CN106546633A - 一种氧化镍纳米颗粒增强的气体传感器及其制备方法 - Google Patents

一种氧化镍纳米颗粒增强的气体传感器及其制备方法 Download PDF

Info

Publication number
CN106546633A
CN106546633A CN201611115184.1A CN201611115184A CN106546633A CN 106546633 A CN106546633 A CN 106546633A CN 201611115184 A CN201611115184 A CN 201611115184A CN 106546633 A CN106546633 A CN 106546633A
Authority
CN
China
Prior art keywords
graphene
layer
electrode
gas sensor
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611115184.1A
Other languages
English (en)
Inventor
文国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Juzhi Industrial Design Co Ltd
Original Assignee
Chengdu Juzhi Industrial Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Juzhi Industrial Design Co Ltd filed Critical Chengdu Juzhi Industrial Design Co Ltd
Priority to CN201611115184.1A priority Critical patent/CN106546633A/zh
Publication of CN106546633A publication Critical patent/CN106546633A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器及其制备方法,该石墨烯/氧化镁锡气体传感器自下而上依次有衬底、导电镀膜层、氧化镁锡层、石墨烯层及氧化镍纳米颗粒层,所述的气体传感器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在石墨烯层上。其制备方法如下:先在衬底上沉积导电镀膜层,再沉积氧化镁锡层;然后将石墨烯转移至氧化镁锡层上;在石墨烯层上制备氧化镍纳米颗粒层;最后在石墨烯层及导电镀膜层上分别制作电极,获得气体传感器,本发明的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器利用氧化镍纳米颗粒引入的掺杂效应来获得具有高转化效率的石墨烯/氧化镁锡气体传感器。

Description

一种氧化镍纳米颗粒增强的气体传感器及其制备方法
技术领域
本发明涉及一种新型气体传感器及其制造方法,尤其涉及氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器及其制备方法,属于气体传感器技术领域。
背景技术
纳米材料具有比表面积大、电学性质对表面吸附敏感等特点,将纳米技术应用于传感领域,有望制备出响应速度快、灵敏度高、选择性好的传感器件。半导体金属氧化物,尤其是氧化镁锡基纳米材料,由于其优越的光学、电学和气体传感特性而受到了广泛的关注。研究表明,掺杂能够进一步提高氧化锡基纳米材料的气体传感性能。虽然氧化锡基气体传感器已经取得了一定的成就,但是其灵敏度和选择性仍需进一步提高。减小粒子的尺寸和增加材料的比表面积是提高灵敏度和选择性的关键所在。
2004年,英国曼彻斯特大学的Geim和Novosolevo制备出单原子片层、具有蜂窝状晶格结构的石墨烯。由于其典型的二维结构,石墨烯具有超高的比表面积、电导率对表面吸附敏感等优点。近期研究发现,石墨烯可应用于制备气体传感器并且对水蒸气、一氧化碳、氨气和二氧化氮气体具有良好的响应性。但是,石墨烯传感器对一些危险性气体的探测,如甲烷,至今尚未发现报道。
发明内容
本发明的目的在于提供一种气体探测效率高且制备工艺简单的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器及其制备方法。
本发明的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,自下而上依次有衬底、导电镀膜层、氧化镁锡层、石墨烯层及氧化镍纳米颗粒层,所述的气体传感器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在石墨烯层上。
所述的导电镀膜层可以为金属、ITO、FTO、n型掺杂氧化镍或p型掺杂氧化镍。
所述的石墨烯层中的石墨烯通常为1-10层。
所述的氧化镍纳米颗粒层可以为氧化镍纳米颗粒薄膜,所述的氧化镍纳米颗粒直径为1nm-1μm。
所述的衬底可以为刚性衬底或柔性衬底。
所述的第一电极和第二电极均可为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
制备上述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器的方法,包括如下步骤:1)在洁净的衬底上生长导电镀膜层;2)在导电镀膜层上沉积氧化镁锡层,并在导电镀膜层表面预留生长第一电极的面积;3)将硼掺杂石墨烯转移至氧化镁锡层上;4)在石墨烯层上制作氧化镍纳米颗粒层,并在石墨烯层表面预留生长第二电极的面积;5)在导电镀膜层上沉积第一电极,并在石墨烯层上沉积第二电极。
本发明与现有技术相比具有的有益效果是:本发明的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,通过向石墨烯/氧化镁锡气体传感器中加入氧化镍纳米颗粒薄膜层,可起到掺杂作用,使得该气体传感器的探测效率在原基础上提升10%左右,此外,与传统气体传感器制造工艺相比,本发明的气体传感器的制备工艺简单,成本较低,便于推广。
附图说明
图1为氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器自下而上依次有衬底1、导电镀膜层2、氧化镁锡层3、石墨烯层4及氧化镍纳米颗粒层6,所述的气体传感器还设有第一电极5和第二电极7,第一电极5设置在导电镀膜层2上,第二电极7设置在石墨烯层4上。
实施例1:1)将聚酰亚胺柔性衬底在去离子水中清洗干净并吹干;2)在聚酰亚胺柔性衬底上利用磁控溅射沉积40纳米厚的掺铟氧化镁锡;3)在掺铟氧化镁锡层上利用物理气相沉积技术沉积6微米厚的氧化镁锡层,并在ITO层上预留生长第一电极的面积;4)将单层石墨烯转移至氧化镁锡层上;5)在石墨烯上旋涂氧化镍纳米颗粒溶液,并在石墨烯上预留生长第二电极的面积;所述氧化镍纳米颗粒直径为1nm-1μm;6)在石墨烯预留面积处以及ITO层上预留面积处涂覆银浆并烘干;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。
实施例2:1)将玻璃衬底在去离子水中清洗干净并吹干;2)在玻璃衬底上利用磁控溅射沉积200纳米厚的掺氟氧化镁锡;
3)在掺氟氧化镁锡层上利用物理气相沉积技术沉积8微米厚的氧化镁锡层,并在FTO层上预留生长第一电极的面积;4)将三层石墨烯转移至氧化镁锡层上;5)在石墨烯上喷涂氧化镍纳米颗粒溶液,并在石墨烯层上预留生长第二电极的面积;所述氧化镍纳米颗粒直径为1nm-1μm;6)在石墨烯层预留面积处以及掺氟氧化镁锡层上预留面积处热蒸发金电极;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。
实施例3:1)将陶瓷衬底在去离子水中清洗干净并吹干;2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;3)在镍金属层上利用化学水浴法沉积5微米厚的氧化镁锡层,并在镍金属层上预留生长第一电极的面积;4)将10层石墨烯转移至氧化镁锡层上;5)在石墨烯上制备氧化镍纳米颗粒薄膜,并在石墨烯层上预留生长第二电极的面积;6)在石墨烯层预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。
实施例4:1)将陶瓷衬底在去离子水中清洗干净并烘干;2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;3)在镍金属层上利用化学水浴法沉积5微米厚的氧化镁锡层,并在镍金属层上预留生长第一电极的面积;4)将10层石墨烯转移至氧化镁锡层上;5)在石墨烯上滴涂氧化镍纳米颗粒溶液,并在石墨烯层上预留生长第二电极的面积;所述氧化镍纳米颗粒直径为1nm-1μm;6)在石墨烯上预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。
实施例5:1)将聚对苯二甲酸乙二醇酯衬底在去离子水中清洗干净并吹干;2)在聚对苯二甲酸乙二醇酯衬底上利用脉冲激光沉积100纳米厚的掺铝氧化镍;3)在掺铝氧化镍层上利用蒸汽压沉积技术沉积10微米厚的氧化镁锡层,并在掺铝氧化镍上预留生长第一电极的面积;4)将8层石墨烯转移至氧化镁锡层上;5)在石墨烯上旋涂氧化镍纳米颗粒溶液,并在石墨烯层上预留生长第二电极的面积;所述氧化镍纳米颗粒直径为1nm-1μm;6)在石墨烯层预留面积处以及掺铝氧化镍层预留面积处热蒸发钯、银、钛复合电极;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。
实施例6:1)将碳化硅衬底在去离子水中清洗干净并吹干;2)在碳化硅衬底上利用金属有机化学气相沉积150纳米厚的掺铝氧化镍;3)在掺铝氧化镍层上利用蒸汽压沉积技术沉积3微米厚的氧化镁锡层,并在掺铝氧化镍层上预留生长第一电极的面积;4)将6层石墨烯转移至氧化镁锡层上;5)在石墨烯上制备氧化镍纳米颗粒薄膜,并在石墨烯层上预留生长第二电极的面积;6)在石墨烯层预留面积处以及掺铝氧化镍层预留面积处热蒸发铬、镍复合电极;得到氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器。

Claims (7)

1.一种氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于自下而上依次有衬底(1)、导电镀膜层(2)、氧化镁锡层(3)、石墨烯层(4)及氧化镍纳米颗粒层(6),所述的气体传感器还设有第一电极(5)和第二电极(7),第一电极(5)设置在导电镀膜层(2)上,第二电极(7)设置在石墨烯层(4)上。
2.根据权利要求1所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于所述的导电镀膜层(2)为金属、ITO、FTO、n型掺杂氧化镍或p型掺杂氧化镍。
3.根据权利要求1所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于所述的石墨烯层(4)中的石墨烯为1-10层。
4.根据权利要求1所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于所述的氧化镍纳米颗粒层(6)为氧化镍纳米颗粒层,所述的氧化镍纳米颗粒直径为1nm-1μm。
5.根据权利要求1所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于所述的衬底(1)为刚性衬底或柔性衬底。
6.根据权利要求1所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器,其特征在于所述的第一电极(5)为金、钯、银、钛、铬和镍中的一种或几种的复合电极,所述的第二电极(7)为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
7.制备如权利要求1~6任一项所述的氧化镍纳米颗粒增强的石墨烯/氧化镁锡气体传感器的方法,其特征在于包括如下步骤:1)在洁净的衬底(1)上生长导电镀膜层(2);2)在导电镀膜层(2)上沉积氧化镁锡层(3),并在导电镀膜层(2)表面预留生长第一电极(5)的面积;3)将石墨烯转移至氧化镁锡层(3)上;4)在石墨烯层(4)上制作氧化镍纳米颗粒层(6),并在石墨烯层(4)表面预留生长第二电极(7)的面积;5)在导电镀膜层(2)上沉积第一电极(5),并在石墨烯层(4)上沉积第二电极(7)。
CN201611115184.1A 2016-12-07 2016-12-07 一种氧化镍纳米颗粒增强的气体传感器及其制备方法 Pending CN106546633A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611115184.1A CN106546633A (zh) 2016-12-07 2016-12-07 一种氧化镍纳米颗粒增强的气体传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611115184.1A CN106546633A (zh) 2016-12-07 2016-12-07 一种氧化镍纳米颗粒增强的气体传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN106546633A true CN106546633A (zh) 2017-03-29

Family

ID=58396276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611115184.1A Pending CN106546633A (zh) 2016-12-07 2016-12-07 一种氧化镍纳米颗粒增强的气体传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN106546633A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748181A (zh) * 2017-10-12 2018-03-02 黄晓敏 一种石墨烯基气体传感器
CN109181641A (zh) * 2018-11-09 2019-01-11 东北大学 一种以锡泥为原料制备NiO掺杂的SnO2多孔纳米颗粒的方法
CN111627990A (zh) * 2020-05-07 2020-09-04 中国人民解放军国防科技大学 一种利用热蒸发铝种子层制备顶栅型场效应管的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576788A (zh) * 2014-12-29 2015-04-29 浙江大学 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法
CN105092646A (zh) * 2015-08-19 2015-11-25 电子科技大学 一种石墨烯/金属氧化物复合膜气体传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576788A (zh) * 2014-12-29 2015-04-29 浙江大学 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法
CN105092646A (zh) * 2015-08-19 2015-11-25 电子科技大学 一种石墨烯/金属氧化物复合膜气体传感器及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748181A (zh) * 2017-10-12 2018-03-02 黄晓敏 一种石墨烯基气体传感器
CN109181641A (zh) * 2018-11-09 2019-01-11 东北大学 一种以锡泥为原料制备NiO掺杂的SnO2多孔纳米颗粒的方法
CN109181641B (zh) * 2018-11-09 2021-09-07 东北大学 一种以锡泥为原料制备NiO掺杂的SnO2多孔纳米颗粒的方法
CN111627990A (zh) * 2020-05-07 2020-09-04 中国人民解放军国防科技大学 一种利用热蒸发铝种子层制备顶栅型场效应管的方法
CN111627990B (zh) * 2020-05-07 2023-08-08 中国人民解放军国防科技大学 一种利用热蒸发铝种子层制备顶栅型场效应管的方法

Similar Documents

Publication Publication Date Title
Choi et al. Dual functional sensing mechanism in SnO2–ZnO core–shell nanowires
Rana et al. A graphene-based transparent electrode for use in flexible optoelectronic devices
Khoang et al. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance
Kathiravan et al. Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors
US9568447B2 (en) Fluid sensor chip and method for manufacturing the same
Liu et al. Measuring the work function of carbon nanotubes with thermionic method
Bae et al. Engineered nanocarbon mixing for enhancing the thermoelectric properties of a telluride-PEDOT: PSS nanocomposite
Kulkarni et al. Towards low cost materials and methods for transparent electrodes
Alver et al. Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method
Sanger et al. Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application
CN104505149A (zh) 一种叠层透明电极及其制备方法
WO2012079360A1 (zh) 一种透明电极材料及其制备方法
CN103482589B (zh) 一种一维硒化锡纳米阵列、其制备方法和应用
CN106546633A (zh) 一种氧化镍纳米颗粒增强的气体传感器及其制备方法
CN104807859B (zh) 低温原位生长纳米结构半导体金属氧化物的方法及应用
Duan et al. Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?
CN102709399B (zh) 一种纳米天线太阳能电池的制作方法
Guo et al. Silicon-and oxygen-codoped graphene from polycarbosilane and its application in graphene/n-type silicon photodetectors
Xu et al. Silicene quantum dots confined in few-layer siloxene nanosheets for blue-light-emitting diodes
CN106770466A (zh) 一种氧化铁量子点增强的气体传感器及其制备方法
CN107123468A (zh) 一种含有功能调节层的透明导电薄膜
Wang et al. Low-temperature nanowelding silver nanowire hybrid flexible transparent conductive film for green light OLED devices
Liang et al. Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions
Li et al. A Review on the Low‐Dimensional and Hybridized Nanostructured Diamond Films
Shi et al. Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170329

WD01 Invention patent application deemed withdrawn after publication