为氧化铟锡或氧化铟锌,反射膜113的材料可以为银或者含银的合金,反射膜113的厚度可以为50nm-150nm。第二电极12的厚度可以有多种,只要能确保第二电极12具有很好的电子注入能力以及良好的光线透过率即可。例如,第二电极12的材料可以为含银的合金,其中银的体积百分比≥80%,第二电极12的厚度可以为10nm-20nm。FIG. 7 is a schematic structural diagram of another organic light emitting display panel provided by an embodiment of the present invention. Exemplarily, as shown in FIG. 7 , the organic light-emitting display panel only uses the second electrode 12 as the light-emitting side electrode, and light is emitted through the electron transport layer 14 and the second electrode 12 after being formed at the organic light-emitting layer 13 . Specifically, the first electrode 11 may include a first conductive transparent film 111, a second conductive transparent film 112, and a reflective film 113 between the first conductive transparent film 111 and the second conductive transparent film 112. The material of the second electrode 12 It can be silver or an alloy containing silver. Optionally, in specific design, the materials and thicknesses of each film layer of the first electrode 11 can be various, as long as the first electrode 11 can ensure good hole injection capability and good reflection effect. For example, the material of the first conductive transparent film 111 and the second conductive transparent film 112 in the first electrode 11 can be indium tin oxide or indium zinc oxide, the material of the reflective film 113 can be silver or an alloy containing silver, and the thickness of the reflective film 113 is It can be 50nm-150nm. The thickness of the second electrode 12 can be various, as long as the second electrode 12 can ensure good electron injection capability and good light transmittance. For example, the material of the second electrode 12 may be an alloy containing silver, wherein the volume percentage of silver is ≥ 80%, and the thickness of the second electrode 12 may be 10nm-20nm.
图8为本发明实施例提供的又一种有机发光显示面板的结构示意图。参见图8,该有机发光显示面板仅将第一电极11作为出光侧电极,光线在有机发光层13处形成后,经第一电极11出射。具体地,第一电极11的材料为导电透明材料,第二电极12的材料可以为银或者含银的合金。可选地,在具体设计时,第一电极11的材料和厚度可以有多种,只要能确保第一电极11具有很好的空穴注入能力以及良好的光线透过率即可。例如,构成第一电极11的导电透明薄膜材料可以为氧化铟锡或氧化铟锌。第二电极12的厚度可以有多种,只要能确保第二电极12具有很好的电子注入能力以及良好的反射效果即可。例如,第二电极12的材料可以为含银的合金,其中银的体积百分比≥80%,第二电极12的厚度可以为50nm-150nm。FIG. 8 is a schematic structural diagram of another organic light emitting display panel provided by an embodiment of the present invention. Referring to FIG. 8 , the organic light-emitting display panel only uses the first electrode 11 as the light-emitting side electrode, and light is emitted through the first electrode 11 after being formed at the organic light-emitting layer 13 . Specifically, the material of the first electrode 11 is a conductive transparent material, and the material of the second electrode 12 may be silver or an alloy containing silver. Optionally, in specific design, the material and thickness of the first electrode 11 can be varied, as long as the first electrode 11 can ensure good hole injection capability and good light transmittance. For example, the conductive transparent film material constituting the first electrode 11 may be indium tin oxide or indium zinc oxide. The thickness of the second electrode 12 can be various, as long as the second electrode 12 can ensure good electron injection capability and good reflection effect. For example, the material of the second electrode 12 may be an alloy containing silver, wherein the volume percentage of silver is ≥80%, and the thickness of the second electrode 12 may be 50nm-150nm.
在上述技术方案的基础上,有机发光层13的材料可以包含红光发光材料、绿光发光材料和蓝光发光材料。在使用时,可选地,红光发光材料发出的光、绿光发光材料发出的光和蓝光发光材料发出的光混合得到白光。On the basis of the above technical solutions, the material of the organic light emitting layer 13 may include red light emitting materials, green light emitting materials and blue light emitting materials. When in use, optionally, the light emitted by the red light emitting material, the light emitted by the green light emitting material and the light emitted by the blue light emitting material are mixed to obtain white light.
进一步地,参见图9,该有机发光显示面板还可以包括色阻层15,色阻层15设置于有机发光显示面板的出光侧,以使有机发光显示面板发出的白光经色阻15层变为彩色光。Further, referring to FIG. 9, the organic light-emitting display panel may further include a color-resist layer 15, and the color-resist layer 15 is arranged on the light-emitting side of the organic light-emitting display panel, so that the white light emitted by the organic light-emitting display panel becomes colored light.
典型地,红光发光材料和绿光发光材料可以包含磷光材料,蓝光发光材料可以包含荧光材料。其中,荧光材料可以包含热活性延迟荧光材料。Typically, the red light emitting material and the green light emitting material may contain phosphorescent materials, and the blue light emitting material may contain fluorescent materials. Wherein, the fluorescent material may include thermally active delayed fluorescent material.
图10为本发明实施提供的又一种有机发光显示面板,参见图10,该有机发光显示面板还可以包括空穴传输层16,空穴传输层16位于第一电极11和有机发光层13之间。FIG. 10 is another organic light-emitting display panel provided by the present invention. Referring to FIG. 10, the organic light-emitting display panel may further include a hole transport layer 16, and the hole transport layer 16 is located between the first electrode 11 and the organic light-emitting layer 13. between.
需要说明的,本申请提供的各有机发光面板在制作的过程中,可以在基板上,先形成第一电极11,然后依次形成位于第一电极11和第二电极12之间的各膜层,直至最后形成第二电极12;也可以在基板上,先形成第二电极12,然后依次形成位于第一电极11和第二电极12之间的各膜层,直至最后形成第一电极11,即有机发光显示面板也可以是倒置结构。It should be noted that during the manufacturing process of each organic light-emitting panel provided in this application, the first electrode 11 can be formed on the substrate first, and then the film layers between the first electrode 11 and the second electrode 12 can be formed sequentially. Until the second electrode 12 is finally formed; it is also possible to form the second electrode 12 first on the substrate, and then successively form each film layer between the first electrode 11 and the second electrode 12 until the first electrode 11 is finally formed, that is The organic light emitting display panel may also have an inverted structure.
本发明实施例还提供了一种有机发光显示装置。图11为本发明实施例提供的一种有机发光显示装置的结构示意图,参见图11,该有机发光显示装置101包括本发明实施例提供的任意一种有机发光显示面板。该有机发光显示装置具体可以为手机、笔记本电脑,智能可穿戴设备以及公共大厅的信息查询机等。The embodiment of the present invention also provides an organic light emitting display device. FIG. 11 is a schematic structural diagram of an organic light emitting display device provided by an embodiment of the present invention. Referring to FIG. 11 , the organic light emitting display device 101 includes any organic light emitting display panel provided by an embodiment of the present invention. Specifically, the organic light-emitting display device may be a mobile phone, a notebook computer, a smart wearable device, an information inquiry machine in a public hall, and the like.
本发明实施例提供的有机发光显示装置通过设置电子传输层包含镱,且镱的体积分数≤3%,解决现有的有机发光显示面板中电子传输层与阴极之间的界面能障过高,有机发光显示面板性能低的问题,实现了降低有机发光显示面板电子传输层与阴极之间的界面能障,提高电子注入能力,以及有机发光显示面板性能的目的。此外本发明实施例通过在有机发光显示面板中增设光耦合层,可以有效提高有机发光显示面板的光线透过率,可以进一步提高有机发光显示面板的性能。The organic light-emitting display device provided by the embodiment of the present invention solves the problem that the interface energy barrier between the electron-transport layer and the cathode in the existing organic light-emitting display panel is too high by setting the electron-transport layer to contain ytterbium, and the volume fraction of ytterbium is ≤3%. The problem of low performance of the organic light-emitting display panel achieves the purpose of reducing the interface energy barrier between the electron transport layer and the cathode of the organic light-emitting display panel, improving the electron injection capability, and the purpose of the performance of the organic light-emitting display panel. In addition, the embodiment of the present invention can effectively improve the light transmittance of the organic light emitting display panel by adding an optical coupling layer in the organic light emitting display panel, and can further improve the performance of the organic light emitting display panel.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611152979.XA CN106654029B (en) | 2016-12-14 | 2016-12-14 | An organic light emitting display panel and device |
US15/459,605 US20170187003A1 (en) | 2016-12-14 | 2017-03-15 | Organic light-emitting diode (oled) display panel and display apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611152979.XA CN106654029B (en) | 2016-12-14 | 2016-12-14 | An organic light emitting display panel and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106654029A CN106654029A (en) | 2017-05-10 |
CN106654029B true CN106654029B (en) | 2018-09-07 |
Family
ID=58822423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611152979.XA Active CN106654029B (en) | 2016-12-14 | 2016-12-14 | An organic light emitting display panel and device |
Country Status (2)
Country | Link |
---|---|
US (1) | US20170187003A1 (en) |
CN (1) | CN106654029B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107482130B (en) * | 2017-08-02 | 2020-05-26 | 京东方科技集团股份有限公司 | Organic light-emitting panel, method for making the same, and organic light-emitting device |
US12114519B2 (en) * | 2019-02-21 | 2024-10-08 | Sharp Kabushiki Kaisha | Light-emitting element and display device |
US11430969B2 (en) * | 2019-08-28 | 2022-08-30 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Electroluminescent component having metal layer disposed between two of optical coupling layers and display device having the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1961617A (en) * | 2004-03-29 | 2007-05-09 | 富士胶片株式会社 | Organic electroluminescent device, process for fabricating the same and display |
WO2008135891A1 (en) * | 2007-05-02 | 2008-11-13 | Philips Intellectual Property & Standards Gmbh | Organic light emitting diode device |
US8179034B2 (en) * | 2007-07-13 | 2012-05-15 | 3M Innovative Properties Company | Light extraction film for organic light emitting diode display and lighting devices |
CN103346267A (en) * | 2013-06-24 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Active matrix organic electroluminescence display device |
CN103594659A (en) * | 2012-08-17 | 2014-02-19 | 海洋王照明科技股份有限公司 | Organic electroluminescent device and preparation method thereof |
CN103715372A (en) * | 2013-12-26 | 2014-04-09 | 京东方科技集团股份有限公司 | Oled display panel and manufacturing method thereof |
-
2016
- 2016-12-14 CN CN201611152979.XA patent/CN106654029B/en active Active
-
2017
- 2017-03-15 US US15/459,605 patent/US20170187003A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1961617A (en) * | 2004-03-29 | 2007-05-09 | 富士胶片株式会社 | Organic electroluminescent device, process for fabricating the same and display |
WO2008135891A1 (en) * | 2007-05-02 | 2008-11-13 | Philips Intellectual Property & Standards Gmbh | Organic light emitting diode device |
US8179034B2 (en) * | 2007-07-13 | 2012-05-15 | 3M Innovative Properties Company | Light extraction film for organic light emitting diode display and lighting devices |
CN103594659A (en) * | 2012-08-17 | 2014-02-19 | 海洋王照明科技股份有限公司 | Organic electroluminescent device and preparation method thereof |
CN103346267A (en) * | 2013-06-24 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Active matrix organic electroluminescence display device |
CN103715372A (en) * | 2013-12-26 | 2014-04-09 | 京东方科技集团股份有限公司 | Oled display panel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106654029A (en) | 2017-05-10 |
US20170187003A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140760A1 (en) | Quantum dot light emitting diode device and manufacturing method therefor | |
CN104364928B (en) | For the hierarchy of OLED, the method for manufacturing the hierarchy, and the OLED with the hierarchy | |
CN106654050B (en) | A kind of organic light emitting display panel and device | |
CN102037580A (en) | Organic led and manufacturing method thereof | |
JP6089338B2 (en) | Organic EL device and manufacturing method thereof | |
CN108878491A (en) | Organic light emitting display panel and its organic light-emitting display device | |
CN106653803A (en) | Organic light emitting display panel and organic light emitting display device | |
CN106601921A (en) | Organic light-emitting display panel and apparatus | |
CN106549113B (en) | A kind of organic light emitting display panel and device | |
US10497879B2 (en) | Organic light-emitting display panel device | |
CN106654029B (en) | An organic light emitting display panel and device | |
JP2014078499A (en) | Organic electroluminescent element and light-emitting device | |
KR101650541B1 (en) | Flexible substrate and method of fabricating thereof | |
JP2004104064A (en) | Light emitting element | |
WO2014065084A1 (en) | Electroluminescent element and illumination device using same | |
US10177333B2 (en) | Organic light-emitting display panel and device | |
EP2720284B1 (en) | Method of fabricating a metal oxide thin film substrate for OLED | |
CN102386339A (en) | Organic electroluminescent element | |
CN100514703C (en) | organic electroluminescent element | |
CN104425720A (en) | Organic electroluminescent device and preparation method thereof | |
JP2006139932A (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT | |
CN105702705A (en) | OLED (organic light-emitting diode) display panel and preparation method therefor | |
KR101489780B1 (en) | Organic light emitting diode and fabrication method the same | |
CN105702877B (en) | OLED display panel and preparation method thereof | |
CN117279412B (en) | Internal light extraction structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211027 Address after: No.8, liufangyuan Henglu, Donghu New Technology Development Zone, Wuhan City, Hubei Province Patentee after: WUHAN TIANMA MICROELECTRONICS Co.,Ltd. Patentee after: Wuhan Tianma Microelectronics Co.,Ltd. Shanghai Branch Patentee after: Tianma Micro-Electronics Co.,Ltd. Address before: Room 509, building 1, No. 6111, Longdong Avenue, Pudong New Area, Shanghai, 200120 Patentee before: SHANGHAI TIANMA AM-OLED Co.,Ltd. Patentee before: Tianma Micro-Electronics Co.,Ltd. |