CN106645808A - Kelvin probe force microscope synchronously measuring multiple parameters - Google Patents
Kelvin probe force microscope synchronously measuring multiple parameters Download PDFInfo
- Publication number
- CN106645808A CN106645808A CN201710093420.2A CN201710093420A CN106645808A CN 106645808 A CN106645808 A CN 106645808A CN 201710093420 A CN201710093420 A CN 201710093420A CN 106645808 A CN106645808 A CN 106645808A
- Authority
- CN
- China
- Prior art keywords
- probe
- sample
- signal
- conducting probe
- kelvin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 348
- 239000000919 ceramic Substances 0.000 claims abstract description 43
- 238000005259 measurement Methods 0.000 claims abstract description 40
- 238000012876 topography Methods 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 230000003993 interaction Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000004654 kelvin probe force microscopy Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 2
- 230000010363 phase shift Effects 0.000 claims description 2
- 210000004247 hand Anatomy 0.000 claims 9
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 238000012512 characterization method Methods 0.000 abstract description 6
- 238000007373 indentation Methods 0.000 description 14
- 239000004793 Polystyrene Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000004621 scanning probe microscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/30—Scanning potential microscopy
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
一种多参数同步测量的开尔文探针力显微镜,涉及开尔文探针力显微镜,目的是为了解决传统的开尔文探针力显微镜无法实现样品的表面形貌、力学特性和表面局部电势的同步表征的问题。本发明的直流电源用于产生直流信号,并将该直流信号加载到导电探针与样品之间,信号发生器产生三路相同的信号,频率与导电探针二阶共振频率相同,第一路与任意波发生器产生的信号通加法器叠加后用于控制三号压电控制器,使三号压电控制器驱动探针手上的压电陶瓷;第二路作为参考信号发送至锁相放大器;第三路通过移相器移相90度后加载到导电探针与样品之间;锁相放大器输出的信号发送至上位机。本发明适用于样品的表面形貌、力学特性和表面局部电势的测量。
A Kelvin probe force microscope for multi-parameter simultaneous measurement, relating to a Kelvin probe force microscope, the purpose is to solve the problem that the traditional Kelvin probe force microscope cannot realize the simultaneous characterization of the surface morphology, mechanical properties and surface local potential of a sample . The DC power supply of the present invention is used to generate a DC signal, and load the DC signal between the conductive probe and the sample. The signal generator generates three identical signals, the frequency of which is the same as the second-order resonance frequency of the conductive probe, and the first channel Superimposed with the signal generated by the arbitrary wave generator, it is used to control the No. 3 piezoelectric controller, so that the No. 3 piezoelectric controller drives the piezoelectric ceramic on the probe hand; the second channel is sent as a reference signal to the phase-locked Amplifier; the third channel is loaded between the conductive probe and the sample through a phase shifter of 90 degrees; the signal output by the lock-in amplifier is sent to the host computer. The invention is applicable to the measurement of the surface morphology, mechanical properties and surface local potential of samples.
Description
技术领域technical field
本发明涉及开尔文探针力显微镜。The present invention relates to Kelvin probe force microscopy.
背景技术Background technique
开尔文探针力显微镜(Kelvin Probe Force Microscopy,KPFM)是扫描探针显微镜(Scanning probe microscopy,SPM)家族中的一员,它将开尔文探针技术与原子力显微镜(Atomic force microscopy,AFM)结合,实现了样品表面局部电势的表征。传统的开尔文探针力显微镜通过不同的测量方法可以实现样品的表面形貌、力学特性和表面局部电势的表征。例如“抬起模式(lift-up mode)”通过两次扫描可以获得样品的表面形貌和局部电势,“共振模式(tapping mode)”通过一次扫描可以同时获得样品的表面形貌和局部电势,而“峰值力模式(peak force mode)”是一种间断接触模式,扫描时每线进行两次扫描,首次扫描获得样品的表面形貌和力学特性,然后利用“抬起模式”第二次扫描获得样品的表面局部电势。虽然现有的方法可以实现样品表面形貌、力学特性和表面局部电势的表征,但是不能实现这些参数的同步表征,也就是说不能通过一次扫描同时获得样品的表面形貌、力学特性和表面局部电势。Kelvin Probe Force Microscopy (KPFM) is a member of the Scanning Probe Microscopy (SPM) family, which combines Kelvin probe technology with Atomic force microscopy (AFM) to achieve Characterization of the local potential on the sample surface. The traditional Kelvin probe force microscope can realize the characterization of the surface morphology, mechanical properties and surface local potential of the sample through different measurement methods. For example, the "lift-up mode" can obtain the surface topography and local potential of the sample through two scans, and the "resonance mode (tapping mode)" can obtain the surface topography and local potential of the sample at the same time through one scan. The "peak force mode" is an intermittent contact mode. When scanning, two scans are performed per line. The first scan obtains the surface morphology and mechanical properties of the sample, and then the "lift mode" is used for the second scan. Obtain the surface local potential of the sample. Although the existing methods can realize the characterization of the surface morphology, mechanical properties and surface local potential of the sample, they cannot realize the simultaneous characterization of these parameters, that is to say, the surface morphology, mechanical properties and local surface potential of the sample cannot be simultaneously obtained through one scan. electric potential.
发明内容Contents of the invention
力学特性和表面局部电势对于理解微电子器件的功能、微生物活性以及许多机-电和生物现象是非常重要的,并且许多测量具有时效性和机-电耦合特性。另外,探针和样品之间的接触电势差将对样品表面形貌的测量造成误差。因此,同时测量样品的表面形貌、力学特性和表面局部电势是非常有意义的。鉴于传统的开尔文探针力显微镜无法实现样品的表面形貌、力学特性和表面局部电势的同步表征,本发明提供了一种多参数同步测量的开尔文探针力显微镜。Mechanical properties and local surface potentials are very important for understanding the function of microelectronic devices, microbial activity, and many electromechanical and biological phenomena, and many measurements have time-sensitive and electromechanical coupling characteristics. In addition, the contact potential difference between the probe and the sample will cause errors in the measurement of the sample surface topography. Therefore, it is very meaningful to simultaneously measure the surface morphology, mechanical properties and surface local potential of the sample. In view of the fact that the traditional Kelvin probe force microscope cannot realize the simultaneous characterization of the surface morphology, mechanical properties and surface local potential of the sample, the present invention provides a multi-parameter simultaneous measurement Kelvin probe force microscope.
本发明所述的一种多参数同步测量的开尔文探针力显微镜包括XY微米定位台12、XYZ纳米定位台13、开尔文扫描样品台15、XYZ微米定位台8、一维大量程调整微平台10、探针手支架9、探针手7、上位机、直流电源、任意波发生器、采集卡、信号发生器、移相器、锁相放大器、四象限位置检测器、半导体激光发生器、一号压电控制器、二号压电控制器和三号压电控制器;A Kelvin probe force microscope for multi-parameter synchronous measurement according to the present invention includes an XY micro-positioning stage 12, an XYZ nano-positioning stage 13, a Kelvin scanning sample stage 15, an XYZ micro-positioning stage 8, and a one-dimensional large-scale adjustment micro-platform 10 , probe hand bracket 9, probe hand 7, host computer, DC power supply, arbitrary wave generator, acquisition card, signal generator, phase shifter, lock-in amplifier, four-quadrant position detector, semiconductor laser generator, a Piezoelectric controller No. 2, Piezoelectric controller No. 2 and Piezoelectric controller No. 3;
开尔文扫描样品台15固定在XYZ纳米定位台13上,XYZ纳米定位台13固定在XY微米定位台12上;探针手7上安装有导电探针7-4和能够带动导电探针7-4沿竖直方向即Z方向移动的压电陶瓷7-2,探针手7固定在探针手支架9上,探针手支架9固定在XYZ微米定位台8上,XYZ微米定位台8固定在一维大量程调整微平台10上;The Kelvin scanning sample stage 15 is fixed on the XYZ nanopositioning stage 13, and the XYZ nanopositioning stage 13 is fixed on the XY micron positioning stage 12; the probe hand 7 is equipped with a conductive probe 7-4 and can drive the conductive probe 7-4 The piezoelectric ceramic 7-2 moving along the vertical direction, that is, the Z direction, the probe hand 7 is fixed on the probe hand support 9, the probe hand support 9 is fixed on the XYZ micron positioning table 8, and the XYZ micron positioning table 8 is fixed on the One-dimensional large-range adjustment micro-platform 10;
上位机通过一号压电控制器驱动开尔文扫描样品台15上的压电陶瓷移动、通过二号压电控制器驱动XYZ纳米定位台13上的压电陶瓷移动、通过三号压电控制器驱动探针手7上的压电陶瓷移动;The host computer drives the piezoelectric ceramics on the Kelvin scanning sample stage 15 through the No. 1 piezoelectric controller, drives the piezoelectric ceramics on the XYZ nanopositioning stage 13 through the No. 2 piezoelectric controller, and drives the piezoelectric ceramics on the XYZ nanopositioning stage 13 through the No. 3 piezoelectric controller. The piezoelectric ceramics on the probe hand 7 move;
半导体激光发生器18产生的激光入射至导电探针7-4上,经导电探针7-4反射的激光入射至四象限位置检测器4;The laser light generated by the semiconductor laser generator 18 is incident on the conductive probe 7-4, and the laser light reflected by the conductive probe 7-4 is incident on the four-quadrant position detector 4;
四象限位置检测器4的探测信号通过采集卡发送至上位机,该探测信号还作为反馈信号发送至锁相放大器;The detection signal of the four-quadrant position detector 4 is sent to the host computer through the acquisition card, and the detection signal is also sent to the lock-in amplifier as a feedback signal;
直流电源用于在上位机的控制下产生直流信号,并将该直流信号加载到导电探针7-4与样品15-8之间;The DC power supply is used to generate a DC signal under the control of the host computer, and load the DC signal between the conductive probe 7-4 and the sample 15-8;
信号发生器产生三路相同的信号(该信号频率与导电探针7-4的二阶共振频率相同),第一路与任意波发生器产生的信号通加法器叠加后用于控制三号压电控制器,使三号压电控制器驱动探针手7上的压电陶瓷7-2;第二路作为参考信号发送至锁相放大器;第三路通过移相器移相90度后加载到导电探针7-4与样品15-8之间;The signal generator generates three identical signals (the signal frequency is the same as the second-order resonance frequency of the conductive probe 7-4), and the signal generated by the first path and the arbitrary wave generator is superimposed by the adder to control the third voltage. The electric controller makes the piezoelectric controller No. 3 drive the piezoelectric ceramic 7-2 on the probe hand 7; the second path is sent to the lock-in amplifier as a reference signal; the third path is loaded after the phase shifter is shifted by 90 degrees Between the conductive probe 7-4 and the sample 15-8;
锁相放大器输出的信号通过采集卡发送至上位机。The signal output by the lock-in amplifier is sent to the host computer through the acquisition card.
本发明以下优点:1、突破了传统KPFM无法对样品的力学特性和局部电势同步表征的特点,实现了在一次扫描的情况下对样品的表面形貌、力学特性和局部电势差的同步测量;2、多参数同步测量的开尔文探针力显微镜装置,使AFM可用于样品表面的多参数测量,其中包括形貌、力学特性和局部电势;3、多参数同步测量的开尔文探针力显微镜装置为进一步实现对测试对象的多参数测量拓展(如导电率、电阻率)提供了技术基础。与传统的开尔文探针力显微镜相比,该方法可以满足测量中的时效性和多参数耦合特性的要求,并补偿了静电力对形貌测量造成的误差,在纳米制造、测试、特性表征以及生物领域具有更高的可用性和操作性,具有很高的实用价值。The present invention has the following advantages: 1. It breaks through the characteristic that the traditional KPFM cannot simultaneously characterize the mechanical properties and local potential of the sample, and realizes the simultaneous measurement of the surface morphology, mechanical properties and local potential difference of the sample in the case of one scan; 2. 1. The Kelvin probe force microscope device for multi-parameter simultaneous measurement enables AFM to be used for multi-parameter measurement of the sample surface, including morphology, mechanical properties and local potential; 3. The Kelvin probe force microscope device for multi-parameter simultaneous measurement is further It provides a technical basis to realize the multi-parameter measurement expansion (such as conductivity and resistivity) of the test object. Compared with the traditional Kelvin probe force microscope, this method can meet the requirements of timeliness and multi-parameter coupling characteristics in the measurement, and compensate the error caused by the electrostatic force on the shape measurement. The biological field has higher usability and operability, and has high practical value.
附图说明Description of drawings
图1为实施方式一所述的开尔文探针力显微镜的原理示意图,其中21为半导体激光发生器,22为四象限位置检测器,Fig. 1 is the schematic diagram of the principle of the Kelvin probe force microscope described in Embodiment 1, wherein 21 is a semiconductor laser generator, 22 is a four-quadrant position detector,
图2为实施方式一中三号压电控制器驱动探针手7上的压电陶瓷7-2的驱动信号、力反馈信号以及相位反馈信号的波形图,驱动信号整体呈高斯形,上面叠加的正弦波形为Um;Fig. 2 is a waveform diagram of the driving signal, the force feedback signal and the phase feedback signal of the piezoelectric ceramic 7-2 on the probe hand 7 driven by the No. 3 piezoelectric controller in the first embodiment. The overall driving signal is Gaussian, superimposed on it The sinusoidal waveform is U m ;
图3为实施方式一所述的开尔文探针力显微镜的机械部分的结构示意图,其中,3 is a schematic structural view of the mechanical part of the Kelvin probe force microscope described in Embodiment 1, wherein,
1:机架;2:四象限位置检测器二维调整微平台;3:一维调整微平台I;4:四象限位置检测器;5:反射激光凸透镜;6:激光反射镜;7:探针手;8:XYZ微米定位台;9:探针手支架;10:一维大量程调整微平台;11:台面;12:XY微米定位台;13:XYZ纳米定位台;14:样品台支架;15:开尔文扫描样品台;16:入射激光聚焦凸透镜;17:一维调整微平台II;18:半导体激光发生器;19:激光发生器角度调整机构;20:光学显微镜;1: Rack; 2: Four-quadrant position detector two-dimensional adjustment micro-platform; 3: One-dimensional adjustment micro-platform I; 4: Four-quadrant position detector; 5: Reflecting laser convex lens; 6: Laser mirror; 7: Detection Needle hand; 8: XYZ micro-positioning stage; 9: Probe hand support; 10: One-dimensional large-scale adjustment micro-platform; 11: Table top; 12: XY micro-positioning stage; 13: XYZ nano-positioning stage; 14: Sample stage support ;15: Kelvin scanning sample stage; 16: incident laser focusing convex lens; 17: one-dimensional adjustment micro-platform II; 18: semiconductor laser generator; 19: laser generator angle adjustment mechanism; 20: optical microscope;
图4为实施方式一中探针手的结构示意图,其中,7-1:探针手基座;7-2:压电陶瓷;7-3:探针托;7-4:导电探针;7-5:屏蔽片;7-6:导电探针固定板;7-7:接线端子;4 is a schematic structural diagram of the probe hand in Embodiment 1, wherein, 7-1: the base of the probe hand; 7-2: piezoelectric ceramics; 7-3: the probe holder; 7-4: the conductive probe; 7-5: shielding sheet; 7-6: conductive probe fixing plate; 7-7: terminal block;
图5为实施方式一中开尔文扫描样品台的结构示意图,其中,(a)为开尔文扫描样品台的正视图,(b)为(a)的俯视图;15-1:开尔文扫描样品台基座;15-2:压电陶瓷;15-3:样品座;15-4:连接线;15-5:紧定螺丝;15-6:束线块;15-7:铜压片;15-8:样品;15-9:绝缘固定螺丝;5 is a schematic structural view of the Kelvin scanning sample stage in Embodiment 1, wherein (a) is a front view of the Kelvin scanning sample stage, and (b) is a top view of (a); 15-1: Kelvin scanning sample stage base; 15-2: piezoelectric ceramics; 15-3: sample holder; 15-4: connecting wire; 15-5: set screw; 15-6: wire harness block; 15-7: copper pressing piece; 15-8: Sample; 15-9: Insulation set screw;
图6为实施方式二中聚苯乙烯/光固胶光栅的测量结果。FIG. 6 is the measurement result of the polystyrene/photocurable adhesive grating in the second embodiment.
具体实施方式detailed description
具体实施方式一:结合图1说明本实施方式,本实施方式所述的一种多参数同步测量的开尔文探针力显微镜,包括XY微米定位台12、XYZ纳米定位台13、开尔文扫描样品台15、XYZ微米定位台8、一维大量程调整微平台10、探针手支架9、探针手7、上位机、直流电源、任意波发生器、采集卡、信号发生器、移相器、锁相放大器、四象限位置检测器、半导体激光发生器、一号压电控制器、二号压电控制器和三号压电控制器;Specific Embodiment 1: This embodiment is described in conjunction with FIG. 1. A Kelvin probe force microscope for multi-parameter synchronous measurement described in this embodiment includes an XY micro-positioning stage 12, an XYZ nano-positioning stage 13, and a Kelvin scanning sample stage 15. , XYZ micron positioning table 8, one-dimensional large-scale adjustment micro-platform 10, probe hand bracket 9, probe hand 7, host computer, DC power supply, arbitrary wave generator, acquisition card, signal generator, phase shifter, lock phase amplifier, four-quadrant position detector, semiconductor laser generator, piezoelectric controller No. 1, piezoelectric controller No. 2 and piezoelectric controller No. 3;
开尔文扫描样品台15固定在XYZ纳米定位台13上,XYZ纳米定位台13固定在XY微米定位台12上;探针手7上安装有导电探针7-4和能够带动导电探针7-4沿竖直方向即Z方向移动的压电陶瓷7-2,探针手7固定在探针手支架9上,探针手支架9固定在XYZ微米定位台8上,XYZ微米定位台8固定在一维大量程调整微平台10上;The Kelvin scanning sample stage 15 is fixed on the XYZ nanopositioning stage 13, and the XYZ nanopositioning stage 13 is fixed on the XY micron positioning stage 12; the probe hand 7 is equipped with a conductive probe 7-4 and can drive the conductive probe 7-4 The piezoelectric ceramic 7-2 moving along the vertical direction, that is, the Z direction, the probe hand 7 is fixed on the probe hand support 9, the probe hand support 9 is fixed on the XYZ micron positioning table 8, and the XYZ micron positioning table 8 is fixed on the One-dimensional large-range adjustment micro-platform 10;
上位机通过一号压电控制器驱动开尔文扫描样品台15上的压电陶瓷移动、通过二号压电控制器驱动XYZ纳米定位台13上的压电陶瓷移动、通过三号压电控制器驱动探针手7上的压电陶瓷7-2移动;The host computer drives the piezoelectric ceramics on the Kelvin scanning sample stage 15 through the No. 1 piezoelectric controller, drives the piezoelectric ceramics on the XYZ nanopositioning stage 13 through the No. 2 piezoelectric controller, and drives the piezoelectric ceramics on the XYZ nanopositioning stage 13 through the No. 3 piezoelectric controller. The piezoelectric ceramic 7-2 on the probe hand 7 moves;
半导体激光器18发生器产生的激光入射至导电探针7-4上,经导电探针7-4反射的激光入射至四象限位置检测器4;The laser light generated by the semiconductor laser 18 generator is incident on the conductive probe 7-4, and the laser light reflected by the conductive probe 7-4 is incident on the four-quadrant position detector 4;
四象限位置检测器4的探测信号通过采集卡发送至上位机,该探测信号还作为反馈信号发送至锁相放大器;The detection signal of the four-quadrant position detector 4 is sent to the host computer through the acquisition card, and the detection signal is also sent to the lock-in amplifier as a feedback signal;
直流电源用于在上位机的控制下产生直流信号,并将该直流信号加载到导电探针7-4与样品15-8之间;The DC power supply is used to generate a DC signal under the control of the host computer, and load the DC signal between the conductive probe 7-4 and the sample 15-8;
信号发生器产生三路相同的信号,该信号频率与导电探针7-4的二阶共振频率相同,第一路与任意波发生器产生的信号通加法器叠加后用于控制三号压电控制器,使三号压电控制器驱动探针手7上的压电陶瓷7-2;第二路作为参考信号发送至锁相放大器;第三路通过移相器移相90度后加载到导电探针7-4与样品15-8之间;The signal generator generates three identical signals, the frequency of which is the same as the second-order resonance frequency of the conductive probe 7-4, the first signal and the signal generated by the arbitrary wave generator are superimposed by the adder and used to control the third piezoelectric The controller makes the piezoelectric controller No. 3 drive the piezoelectric ceramic 7-2 on the probe hand 7; the second path is sent to the lock-in amplifier as a reference signal; the third path is loaded into the Between the conductive probe 7-4 and the sample 15-8;
锁相放大器输出的信号通过采集卡发送至上位机。The signal output by the lock-in amplifier is sent to the host computer through the acquisition card.
本发明进行多参数同步测量的测量方法的原理如图2所示,该发明突破了传统使用正弦信号作为力-位移曲线测量的驱动信号,使用高斯信号作为力-位移曲线测量的驱动信号,因此,当探针与样品表面脱离后,探针和样品之间的距离将保持稳定(仅有亚纳米的二阶振动,点D到点E之间),该发明充分利用传统测试方法中的空行程实现了对样品的多参数同步测量,具体测试过程如下:The principle of the measurement method for multi-parameter synchronous measurement of the present invention is shown in Figure 2. This invention breaks through the traditional use of sinusoidal signals as the drive signal for force-displacement curve measurement, and uses Gaussian signals as the drive signal for force-displacement curve measurement. Therefore , when the probe is detached from the sample surface, the distance between the probe and the sample will remain stable (only sub-nanometer second-order vibration, between point D and point E), this invention makes full use of the void in traditional testing methods The stroke realizes the multi-parameter simultaneous measurement of the sample. The specific test process is as follows:
步骤1、通过三号压电控制器驱动探针手7上的压电陶瓷7-2,使导电探针7-4保持上下往复移动;Step 1. Drive the piezoelectric ceramic 7-2 on the probe hand 7 through the No. 3 piezoelectric controller, so that the conductive probe 7-4 keeps reciprocating up and down;
步骤2、通过二号压电控制器驱动XYZ纳米定位台13向上伺服移动接近样品,使导电探针7-4与样品15-8接触,并使导电探针和样品之间的最大作用力持续增加,直到导电探针7-4和样品15-8之间的最大相互作用力达到设定值并保持;Step 2. Drive the XYZ nanopositioning stage 13 to move upward and approach the sample through the No. 2 piezoelectric controller, so that the conductive probe 7-4 is in contact with the sample 15-8, and the maximum force between the conductive probe and the sample continues Increase until the maximum interaction force between the conductive probe 7-4 and the sample 15-8 reaches the set value and maintains;
步骤3、通过二号压电控制器驱动XYZ纳米定位台13向下移动,移动距离小于开尔文扫描样品台15的量程;Step 3, drive the XYZ nanopositioning stage 13 to move downward through the No. 2 piezoelectric controller, and the moving distance is less than the range of the Kelvin scanning sample stage 15;
步骤4、利用一号压电控制器驱动开尔文扫描样品台15代替二号压电控制器驱动XYZ纳米定位台13重复步骤2,使导电探针和样品之间的最大相互作用力达到设定值,通过信号发生器给三号压电控制器叠加机械激振Um,及过移相器向导电探针与样品之间加载交流电压UACsin(ωt),通过直流电源向导电探针与样品之间加载直流补偿电压UDC;Step 4. Use the No. 1 piezoelectric controller to drive the Kelvin scanning sample stage 15 instead of the No. 2 piezoelectric controller to drive the XYZ nanopositioning stage 13. Repeat step 2 to make the maximum interaction force between the conductive probe and the sample reach the set value , superimpose the mechanical excitation U m on the No. 3 piezoelectric controller through the signal generator, and apply the AC voltage U AC sin(ωt) between the conductive probe and the sample through the phase shifter, and apply the AC voltage U AC sin(ωt) to the conductive probe and the sample through the DC power supply A DC compensation voltage U DC is applied between the samples;
其中,在导电探针的一个运动周期内,导电探针和样品之间的相互作用依次为:Among them, in one movement cycle of the conductive probe, the interaction between the conductive probe and the sample is as follows:
步骤4-1、通过三号压电控制器驱动探针手7上的压电陶瓷7-2向下运动,当导电探针和样品之间的吸引力大于导电探针的刚度时导电探针将被吸引下去与样品表面接触,该时间点为A点;Step 4-1. Drive the piezoelectric ceramic 7-2 on the probe hand 7 to move downward through the No. 3 piezoelectric controller. When the attraction force between the conductive probe and the sample is greater than the stiffness of the conductive probe, the conductive probe Will be attracted to come into contact with the sample surface, this time point is point A;
步骤4-2、当导电探针与样品接触后,通过三号压电控制器驱动探针手7上的压电陶瓷7-2继续向下运动,使导电探针和样品之间的最大作用力持续增加,直到导电探针和样品之间的最大相互作用力达到设定值,该时间点为B点;Step 4-2. After the conductive probe is in contact with the sample, the piezoelectric ceramic 7-2 on the probe hand 7 is driven to continue to move downward through the No. 3 piezoelectric controller, so that the maximum effect between the conductive probe and the sample The force continues to increase until the maximum interaction force between the conductive probe and the sample reaches the set value, and this time point is point B;
通过记录B点开尔文扫描样品台15的Z向坐标值,得到样品当前扫描点的表面形貌图像;记录B点导电探针变形和压电陶瓷7-2从平衡位置点A’到点B的位移,得到样品当前扫描点的最大压痕深度图像,最大压痕深度=压电陶瓷7-2从平衡位置点A’到点B的位移-导电探针的变形;所述平衡位置点A’是指在A点之后,导电探针和样品接触过程中,导电探针的力反馈信号等于导电探针和样品未接触时的力反馈信号的时间点;By recording the Z-direction coordinate value of the Kelvin scanning sample stage 15 at point B, the surface topography image of the current scanning point of the sample is obtained; the deformation of the conductive probe at point B and the movement of the piezoelectric ceramic 7-2 from the equilibrium position point A' to point B are recorded Displacement, to obtain the maximum indentation depth image of the current scanning point of the sample, the maximum indentation depth = the displacement of the piezoelectric ceramic 7-2 from the equilibrium position point A' to point B - the deformation of the conductive probe; the equilibrium position point A' After point A, during the contact process between the conductive probe and the sample, the force feedback signal of the conductive probe is equal to the time point when the force feedback signal of the conductive probe is not in contact with the sample;
步骤4-3、控制导电探针反向运动;Step 4-3, controlling the reverse movement of the conductive probe;
当导电探针的变形力大于导电探针和样品表面之间的粘附力时导电探针从样品表面突然脱离,该时间点为C点,记录C点导电探针所受的力,作为样品和导电探针之间在当前扫描点的最大粘附力图像;When the deformation force of the conductive probe is greater than the adhesive force between the conductive probe and the sample surface, the conductive probe suddenly detaches from the sample surface. This time point is point C. Record the force on the conductive probe at point C as the sample The maximum adhesion force image between the conductive probe and the current scanning point;
将点B和点C之间的力-压电陶瓷7-2位移数据转换成力-导电探针和样品之间的距离数据,并利用DMT模型拟合,便可得到样品在该扫描点的等效杨氏模量图像,所述力是指导电探针所受的力,其中DMT模型如下式所示:Convert the force-piezoelectric ceramic 7-2 displacement data between point B and point C into the force-distance data between the conductive probe and the sample, and use the DMT model to fit the sample at the scanning point. Equivalent Young's modulus image, the force refers to the force on the conductive probe, where the DMT model is shown in the following formula:
式中,F为探针和样品之间的相互作用力,Fadh为样品和探针之间的最大粘附力,R为探针的针尖半径,δ为压痕深度,E*为等效杨氏模量;where F is the interaction force between the probe and the sample, F adh is the maximum adhesion force between the sample and the probe, R is the tip radius of the probe, δ is the indentation depth, and E * is the equivalent Young's modulus;
根据所述等效杨氏模量与样品的泊松比得到样品的杨氏模量E;Obtain the Young's modulus E of the sample according to the Poisson's ratio of the equivalent Young's modulus and the sample;
步骤4-4、当导电探针和样品脱离后,导电探针继续上升至设定高度h后停止运动,该时间点为D点,h大于0,并使导电探针在该高度保持一段时间,即D点至E点;Step 4-4. When the conductive probe is separated from the sample, the conductive probe continues to rise to the set height h and then stops moving. This time point is point D, h is greater than 0, and the conductive probe is kept at this height for a period of time , namely point D to point E;
在点D和点E之间,将锁相放大器输出的相位作为反馈信号测量导电探针和样品之间的表面电势差;其中表面局部电势差开始补偿的初始点距离C点的时间间隔大于导电探针7-4的时间常数τ,τ=2Q/ω,Q为品质因子,ω为角频率,导电探针和样品之间总的电势差为:Between point D and point E, the phase of the lock-in amplifier output is used as a feedback signal to measure the surface potential difference between the conductive probe and the sample; the time interval between the initial point where the surface local potential difference begins to compensate and point C is greater than that of the conductive probe The time constant τ of 7-4, τ=2Q/ω, Q is the quality factor, ω is the angular frequency, the total potential difference between the conductive probe and the sample is:
ΔU=UDC-UCPD+UAC sin(ωt)ΔU=U DC -U CPD +U AC sin(ωt)
式中,UCPD是探针和样品表面之间的固有表面电势差;where U CPD is the intrinsic surface potential difference between the probe and the sample surface;
此时,导电探针和样品表面之间的静电作用力为:At this time, the electrostatic force between the conductive probe and the sample surface is:
式中,C和z分别为探针和样品之间的电容和距离。从上式可以看出当UDC=UCPD时,静电作用力在ω频率下对导电探针的影响将被消除,利用锁相放大器可以得到该频率下探针反馈信号的相位和振幅信息。将锁相放大器输出的相位信号作为反馈输入给上位机,上位机通过调节UDC消除锁相放大器输出相位偏移。当UDC=UCPD时,锁相放大器输出相位偏移将被消除。通过记录此时的UDC,便可得到对应的导电探针和样品表面之间的表面局部电势差(UCPD)图像。where C and z are the capacitance and distance between the probe and the sample, respectively. It can be seen from the above formula that when U DC = U CPD , the influence of electrostatic force on the conductive probe at ω frequency will be eliminated, and the phase and amplitude information of the probe feedback signal at this frequency can be obtained by using the lock-in amplifier. The phase signal output by the lock-in amplifier is input to the host computer as feedback, and the host computer eliminates the output phase offset of the lock-in amplifier by adjusting U DC . When U DC = U CPD , the lock-in amplifier output phase offset will be eliminated. By recording U DC at this time, an image of the surface local potential difference (U CPD ) between the corresponding conductive probe and the sample surface can be obtained.
步骤5、通过XYZ纳米定位台13移动样品至下一个扫描点,重复步骤4到步骤5,得到样品的表面形貌图像、等效杨氏模量图像以及表面电势差图像。Step 5. Move the sample to the next scanning point through the XYZ nanopositioning stage 13, and repeat steps 4 to 5 to obtain the surface topography image, equivalent Young's modulus image and surface potential difference image of the sample.
理想情况下,当UDC=UCPD时,步骤4中锁相放大器输出的相位为0度,但通常情况下由于误差的存在,锁相放大器输出的相位不为0度,通过记录锁相放大器输出的相位,便可得到对应的测试相位偏移误差图像。Ideally, when U DC =U CPD , the phase of the lock-in amplifier output in step 4 is 0 degrees, but usually due to the existence of errors, the phase of the lock-in amplifier output is not 0 degrees, by recording the phase of the lock-in amplifier The output phase can obtain the corresponding test phase offset error image.
为了提高测量结果的准确度,每个扫描点重复步骤4多次,选取中间一组测试数据的B点开尔文扫描样品台15的Z向坐标值为样品当前扫描点的最终表面形貌;选取对应组数据的等效杨氏模量E*值作为样品当前扫描点的最终等效杨氏模量;选取对应组数据的表面电势差值作为样品当前扫描点的最终表面电势差;In order to improve the accuracy of the measurement results, each scanning point repeats step 4 multiple times, and the Z-direction coordinate value of point B Kelvin scanning sample stage 15 of the middle group of test data is selected as the final surface topography of the current scanning point of the sample; The equivalent Young's modulus E * value of the group data is used as the final equivalent Young's modulus of the current scanning point of the sample; the surface potential difference value of the corresponding group of data is selected as the final surface potential difference of the current scanning point of the sample;
其中,导电探针7-4的上下往复移动、开尔文扫描样品台15保持导电探针7-4和样品15-8之间的最大相互作用力为设定值的伺服运动以及XYZ纳米定位台13移动样品至下一个扫描点的运动三者之间并行运行。Among them, the up and down reciprocating movement of the conductive probe 7-4, the Kelvin scanning sample stage 15 maintains the maximum interaction force between the conductive probe 7-4 and the sample 15-8 as the servo motion of the set value, and the XYZ nanopositioning stage 13 The movement to move the sample to the next scan point runs in parallel among the three.
具体实施方式二:结合图1和图2说明本实施方式,本实施方式是对实施方式一所述的开尔文探针力显微镜的进一步限定,本实施方式中,所述上位机内嵌入由软件实现的测量模块,所述测量模块包括以下单元:Specific Embodiment 2: This embodiment is described in conjunction with Fig. 1 and Fig. 2. This embodiment is a further limitation of the Kelvin probe force microscope described in Embodiment 1. In this embodiment, the embedding in the host computer is realized by software The measurement module, the measurement module includes the following units:
力检测单元:实时采集四象限位置检测器4检测到的导电探针7-4的形变量,并根据该形变量计算导电探针7-4与样品之间的作用力;所述作用力等于形变量与导电探针7-4刚度的乘积;Force detection unit: collect the deformation of the conductive probe 7-4 detected by the four-quadrant position detector 4 in real time, and calculate the force between the conductive probe 7-4 and the sample according to the deformation; the force is equal to The product of the deformation amount and the stiffness of the conductive probe 7-4;
表面形貌及最大压痕深度测量单元:通过一号压电控制器控制开尔文扫描样品台15上升,使样品接近导电探针7-4,当导电探针7-4与样品之间的最大作用力达到设定值时,记录样品台压电陶瓷的Z向坐标值;同时记录最大压痕深度,所述最大压痕深度等于压电陶瓷7-2从平衡位置点A’到点B的位移与导电探针7-4的形变量之差;导电探针7-4与样品之间的作用力达到设定值时所对应的时间点为B点;所述平衡位置点A’是指在A点之后,导电探针和样品接触过程中,导电探针的力反馈信号等于导电探针和样品未接触时的力反馈信号的时间点;Surface topography and maximum indentation depth measurement unit: Control the Kelvin scanning sample stage 15 to rise through the No. 1 piezoelectric controller, so that the sample is close to the conductive probe 7-4, when the maximum interaction between the conductive probe 7-4 and the sample When the force reaches the set value, record the Z-direction coordinate value of the piezoelectric ceramic on the sample stage; record the maximum indentation depth at the same time, and the maximum indentation depth is equal to the displacement of the piezoelectric ceramic 7-2 from the equilibrium position point A' to point B The difference from the deformation of the conductive probe 7-4; the time point corresponding to when the force between the conductive probe 7-4 and the sample reaches the set value is point B; the equilibrium position point A' refers to After point A, during the contact process between the conductive probe and the sample, the force feedback signal of the conductive probe is equal to the time point when the force feedback signal of the conductive probe is not in contact with the sample;
粘附力测量单元:通过三号压电控制器控制压电陶瓷7-2,使导电探针7-4反向移动,并记录反向移动过程中导电探针7-4与样品脱离时所受的作用力,所述作用力即为导电探针7-4与样品之间的最大粘附力;此时所对应的时间点为C点;Adhesion measurement unit: the piezoelectric ceramic 7-2 is controlled by the No. 3 piezoelectric controller, so that the conductive probe 7-4 moves in the reverse direction, and records the time when the conductive probe 7-4 is separated from the sample during the reverse movement. The applied force is the maximum adhesion force between the conductive probe 7-4 and the sample; the corresponding time point is point C;
等效杨氏模量计算单元:将B点和C点之间的力-压电陶瓷7-2位移数量转换成力-压痕深度数据,并利用DMT模型拟合,便可得到样品的等效杨氏模量,所述DMT模型为:Equivalent Young's modulus calculation unit: convert the force-piezoelectric ceramic 7-2 displacement between points B and C into force-indentation depth data, and use DMT model fitting to obtain the equivalent of the sample Effective Young's modulus, the DMT model is:
F为导电探针7-4和样品之间的相互作用力,Fadh为样品和导电探针7-4之间的最大粘附力,R为导电探针7-4的针尖半径,δ为压痕深度,E*为等效杨氏模量;F is the interaction force between the conductive probe 7-4 and the sample, Fa adh is the maximum adhesion force between the sample and the conductive probe 7-4, R is the tip radius of the conductive probe 7-4, and δ is Indentation depth, E * is the equivalent Young's modulus;
表面局部电势差测量单元:通过三号压电控制器控制探针手7上的压电陶瓷7-2移动,使导电探针7-4继续向上移动一定高度h,h>0,然后使导电探针7-4保持在高度h处;将锁相放大器输出的相位作为反馈信号调节直流电压UDC的值,使锁相放大器输出的信号为零,记录此时的UDC的值,该UDC的值即为样品和探针之间的表面局部电势差;Surface local potential difference measurement unit: Control the piezoelectric ceramic 7-2 on the probe hand 7 to move through the No. Keep pin 7-4 at the height h; use the phase output of the lock-in amplifier as a feedback signal to adjust the value of the DC voltage U DC , so that the signal output by the lock-in amplifier is zero, and record the value of U DC at this time, the U DC The value of is the surface local potential difference between the sample and the probe;
样品移动单元:通过二号压电控制器驱动XYZ纳米定位台13移动至下一个扫描点。Sample moving unit: drive the XYZ nanopositioning stage 13 to move to the next scanning point through the No. 2 piezoelectric controller.
上述测量模块运行完一次后,完成样品当前扫描点的表面形貌、等效杨氏模量以及表面局部电势差的测量。After the above-mentioned measurement module runs once, the measurement of the surface topography, equivalent Young's modulus, and surface local potential difference of the current scanning point of the sample is completed.
表面形貌测量单元在每个扫描点测得一个B点对应的样品压电陶瓷Z向坐标值,所有扫描点的该样品台压电陶瓷Z向坐标值合成样品的表面形貌图像;The surface topography measurement unit measures the Z-coordinate value of the piezoelectric ceramic corresponding to point B at each scanning point, and the Z-coordinate value of the piezoelectric ceramic on the sample table at all scanning points synthesizes the surface topography image of the sample;
最大压痕深度测量单元在每个扫描点测得一个B点对应的压痕深度,所有扫描点的最大压痕深度合成样品的最大压痕深度图像;The maximum indentation depth measurement unit measures the indentation depth corresponding to point B at each scanning point, and the maximum indentation depth of all scanning points synthesizes the maximum indentation depth image of the sample;
最大粘附力测量单元在每个扫描点测得一个C点对应的粘附力,所有扫描点的最大粘附力合成样品的最大粘附力图像;The maximum adhesion force measurement unit measures the adhesion force corresponding to point C at each scanning point, and the maximum adhesion force of all scanning points synthesizes the maximum adhesion force image of the sample;
等效杨氏模量计算单元在每个扫描点测得一个等效杨氏模量,所有扫描点的等效杨氏模量合成样品的等效杨氏模量图像;The equivalent Young's modulus calculation unit measures an equivalent Young's modulus at each scanning point, and the equivalent Young's modulus of all scanning points synthesizes the equivalent Young's modulus image of the sample;
表面局部电势差测量单元在每个扫描点测得一个表面局部电势差,所有扫描点的表面局部电势差的值合成样品的表面局部电势差图像。The surface local potential difference measuring unit measures a surface local potential difference at each scanning point, and the surface local potential difference values of all scanning points synthesize the surface local potential difference image of the sample.
采用上述测量模块测量表面形貌、力学特性以及表面局部电势差之前,先要进行一些准备工作,对该测量模块进行相关参数设定。具体过程如下:Before using the above-mentioned measurement module to measure the surface morphology, mechanical properties and surface local potential difference, some preparatory work must be done first, and the relevant parameters of the measurement module should be set. The specific process is as follows:
1、系统初始化,把准备好的样品15-8固定到样品座15-3上、将铜压片15-7与样品15-8导电接触并固定、将导电探针7-4安装在探针手7上、将导电探针7-4与导电探针固定板7-6导电连接,并将开尔文扫描样品台15和探针手7分别安装在样品台支架14和探针手支架9上,并将接线端子与对应的设备进行电连接;1. System initialization, fix the prepared sample 15-8 on the sample holder 15-3, make conductive contact and fix the copper pressing piece 15-7 with the sample 15-8, install the conductive probe 7-4 on the probe On the hand 7, the conductive probe 7-4 is conductively connected to the conductive probe fixing plate 7-6, and the Kelvin scanning sample stage 15 and the probe hand 7 are installed on the sample stage support 14 and the probe hand support 9 respectively, And electrically connect the terminals to the corresponding equipment;
2、上位机控制XY微米定位台12移动,通过光学显微镜20初步定位样品15-8,选择合适的测量区域,并移动该区域到光学显微镜20的视场中心;2. The upper computer controls the movement of the XY micron positioning stage 12, initially positions the sample 15-8 through the optical microscope 20, selects a suitable measurement area, and moves this area to the center of the field of view of the optical microscope 20;
3、移动一维大量程调整微平台10和XYZ微米定位台8,粗对准导电探针7-4,使导电探针7-4置于第2步中所选择的测量区域上方,调整激光方向,使导电探针7-4上的激光光斑处于导电探针7-4悬臂梁的前端中心;3. Move the one-dimensional large-scale adjustment micro-platform 10 and the XYZ micron positioning stage 8, roughly align the conductive probe 7-4, place the conductive probe 7-4 above the measurement area selected in step 2, and adjust the laser direction, so that the laser spot on the conductive probe 7-4 is at the center of the front end of the conductive probe 7-4 cantilever beam;
4、开启扫频激振器对导电探针7-4进行扫频操作,以获得导电探针7-4的二阶共振频率ω以及对应的品质因子Q,进而得到导电探针7-4的时间常数τ=2Q/ω,并且将信号发生器的频率设置为ω;4. Turn on the sweep frequency exciter to sweep the conductive probe 7-4 to obtain the second-order resonance frequency ω and the corresponding quality factor Q of the conductive probe 7-4, and then obtain the Time constant τ=2Q/ω, and the frequency of the signal generator is set to ω;
5、通过XYZ微米定位台8粗调导电探针7-4与样品15-8之间的距离,准备位置伺服控制,并将导电探针7-4上的激光光斑重新调整到导电探针7-4悬臂梁的前端中心;5. Roughly adjust the distance between the conductive probe 7-4 and the sample 15-8 through the XYZ micron positioning stage 8, prepare the position servo control, and readjust the laser spot on the conductive probe 7-4 to the conductive probe 7 -4 the center of the front end of the cantilever beam;
6、任意波发生器产生控制信号,该控制信号的每个周期为高斯信号,该控制信号发送至三号压电控制器,使三号压电控制器驱动导电探针7-4按照高斯信号上下往复运动;6. Arbitrary wave generator generates a control signal, each period of the control signal is a Gaussian signal, and the control signal is sent to the No. 3 piezoelectric controller, so that the No. 3 piezoelectric controller drives the conductive probe 7-4 according to the Gaussian signal. up and down reciprocating motion;
通过四象限位置检测器4检测导电探针7-4上的力,启动伺服控制,控制XYZ纳米定位台13沿Z轴快速接近导电探针7-4并保持两者之间的最大作用力等于所设定的作用力;Detect the force on the conductive probe 7-4 by the four-quadrant position detector 4, start the servo control, control the XYZ nanopositioning stage 13 to quickly approach the conductive probe 7-4 along the Z axis and keep the maximum force between the two equal to the set force;
7、伺服成功后停止伺服控制,将XYZ纳米定位台13下降一定高度(小于开尔文扫描样品台15上安装的压电陶瓷15-2的行程),然后通过开尔文扫描样品台15上安装的压电陶瓷15-2重复第6步中的伺服,继续保持导电探针7-4和样品15-8之间的最大作用力等于所设定的作用力;通常伺服频率是扫描频率的5-10倍,因此每个扫描点进行了多次伺服;7. Stop the servo control after the servo is successful, lower the XYZ nanopositioning stage 13 to a certain height (less than the stroke of the piezoelectric ceramic 15-2 installed on the Kelvin scanning sample stage 15), and then scan the piezoelectric ceramics installed on the sample stage 15 through Kelvin. Ceramic 15-2 repeats the servo in step 6, and continues to keep the maximum force between the conductive probe 7-4 and the sample 15-8 equal to the set force; usually the servo frequency is 5-10 times the scanning frequency , so multiple servos are performed for each scan point;
8、通过信号发生器给导电探针7-4施加二阶共振频率下的机械激振信号Um,并将相位的计算点设置在点D点与E之间(如图2所示,在导电探针7-4的一个运动周期内,导电探针7-4向下移动过程中与样品发生接触的时刻为A点,导电探针7-4继续向下移动,直到与样品之间的作用力达到设定值,该时刻为B点,然后导电探针7-4开始反向运动,与样品发生脱离的时刻为C点,导电探针7-4继续上升到一定高度后停止运动,并在该高度保持一段时间,即D点到E点之间,其中表面局部电势差补偿的初始点到C点之间的时间要大于时间长数τ),调节Um的相位使锁相放大器的相位输出为零,其中,导电探针7-4的二阶激振在亚纳米级别,不会影响导电探针7-4和样品15-8之间的稳定接触;8. Apply the mechanical excitation signal U m at the second-order resonance frequency to the conductive probe 7-4 through the signal generator, and set the calculation point of the phase between point D and point E (as shown in Figure 2, at In one movement cycle of the conductive probe 7-4, the moment when the conductive probe 7-4 comes into contact with the sample during the downward movement is point A, and the conductive probe 7-4 continues to move downward until the distance between the conductive probe 7-4 and the sample When the force reaches the set value, this moment is point B, and then the conductive probe 7-4 starts to move in reverse, and the moment when it separates from the sample is point C, and the conductive probe 7-4 continues to rise to a certain height and then stops moving. And keep at this height for a period of time, that is, between D point and E point, wherein the time between the initial point of surface local potential difference compensation and C point will be greater than the time length number τ), adjust the phase of Um to make the phase of lock-in amplifier The output is zero, wherein the second-order excitation of the conductive probe 7-4 is at a sub-nanometer level, and will not affect the stable contact between the conductive probe 7-4 and the sample 15-8;
9、设置移相器移相90度并开启,在导电探针7-4和样品15-8之间施加二阶共振频率下的电激振信号UAC sin(ωt),此时由于导电探针7-4和样品15-8之间的功函数/表面电势的不同,因此,它们之间存在表面电势差UCPD,从而导致锁相放大器输出的相位将发生偏移;9. Set the phase shifter to shift the phase by 90 degrees and turn it on. Apply the electrical excitation signal U AC sin(ωt) at the second-order resonance frequency between the conductive probe 7-4 and the sample 15-8. At this time, due to the conductive probe The difference in work function/surface potential between needle 7-4 and sample 15-8, therefore, there is a surface potential difference U CPD between them, so that the phase of the lock-in amplifier output will shift;
10、开启上位机内嵌入的开尔文控制程序,该程序将锁相放大器输出的相位作为反馈信号,控制直流电源输出一个直流补偿电压信号UDC作用在导电探针7-4和样品15-8之间,从而补偿导电探针7-4和样品15-8表面之间的局部电势差(UCPD),最后使锁相放大器输出的相位恢复为零,直流电源输出的电压(UDC)将等于导电探针7-4和样品15-8表面之间的局部电势差(UCPD);10. Start the Kelvin control program embedded in the host computer, which uses the phase output by the lock-in amplifier as a feedback signal to control the DC power supply to output a DC compensation voltage signal U DC to act between the conductive probe 7-4 and the sample 15-8 , so as to compensate the local potential difference (U CPD ) between the conductive probe 7-4 and the surface of the sample 15-8, and finally restore the phase of the lock-in amplifier output to zero, and the voltage (U DC ) output by the DC power supply will be equal to the conductive The local potential difference (U CPD ) between probe 7-4 and the surface of sample 15-8;
11、设置扫描步距和扫描点数,然后开始扫描。11. Set the scanning step and scanning points, and then start scanning.
上述开尔文探针力显微镜的导电探针被多频态同时驱动,其中包括:1)低频高斯信号机械驱动(0.5-2kHz),2)二阶共振模态下的机械驱动,3)探针和样品之间的二阶共振模态下的电激励。上位机对导电探针的反馈信号进行分段分频处理实现距离控制、电势补偿以及数据拟合,从而实现对样品表面形貌、力学特性和表面局部电势的同步测量。The conductive probe of the above-mentioned Kelvin probe force microscope is simultaneously driven by multiple frequency states, including: 1) mechanical drive (0.5-2kHz) of low-frequency Gaussian signal, 2) mechanical drive in the second-order resonance mode, 3) probe and Electrical excitation at the second-order resonance mode between samples. The upper computer processes the feedback signal of the conductive probe in sections and divides frequency to realize distance control, potential compensation and data fitting, so as to realize the simultaneous measurement of the surface morphology, mechanical properties and local surface potential of the sample.
利用本实施方式的开尔文探针力显微镜对聚苯乙烯/光固胶光栅进行测量,扫描范围为2.56um*2.56um,扫描点数为256*256.图6是聚苯乙烯/光固胶光栅样品的扫描图像结果,其中(a)为表面形貌图像,中间突起的部分为聚苯乙烯,两侧凹下去的部分为光固胶,其高度差为60nm;(b)为最大粘附力图像;(c)为最大压痕深度图像;(d)为等效杨氏模量图像,聚苯乙烯的泊松比取0.33,因此,聚苯乙烯的杨氏模量为1.93±0.28GPa;(e)为表面局部电势图像;(f)相位偏移误差图像,相位误差为-0.05±1.01度。表1为测量结果,其中包括最大粘附力、最大压痕深度、等效杨氏模量和表面局部电势差。Use the Kelvin probe force microscope of this embodiment to measure the polystyrene/photocurable grating, the scanning range is 2.56um*2.56um, and the number of scanning points is 256*256. Figure 6 is a polystyrene/photocurable grating sample The scanning image results, where (a) is the surface topography image, the protruding part in the middle is polystyrene, and the concave part on both sides is photocurable adhesive, and the height difference is 60nm; (b) is the maximum adhesion image ; (c) is the maximum indentation depth image; (d) is the equivalent Young's modulus image, the Poisson's ratio of polystyrene is 0.33, therefore, the Young's modulus of polystyrene is 1.93±0.28GPa; ( e) is the surface local potential image; (f) the phase shift error image, and the phase error is -0.05±1.01 degrees. Table 1 shows the measurement results, including maximum adhesion, maximum indentation depth, equivalent Young's modulus, and surface local potential difference.
表1测量结果数据列表Table 1 Measurement result data list
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710093420.2A CN106645808B (en) | 2017-02-21 | 2017-02-21 | A Kelvin Probe Force Microscope for Simultaneous Measurement of Multiple Parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710093420.2A CN106645808B (en) | 2017-02-21 | 2017-02-21 | A Kelvin Probe Force Microscope for Simultaneous Measurement of Multiple Parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106645808A true CN106645808A (en) | 2017-05-10 |
CN106645808B CN106645808B (en) | 2019-07-02 |
Family
ID=58845767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710093420.2A Active CN106645808B (en) | 2017-02-21 | 2017-02-21 | A Kelvin Probe Force Microscope for Simultaneous Measurement of Multiple Parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106645808B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107255738A (en) * | 2017-06-23 | 2017-10-17 | 电子科技大学 | A kind of surface potential measuring method based on Kelvin probe force microscopy |
CN107561315A (en) * | 2017-09-14 | 2018-01-09 | 浙江大学 | The test device and method of microcosmic olefin hydrogen and hydrogen segregation activation energy in a kind of metal |
CN108802442A (en) * | 2018-05-30 | 2018-11-13 | 中国船舶重工集团公司第七二五研究所青岛分部 | A kind of Kelvin probe test device and its test method |
CN109444487A (en) * | 2018-12-21 | 2019-03-08 | 义乌臻格科技有限公司 | A kind of probe in detecting head and probe detection device that probe spacing is continuously adjustable |
CN109799369A (en) * | 2019-02-13 | 2019-05-24 | 南昌大学 | Atomic force microscope external equipment multi-parameter in-situ measurement system and measurement method |
CN109884346A (en) * | 2019-03-10 | 2019-06-14 | 复旦大学 | A joint test system for macro/micro structure and electrical properties of ferroelectric films |
CN110763873A (en) * | 2019-11-18 | 2020-02-07 | 中国科学院沈阳自动化研究所 | Peak force tapping and torsional resonance compounding method based on atomic force microscope technology |
CN110907663A (en) * | 2019-12-18 | 2020-03-24 | 哈尔滨工业大学 | Kelvin probe force microscope measurement method based on T-shaped cantilever probe |
CN111654207A (en) * | 2020-05-28 | 2020-09-11 | 天津大学 | A displacement feedback device and method for piezoelectric ceramic micro-displacement drive control |
CN113092824A (en) * | 2020-05-05 | 2021-07-09 | 台湾积体电路制造股份有限公司 | Method for detecting ferroelectric signals and piezoelectric force microscope device |
CN113092826A (en) * | 2021-03-05 | 2021-07-09 | 中山大学 | Scanning probe microscope system and measuring method thereof |
CN113109595A (en) * | 2021-04-09 | 2021-07-13 | 南方科技大学 | Atomic force microscopy method and system for analyzing electrostatic and force-electricity coupling response |
CN113391096A (en) * | 2021-06-10 | 2021-09-14 | 哈尔滨工业大学 | Method for calibrating dynamic performance of magnetic drive probe in atomic force microscope |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013192617A1 (en) * | 2012-06-22 | 2013-12-27 | Bruker Nano, Inc. | Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode |
-
2017
- 2017-02-21 CN CN201710093420.2A patent/CN106645808B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013192617A1 (en) * | 2012-06-22 | 2013-12-27 | Bruker Nano, Inc. | Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode |
Non-Patent Citations (2)
Title |
---|
DOMINIK ZIEGLER: "compensating electrostatic forces by single-scan kelvin probe force microscopy", 《NANOTECENOLOGY》 * |
HAO ZHANG: "measurement of surface potential and adhesion with kelvin probe force microscopy", 《IEEE》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107255738B (en) * | 2017-06-23 | 2020-01-14 | 电子科技大学 | A Surface Potential Measurement Method Based on Kelvin Probe Force Microscopy |
CN107255738A (en) * | 2017-06-23 | 2017-10-17 | 电子科技大学 | A kind of surface potential measuring method based on Kelvin probe force microscopy |
CN107561315A (en) * | 2017-09-14 | 2018-01-09 | 浙江大学 | The test device and method of microcosmic olefin hydrogen and hydrogen segregation activation energy in a kind of metal |
CN107561315B (en) * | 2017-09-14 | 2019-08-30 | 浙江大学 | Device and method for testing microscopic hydrogen distribution and activation energy of hydrogen segregation in metals |
CN108802442B (en) * | 2018-05-30 | 2020-07-24 | 中国船舶重工集团公司第七二五研究所青岛分部 | Kelvin probe testing device and testing method thereof |
CN108802442A (en) * | 2018-05-30 | 2018-11-13 | 中国船舶重工集团公司第七二五研究所青岛分部 | A kind of Kelvin probe test device and its test method |
CN109444487A (en) * | 2018-12-21 | 2019-03-08 | 义乌臻格科技有限公司 | A kind of probe in detecting head and probe detection device that probe spacing is continuously adjustable |
CN109444487B (en) * | 2018-12-21 | 2024-03-29 | 义乌臻格科技有限公司 | Probe detection head with continuously adjustable probe spacing |
CN109799369A (en) * | 2019-02-13 | 2019-05-24 | 南昌大学 | Atomic force microscope external equipment multi-parameter in-situ measurement system and measurement method |
CN109884346A (en) * | 2019-03-10 | 2019-06-14 | 复旦大学 | A joint test system for macro/micro structure and electrical properties of ferroelectric films |
CN110763873A (en) * | 2019-11-18 | 2020-02-07 | 中国科学院沈阳自动化研究所 | Peak force tapping and torsional resonance compounding method based on atomic force microscope technology |
CN110763873B (en) * | 2019-11-18 | 2021-04-13 | 中国科学院沈阳自动化研究所 | Peak force tapping and torsional resonance compounding method based on atomic force microscope technology |
CN110907663B (en) * | 2019-12-18 | 2021-12-21 | 哈尔滨工业大学 | Kelvin probe force microscope measuring method based on T-shaped cantilever beam probe |
CN110907663A (en) * | 2019-12-18 | 2020-03-24 | 哈尔滨工业大学 | Kelvin probe force microscope measurement method based on T-shaped cantilever probe |
CN113092824A (en) * | 2020-05-05 | 2021-07-09 | 台湾积体电路制造股份有限公司 | Method for detecting ferroelectric signals and piezoelectric force microscope device |
CN111654207A (en) * | 2020-05-28 | 2020-09-11 | 天津大学 | A displacement feedback device and method for piezoelectric ceramic micro-displacement drive control |
CN113092826A (en) * | 2021-03-05 | 2021-07-09 | 中山大学 | Scanning probe microscope system and measuring method thereof |
CN113109595A (en) * | 2021-04-09 | 2021-07-13 | 南方科技大学 | Atomic force microscopy method and system for analyzing electrostatic and force-electricity coupling response |
CN113391096A (en) * | 2021-06-10 | 2021-09-14 | 哈尔滨工业大学 | Method for calibrating dynamic performance of magnetic drive probe in atomic force microscope |
Also Published As
Publication number | Publication date |
---|---|
CN106645808B (en) | 2019-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106645808B (en) | A Kelvin Probe Force Microscope for Simultaneous Measurement of Multiple Parameters | |
CN106841687B (en) | A method for simultaneous measurement of multiple parameters using Kelvin probe force microscopy | |
CN110907663B (en) | Kelvin probe force microscope measuring method based on T-shaped cantilever beam probe | |
Schitter et al. | Design and input-shaping control of a novel scanner for high-speed atomic force microscopy | |
CN101083151A (en) | Probe position control system and method | |
Yong et al. | Collocated z-axis control of a high-speed nanopositioner for video-rate atomic force microscopy | |
CN111398638B (en) | Kelvin probe force microscope system and sample side wall scanning method | |
CN107085127B (en) | A kind of detection method and system of novel scanning probe microscopy | |
JP5252389B2 (en) | Scanning probe microscope | |
US7861577B2 (en) | Electric potential difference detection method and scanning probe microscope | |
CN103069279A (en) | Low drift scanning probe microscope | |
CN109799369A (en) | Atomic force microscope external equipment multi-parameter in-situ measurement system and measurement method | |
CN110763873B (en) | Peak force tapping and torsional resonance compounding method based on atomic force microscope technology | |
CN101339816A (en) | Two-dimensional micro-motion platform and micro-mechanical parameter testing method for atomic force microscope | |
CN108287220A (en) | A kind of experimental provision measured for transparent substrates film surface and interface mechanical characteristic | |
CN106645803A (en) | Fast dual-probe atomic force microscope approximation device and fast dual-probe atomic force microscope approximation method | |
CN110082568A (en) | A scanning electrochemical microscope and its calibration method | |
CN215985760U (en) | High-flux scanning probe microscopic imaging system | |
Wang et al. | A rate adaptive control method for improving the imaging speed of atomic force microscopy | |
CN104950142B (en) | The vibration characteristics measuring method of cantilever and the vibration characteristics measurement device of cantilever | |
JP2009053017A (en) | Scanning probe microscope and local electrical property measuring method using the same | |
CN114624471B (en) | Three-dimensional structure surface measurement method based on three-dimensional Kelvin probe force microscope | |
CN114155219B (en) | Method for measuring pressure and electric shear stack high-frequency motion displacement based on AFM knocking processing track | |
CN112945960A (en) | High-flux scanning probe microscopic imaging system | |
CN2624354Y (en) | Liquid phase atomic force microscope probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |