CN106653933A - 一种碳量子点增强的光电探测器及其制备方法 - Google Patents

一种碳量子点增强的光电探测器及其制备方法 Download PDF

Info

Publication number
CN106653933A
CN106653933A CN201611109564.4A CN201611109564A CN106653933A CN 106653933 A CN106653933 A CN 106653933A CN 201611109564 A CN201611109564 A CN 201611109564A CN 106653933 A CN106653933 A CN 106653933A
Authority
CN
China
Prior art keywords
germanium
layer
quantum dot
carbon quantum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611109564.4A
Other languages
English (en)
Inventor
庄爱芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611109564.4A priority Critical patent/CN106653933A/zh
Publication of CN106653933A publication Critical patent/CN106653933A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种碳量子点增强的硅化锗/锡化锗光电探测器及其制备方法,该硅化锗/锡化锗光电探测器自下而上依次有衬底、导电镀膜层、锡化锗层、硅化锗层及碳量子点层,所述的光电探测器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在硅化锗层上。其制备方法如下:先在衬底上沉积导电镀膜层,再沉积锡化锗层;然后将硅化锗沉积至锡化锗层上;在硅化锗层上制备碳量子点层;最后在硅化锗层及导电镀膜层上分别制作电极,获得光电探测器。本发明的碳量子点增强的硅化锗/锡化锗光电探测器利用碳量子点引入的掺杂效应来获得具有高转化效率的硅化锗/锡化锗光电探测器。

Description

一种碳量子点增强的光电探测器及其制备方法
技术领域
本发明涉及一种新型光电探测器及其制造方法,尤其涉及碳量子点增强的硅化锗/锡化锗光电探测器及其制备方法,属于光电探测器技术领域。
背景技术
纳米材料具有比表面积大、电学性质对表面吸附敏感等特点,将纳米技术应用于传感领域,有望制备出响应速度快、灵敏度高、选择性好的传感器件。半导体金属氧化物,尤其是锡化锗基纳米材料,由于其优越的光学、电学和光电探测特性而受到了广泛的关注。研究表明,掺杂能够进一步提高氧化锡基纳米材料的光电探测性能。虽然氧化锡基光电探测器已经取得了一定的成就,但是其灵敏度和选择性仍需进一步提高。减小粒子的尺寸和增加材料的比表面积是提高灵敏度和选择性的关键所在。
2004年,英国曼彻斯特大学的Geim和Novosolevo制备出单原子片层、具有蜂窝状晶格结构的硅化锗。由于其典型的二维结构,硅化锗具有超高的比表面积、电导率对表面吸附敏感等优点。近期研究发现,硅化锗可应用于制备光电探测器并且对水蒸气、一氧化碳、氨气和二氧化氮气体具有良好的响应性。但是,硅化锗传感器对一些危险性气体的探测,如甲烷,至今尚未发现报道。
发明内容
本发明的目的在于提供一种气体探测效率高且制备工艺简单的碳量子点增强的硅化锗/锡化锗光电探测器及其制备方法。
本发明的碳量子点增强的硅化锗/锡化锗光电探测器,自下而上依次有衬底、导电镀膜层、锡化锗层、硅化锗层及碳量子点层,所述的光电探测器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在硅化锗层上。
所述的导电镀膜层可以为金属、ITO、FTO、n型掺杂氧化镍或p型掺杂氧化镍。
所述的硅化锗层中的硅化锗通常为1-10μm。
所述的碳量子点层可以为碳量子点薄膜,所述的碳量子点直径为1nm-1μm。
所述的衬底可以为刚性衬底或柔性衬底。
所述的第一电极和第二电极均可为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
制备上述的碳量子点增强的硅化锗/锡化锗光电探测器的方法,包括如下步骤:
1)在洁净的衬底上生长导电镀膜层;
2)在导电镀膜层上沉积锡化锗层,并在导电镀膜层表面预留生长第一电极的面积;
3)将硼掺杂硅化锗沉积至锡化锗层上;
4)在硅化锗层上制作碳量子点层,并在硅化锗层表面预留生长第二电极的面积;
5)在导电镀膜层上沉积第一电极,并在硅化锗层上沉积第二电极。
本发明与现有技术相比具有的有益效果是:本发明的碳量子点增强的硅化锗/锡化锗光电探测器,通过向硅化锗/锡化锗光电探测器中加入碳量子点薄膜层,可起到掺杂作用,使得该光电探测器的探测效率在原基础上提升10%左右,此外,与传统光电探测器制造工艺相比,本发明的光电探测器的制备工艺简单,成本较低,便于推广。
附图说明
图1为碳量子点增强的硅化锗/锡化锗光电探测器的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的碳量子点增强的硅化锗/锡化锗光电探测器自下而上依次有衬底1、导电镀膜层2、锡化锗层3、硅化锗层4及碳量子点层6,所述的光电探测器还设有第一电极5和第二电极7,第一电极5设置在导电镀膜层2上,第二电极7设置在硅化锗层4上。
实施例1:
1)将聚酰亚胺柔性衬底在去离子水中清洗干净并吹干;
2)在聚酰亚胺柔性衬底上利用磁控溅射沉积40纳米厚的掺铟锡化锗;
3)在掺铟锡化锗层上利用物理气相沉积技术沉积6微米厚的锡化锗层,并在ITO层上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上旋涂碳量子点溶液,并在硅化锗上预留生长第二电极的面积;所述碳量子点直径为1nm-1μm;
6)在硅化锗预留面积处以及ITO层上预留面积处涂覆银浆并烘干;得到碳量子点增强的硅化锗/锡化锗光电探测器。
实施例2:
1)将玻璃衬底在去离子水中清洗干净并吹干;
2)在玻璃衬底上利用磁控溅射沉积200纳米厚的掺氟锡化锗;
3)在掺氟锡化锗层上利用物理气相沉积技术沉积8微米厚的锡化锗层,并在FTO层上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上喷涂碳量子点溶液,并在硅化锗层上预留生长第二电极的面积;所述碳量子点直径为1nm-1μm;
6)在硅化锗层预留面积处以及掺氟锡化锗层上预留面积处热蒸发金电极;得到碳量子点增强的硅化锗/锡化锗光电探测器。
实施例3:
1)将陶瓷衬底在去离子水中清洗干净并吹干;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;
3)在镍金属层上利用化学水浴法沉积5微米厚的锡化锗层,并在镍金属层上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上制备碳量子点薄膜,并在硅化锗层上预留生长第二电极的面积;
6)在硅化锗层预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到碳量子点增强的硅化锗/锡化锗光电探测器。
实施例4:
1)将陶瓷衬底在去离子水中清洗干净并烘干;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;
3)在镍金属层上利用化学水浴法沉积5微米厚的锡化锗层,并在镍金属层上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上滴涂碳量子点溶液,并在硅化锗层上预留生长第二电极的面积;所述碳量子点直径为1nm-1μm;
6)在硅化锗上预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到碳量子点增强的硅化锗/锡化锗光电探测器。
实施例5:
1)将聚对苯二甲酸乙二醇酯衬底在去离子水中清洗干净并吹干;
2)在聚对苯二甲酸乙二醇酯衬底上利用脉冲激光沉积100纳米厚的掺铝氧化镍;
3)在掺铝氧化镍层上利用蒸汽压沉积技术沉积10微米厚的锡化锗层,并在掺铝氧化镍上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上旋涂碳量子点溶液,并在硅化锗层上预留生长第二电极的面积;所述碳量子点直径为1nm-1μm;
6)在硅化锗层预留面积处以及掺铝氧化镍层预留面积处热蒸发钯、银、钛复合电极;得到碳量子点增强的硅化锗/锡化锗光电探测器。
实施例6:
1)将碳化硅衬底在去离子水中清洗干净并吹干;
2)在碳化硅衬底上利用金属有机化学气相沉积150纳米厚的掺铝氧化镍;
3)在掺铝氧化镍层上利用蒸汽压沉积技术沉积3微米厚的锡化锗层,并在掺铝氧化镍层上预留生长第一电极的面积;
4)将硅化锗沉积至锡化锗层上;
5)在硅化锗上制备碳量子点薄膜,并在硅化锗层上预留生长第二电极的面积;
6)在硅化锗层预留面积处以及掺铝氧化镍层预留面积处热蒸发铬、镍复合电极;得到碳量子点增强的硅化锗/锡化锗光电探测器。

Claims (7)

1.一种碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于自下而上依次有衬底(1)、导电镀膜层(2)、锡化锗层(3)、硅化锗层(4)及碳量子点层(6),所述的光电探测器还设有第一电极(5)和第二电极(7),第一电极(5)设置在导电镀膜层(2)上,第二电极(7)设置在硅化锗层(4)上。
2.根据权利要求1所述的碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于所述的导电镀膜层(2)为金属、ITO、FTO、n型掺杂氧化镍或p型掺杂氧化镍。
3.根据权利要求1所述的碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于所述的硅化锗层(4)中的硅化锗为1-10μm。
4.根据权利要求1所述的碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于所述的碳量子点层(6)为碳量子点层,所述的碳量子点直径为1nm-1μm。
5.根据权利要求1所述的碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于所述的衬底(1)为刚性衬底或柔性衬底。
6.根据权利要求1所述的碳量子点增强的硅化锗/锡化锗光电探测器,其特征在于所述的第一电极(5)为金、钯、银、钛、铬和镍中的一种或几种的复合电极,所述的第二电极(7)为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
7.制备如权利要求1~6任一项所述的碳量子点增强的硅化锗/锡化锗光电探测器的方法,其特征在于包括如下步骤:
1)在洁净的衬底(1)上生长导电镀膜层(2);
2)在导电镀膜层(2)上沉积锡化锗层(3),并在导电镀膜层(2)表面预留生长第一电极(5)的面积;
3)将硅化锗沉积至锡化锗层(3)上;
4)在硅化锗层(4)上制作碳量子点层(6),并在硅化锗层(4)表面预留生长第二电极(7)的面积;
5)在导电镀膜层(2)上沉积第一电极(5),并在硅化锗层(4)上沉积第二电极(7)。
CN201611109564.4A 2016-12-06 2016-12-06 一种碳量子点增强的光电探测器及其制备方法 Pending CN106653933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611109564.4A CN106653933A (zh) 2016-12-06 2016-12-06 一种碳量子点增强的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611109564.4A CN106653933A (zh) 2016-12-06 2016-12-06 一种碳量子点增强的光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106653933A true CN106653933A (zh) 2017-05-10

Family

ID=58818909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611109564.4A Pending CN106653933A (zh) 2016-12-06 2016-12-06 一种碳量子点增强的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106653933A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179762A1 (en) * 2007-01-25 2008-07-31 Au Optronics Corporation Layered structure with laser-induced aggregation silicon nano-dots in a silicon-rich dielectric layer, and applications of the same
US20090196631A1 (en) * 2008-02-05 2009-08-06 Finisar Corporation Monolithic power monitor and wavelength detector
JP2015057835A (ja) * 2008-07-21 2015-03-26 インヴィサージ テクノロジーズ インコーポレイテッドInvisage Technologies,Inc. 安定高感度光検出器のための材料、作製機器、および方法、それにより作製される画像センサ
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN105789347A (zh) * 2016-03-02 2016-07-20 西安电子科技大学 基于GeSn-GeSi材料的异质型光电晶体管及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179762A1 (en) * 2007-01-25 2008-07-31 Au Optronics Corporation Layered structure with laser-induced aggregation silicon nano-dots in a silicon-rich dielectric layer, and applications of the same
US20090196631A1 (en) * 2008-02-05 2009-08-06 Finisar Corporation Monolithic power monitor and wavelength detector
JP2015057835A (ja) * 2008-07-21 2015-03-26 インヴィサージ テクノロジーズ インコーポレイテッドInvisage Technologies,Inc. 安定高感度光検出器のための材料、作製機器、および方法、それにより作製される画像センサ
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN105789347A (zh) * 2016-03-02 2016-07-20 西安电子科技大学 基于GeSn-GeSi材料的异质型光电晶体管及其制作方法

Similar Documents

Publication Publication Date Title
Young et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures
Boruah et al. Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection
Wang et al. Gas sensing devices based on two-dimensional materials: a review
Rana et al. A graphene-based transparent electrode for use in flexible optoelectronic devices
Retamal et al. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction
CN104576788B (zh) 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法
Afal et al. All solution processed, nanowire enhanced ultraviolet photodetectors
CN103482589B (zh) 一种一维硒化锡纳米阵列、其制备方法和应用
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN104807859B (zh) 低温原位生长纳米结构半导体金属氧化物的方法及应用
JP2011176225A (ja) 光学変換装置及び同装置を含む電子機器
An et al. A high-performance fully nanostructured individual CdSe nanotube photodetector with enhanced responsivity and photoconductive gain
Efil et al. Current–voltage analyses of Graphene-based structure onto Al2O3/p-Si using various methods
US20140000713A1 (en) Mechanically stable device based on nano/micro wires and having improved optical properties and process for producing it
Guo et al. Silicon-and oxygen-codoped graphene from polycarbosilane and its application in graphene/n-type silicon photodetectors
CN106770466A (zh) 一种氧化铁量子点增强的气体传感器及其制备方法
CN106546633A (zh) 一种氧化镍纳米颗粒增强的气体传感器及其制备方法
CN104779315A (zh) 一种石墨烯/磷化铟光电探测器及其制备方法
Guruprasad et al. Electrical transport properties and impedance analysis of Au/ZnO nanorods/ITO heterojunction device
TWI656654B (zh) 太陽能電池
Ghosal et al. A potential gas sensor device based on Pd/RGO/TiO2 nanotube ternary hybrid junction
JP2019050106A (ja) 透明電極、それを用いた素子、および素子の製造方法
Rahim et al. Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode
Wang et al. Electrospun assembly: A nondestructive nanofabrication for transparent photosensors
CN106449858A (zh) 一种氧化锌量子点增强的紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170510

WD01 Invention patent application deemed withdrawn after publication