CN106637008A - 一种高强度铝合金板材的轧制方法 - Google Patents

一种高强度铝合金板材的轧制方法 Download PDF

Info

Publication number
CN106637008A
CN106637008A CN201610978748.8A CN201610978748A CN106637008A CN 106637008 A CN106637008 A CN 106637008A CN 201610978748 A CN201610978748 A CN 201610978748A CN 106637008 A CN106637008 A CN 106637008A
Authority
CN
China
Prior art keywords
temperature
aluminum alloy
carried out
aluminium alloy
milling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610978748.8A
Other languages
English (en)
Other versions
CN106637008B (zh
Inventor
孙有平
何江美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201610978748.8A priority Critical patent/CN106637008B/zh
Publication of CN106637008A publication Critical patent/CN106637008A/zh
Application granted granted Critical
Publication of CN106637008B publication Critical patent/CN106637008B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开一种高强度铝合金板材的轧制方法,包括以下步骤:A、将精炼结束后的铝合金锭坯在500~600℃下均匀化退火;B、控制温度在390‑410℃,内外温度均匀后,进行单道次15~20%的热轧预变形,继续控制温度为390~410℃,然后进行单道次70~80%的大压下量轧制变形,得厚板坯,将厚板坯进行水冷或空冷;C、在450~550℃下进行0.5~2h固溶处理,然后水淬;D、在150~250℃下进行10~15h的预时效处理,然后空冷至室温;E、进行单道次40~60%的冷轧变形,得到板材,然后进行150~200℃的终时效处理,处理时间为3~5h。本发明的轧制方法制备的板材,具有高强度,同时具有较高耐损伤性和较长使用寿命。

Description

一种高强度铝合金板材的轧制方法
技术领域
本发明属于铝合金材料技术领域,具体为一种高强度铝合金板材的轧制方法。
背景技术
铝合金由于其密度小、比强度和比刚度高、弹性好、抗冲击性能良好、耐腐蚀、耐磨、易表面着色、良好的加工成型性以及高的回收再生性等特点,广泛应用于航空、航天、汽车、机械制造、船舶、建筑、装修等领域,其强度一般在480-500MPa之间。随着近年来科学技术及工业经济的飞速发展进一步提高铝合金材料性能已成为当今国际铝业界共同关注的问题。国家大飞机计划的实施,对高强高韧、抗疲劳、耐热性好的铝合金的力学性能提出了更高的要求,因此发展大尺寸、高强高韧耐热铝合金薄板制备新方法,制备高强高韧的耐热铝合金板材,以满足航空制造业对高性能耐热铝合金薄板的需求成为当前亟待解决的问题,是当前科学界和工程界研究的热点。然而在提高铝合金材料的强度和韧性的同时,铝合金材料的耐久性以及损伤容限无法同步提高,甚至降低。
发明内容
针对上述问题,本发明提供一种高强度铝合金板材的轧制方法,在保证提高铝合金材料的强度和韧性的同时,提高其耐损伤性,延长其使用寿命。
为实现上述发明目的,本发明的技术方案如下:
所述的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的铝合金锭坯在500~600℃下均匀化退火12~36h;
B、控制退火后的铝合金锭坯的温度在390~410℃,待铝合金锭坯内外温度均匀后,对其进行单道次15~20%的热轧预变形,继续控制铝合金锭坯的温度为390~410℃,然后进行单道次70~80%的大压下量轧制变形,轧制得到厚板坯,将厚板坯进行水冷或空冷至室温;
C、将冷却后的厚板坯在450~550℃下进行0.5~2h固溶处理,然后水淬;
D、将水淬后的厚板坯在150~250℃下进行10~15h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次40~60%的冷轧变形,得到板材,然后对板材进行150~200℃的终时效处理,处理时间为3~5h。
优选地,所述的步骤A中铝合金锭坯的退火温度为520~580℃。
优选地,所述的步骤C中固溶温度为490~520℃。
优选地,所述的热轧和冷轧过程中,轧辊轧制线速度为0.4~0.6m/min。
优选地,所述的铝合金锭坯为1-8系铝合金锭坯中的任一种。
优选地,所述的铝合金锭坯为Al-Mg-Si-Cu合金。
优选地,所述的Al-Mg-Si-Cu合金的成分配比为:Mg0.6~1.0%,Si0.6~0.8%,Cu0.2~0.8%,Mn0.3~0.5%,Ti0.1~0.3%,Zr0.1~0.3%,Er0.2~0.5%,其余为Al。
优选地,所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在740~780℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
本发明的有益效果为:
本发明的高强度铝合金板材的轧制方法,能够消除板材枝晶偏析问题,实现合金成分均匀化;并且能够提高合金的显微硬度,确保其各部分力学性能均匀一致,保证零件的使用性能;同时提高板材的强度及其耐损伤性,延长其使用寿命。
附图说明
图1为本发明对照组1铝合金板材的显微组织图
图2为本发明实施例3轧制方法制备的铝合金板材的显微组织图
图3为本发明实施例4轧制方法制备的铝合金板材的显微组织图
图4为本发明实施例1的轧制方法制备的铝合金板材的应力-应变曲线。
具体实施方式
下面通过具体实施例对本发明进行详细说明。
实施例1
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的Al-Mg-Si-Cu合金锭坯在500℃下均匀化退火12h;
B、控制退火后的Al-Mg-Si-Cu合金锭坯的温度在390℃,待Al-Mg-Si-Cu合金锭坯内外温度均匀后,对其进行单道次15%的热轧预变形,轧辊轧制线速度为0.4m/min,继续控制Al-Mg-Si-Cu合金锭坯的温度为390℃,然后进行单道次70%的大压下量轧制变形,轧辊轧制线速度为0.4m/min,轧制得到厚板坯,将厚板坯进行空冷至室温;
C、将冷却后的厚板坯在450℃下进行0.5h固溶处理,然后水淬;
D、将水淬后的厚板坯在150℃下进行10h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次40%的冷轧变形,轧辊轧制线速度为0.4m/min,得到板材,然后对板材进行150℃的终时效处理,处理时间为3h。
所述的Al-Mg-Si-Cu合金锭坯的成分配比为:Mg0.6%,Si0.6%,Cu0.2%,Mn0.3%,Ti0.1%,Zr0.1%,Er0.2%,其余为Al。
所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在740℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
实施例2
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的Al-Mg-Si-Cu合金锭坯在520℃下均匀化退火18h;
B、控制退火后的Al-Mg-Si-Cu合金锭坯的温度在395℃,待Al-Mg-Si-Cu合金锭坯内外温度均匀后,对其进行单道次16%的热轧预变形,轧辊轧制线速度为0.5m/min,继续控制Al-Mg-Si-Cu合金锭坯的温度为395℃,然后进行单道次72%的大压下量轧制变形,轧辊轧制线速度为0.5m/min,轧制得到厚板坯,将厚板坯进行水冷至室温;
C、将冷却后的厚板坯在470℃下进行0.8h固溶处理,然后水淬;
D、将水淬后的厚板坯在180℃下进行12h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次45%的冷轧变形,轧辊轧制线速度为0.5m/min,得到板材,然后对板材进行160℃的终时效处理,处理时间为4h。
所述的Al-Mg-Si-Cu合金锭坯成分配比为:Mg0.7%,Si0.7%,Cu0.4%,Mn0.4%,Ti0.2%,Zr0.2%,Er0.3%,其余为Al。
所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在750℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
实施例3
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的Al-Mg-Si-Cu合金锭坯在550℃下均匀化退火24h;
B、控制退火后的Al-Mg-Si-Cu合金锭坯的温度在400℃,待Al-Mg-Si-Cu合金锭坯内外温度均匀后,对其进行单道次17%的热轧预变形,轧辊轧制线速度为0.6m/min,继续控制Al-Mg-Si-Cu合金锭坯的温度为400℃,然后进行单道次75%的大压下量轧制变形,轧辊轧制线速度为0.6m/min,轧制得到厚板坯,将厚板坯进行空冷至室温;
C、将冷却后的厚板坯在510℃下进行1.2h固溶处理,然后水淬;
D、将水淬后的厚板坯在200℃下进行13h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次50%的冷轧变形,轧辊轧制线速度为0.6m/min,得到板材,然后对板材进行170℃的终时效处理,处理时间为5h。
所述的Al-Mg-Si-Cu合金锭坯成分配比为:Mg0.8%,Si0.8%,Cu0.5%,Mn0.5%,Ti0.3%,Zr0.3%,Er0.4%,其余为Al。
所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在760℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
实施例4
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的Al-Mg-Si-Cu合金锭坯在580℃下均匀化退火32h;
B、控制退火后的Al-Mg-Si-Cu合金锭坯的温度在405℃,待Al-Mg-Si-Cu合金锭坯内外温度均匀后,对其进行单道次18%的热轧预变形,轧辊轧制线速度为0.4m/min,继续控制Al-Mg-Si-Cu合金锭坯的温度为405℃,然后进行单道次78%的大压下量轧制变形,轧辊轧制线速度为0.4m/min,轧制得到厚板坯,将厚板坯进行水冷至室温;
C、将冷却后的厚板坯在520℃下进行1.6h固溶处理,然后水淬;
D、将水淬后的厚板坯在220℃下进行14h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次55%的冷轧变形,轧辊轧制线速度为0.4m/min,得到板材,然后对板材进行180℃的终时效处理,处理时间为4h。
所述的Al-Mg-Si-Cu合金锭坯成分配比为:Mg0.9%,Si0.8%,Cu0.7%,Mn0.4%,Ti0.2%,Zr0.2%,Er0.4%,其余为Al。
所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在770℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
实施例5
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的Al-Mg-Si-Cu合金锭坯在600℃下均匀化退火36h;
B、控制退火后的Al-Mg-Si-Cu合金锭坯的温度在410℃,待Al-Mg-Si-Cu合金锭坯内外温度均匀后,对其进行单道次20%的热轧预变形,轧辊轧制线速度为0.6m/min,继续控制Al-Mg-Si-Cu合金锭坯的温度为410℃,然后进行单道次80%的大压下量轧制变形,轧辊轧制线速度为0.6m/min,轧制得到厚板坯,将厚板坯进行空冷至室温;
C、将冷却后的厚板坯在550℃下进行2h固溶处理,然后水淬;
D、将水淬后的厚板坯在250℃下进行15h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次60%的冷轧变形,轧辊轧制线速度为0.6m/min,得到板材,然后对板材进行200℃的终时效处理,处理时间为5h。
所述的Al-Mg-Si-Cu合金锭坯成分配比为:Mg1.0%,Si0.8%,Cu0.8%,Mn0.5%,Ti0.3%,Zr0.3%,Er0.5%,其余为Al。
所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在780℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
实施例6
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的2A14铝合金锭坯在600℃下均匀化退火36h;
B、控制退火后的2A14铝合金锭坯的温度在410℃,待2A14铝合金锭坯内外温度均匀后,对其进行单道次20%的热轧预变形,轧辊轧制线速度为0.6m/min,继续控制2A14铝合金锭坯的温度为410℃,然后进行单道次80%的大压下量轧制变形,轧辊轧制线速度为0.6m/min,轧制得到厚板坯,将厚板坯进行空冷至室温;
C、将冷却后的厚板坯在550℃下进行2h固溶处理,然后水淬;
D、将水淬后的厚板坯在250℃下进行15h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次60%的冷轧变形,轧辊轧制线速度为0.6m/min,得到板材,然后对板材进行200℃的终时效处理,处理时间为5h。
所述的2A14铝合金锭坯成分配比为:Si 0.6-1.2,Cu 3.9-4.8,Mg 0.40-0.8,Zn≤0.30,Mn 0.40-1.0,Ti≤0.15,Ni≤0.10,Fe 0.000-0.700,其他单个≤0.05、合计≤0.15,Al余量。
所述的2014铝合金锭坯的铸造方法为:将所述的各个成分在780℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得2A14铝合金锭坯。
实施例7
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的5083铝合金锭坯在580℃下均匀化退火32h;
B、控制退火后的5083铝合金锭坯的温度在405℃,待5083铝合金锭坯内外温度均匀后,对其进行单道次18%的热轧预变形,轧辊轧制线速度为0.4m/min,继续控制5083铝合金锭坯的温度为405℃,然后进行单道次78%的大压下量轧制变形,轧辊轧制线速度为0.4m/min,轧制得到厚板坯,将厚板坯进行水冷至室温;
C、将冷却后的厚板坯在520℃下进行1.6h固溶处理,然后水淬;
D、将水淬后的厚板坯在220℃下进行14h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次55%的冷轧变形,轧辊轧制线速度为0.4m/min,得到板材,然后对板材进行180℃的终时效处理,处理时间为4h。
所述的5083铝合金锭坯成分配比为:Si ≤0.40,Cu ≤0.10,Mg4.0~4.9,Zn≤0.25,Mn0.40~1.0,Ti ≤0.15,Cr0.05~0.25,Fe0.000~ 0.400,其他单个≤0.05、合计≤0.15,Al余量。
所述的5083铝合金锭坯的铸造方法为:将所述的各个成分在770℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得5083铝合金锭坯。
实施例8
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的6063铝合金锭坯在550℃下均匀化退火24h;
B、控制退火后的6063铝合金锭坯的温度在400℃,待6063铝合金锭坯内外温度均匀后,对其进行单道次17%的热轧预变形,轧辊轧制线速度为0.6m/min,继续控制6063铝合金锭坯的温度为400℃,然后进行单道次75%的大压下量轧制变形,轧辊轧制线速度为0.6m/min,轧制得到厚板坯,将厚板坯进行空冷至室温;
C、将冷却后的厚板坯在510℃下进行1.2h固溶处理,然后水淬;
D、将水淬后的厚板坯在200℃下进行13h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次50%的冷轧变形,轧辊轧制线速度为0.6m/min,得到板材,然后对板材进行170℃的终时效处理,处理时间为5h。
所述的6063铝合金锭坯成分配比为:Si 0.20~0.6,Cu≤0.10,Mg 0.45~0.9,Zn≤0.10,Mn≤0.10,Ti ≤0.10,Cr≤0.10,Fe 0.000~ 0.350,其他单个≤0.05、合计≤0.15,Al余量。
所述的6063铝合金锭坯的铸造方法为:将所述的各个成分在760℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得6061铝合金锭坯。
实施例9
本发明的高强度铝合金板材的轧制方法,包括如下步骤:
A、将精炼结束后的7075铝合金锭坯在520℃下均匀化退火18h;
B、控制退火后的7075铝合金锭坯的温度在395℃,待7075铝合金锭坯内外温度均匀后,对其进行单道次16%的热轧预变形,轧辊轧制线速度为0.5m/min,继续控制7075铝合金锭坯的温度为395℃,然后进行单道次72%的大压下量轧制变形,轧辊轧制线速度为0.5m/min,轧制得到厚板坯,将厚板坯进行水冷至室温;
C、将冷却后的厚板坯在470℃下进行0.8h固溶处理,然后水淬;
D、将水淬后的厚板坯在180℃下进行12h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次45%的冷轧变形,轧辊轧制线速度为0.5m/min,得到板材,然后对板材进行160℃的终时效处理,处理时间为4h。
所述的7075铝合金锭坯成分配比为:Si≤0.4%,Fe≤0.5,Cu1.2-2.0,Mn≤0.3,Mg2.1~2.9 ,Cr0.18~0.28,Zn5.1~6.1,Ti≤0.2,其他单个0.05、总和0.15,Al余量。
所述的7075铝合金锭坯的铸造方法为:将所述的各个成分在750℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得7075铝合金锭坯。
实施例10 对比实验
对照组1-5:将本发明的Al-Mg-Si-Cu合金锭坯、2A04铝合金锭坯、5083铝合金锭坯、6063铝合金锭坯、7075铝合金锭坯,分别在常规工艺条件下进行轧制。
常规工艺步骤包括铸造、冷轧、固溶处理、时效预处理。铸造步骤中,以100~500℃/s 的冷却速度从液相线温度冷却到固相线温度;冷轧步骤中,控制冷轧压下率为70~90%;固溶处理步骤中,将铝合金板以80~120℃/s 的加热速度加热到500~560℃,保温5s~15s,然后以30~150℃/s 的冷却速度冷却到20~60℃;时效预处理步骤中,将铝合金板以10~100℃/s的加热速度加热到85~120℃,保温5s~15s,然后以30~150℃/s的冷却速度冷却到20~60℃。
实验组:按照本发明实施例1~9轧制方法制备的铝合金板材。
测试对照组1-5及实验组1-9的力学性能,包括抗拉强度、伸长率,对比结果如表1所示:
表1 各工艺方法制备的板材的力学性能
样品 合金 抗拉强度(25℃、MPa) 伸长率(%)
对照组1 Al-Mg-Si-Cu 400 20
实施例1 Al-Mg-Si-Cu 460 25
实施例2 Al-Mg-Si-Cu 470 27
实施例3 Al-Mg-Si-Cu 480 30
实施例4 Al-Mg-Si-Cu 490 35
实施例5 Al-Mg-Si-Cu 500 32
对照组2 2A04 440 10
实施例6 2A04 546 16
对照组3 5083 270 20
实施例7 5083 327 30
对照组4 6063 205 9
实施例8 6063 244 18
对照组5 7075 572 11
实施例9 7075 669 15
由表1可知,本发明实施例1-5的轧制方法制备的板材,抗拉强度比对照组1高15-25%,拉伸率比对照组1高25-75%;实施例6的制备的板材,抗拉强度比对照组2高24%,伸长率比对照组2高60%;实施例7的制备的板材,抗拉强度比对照组3高21%,伸长率比对照组2高50%;实施例8的制备的板材,抗拉强度比对照组4高19%,伸长率比对照组2高一倍;实施例9的制备的板材,抗拉强度比对照组5高17%,伸长率比对照组2高36%;可见,由本发明的轧制方法制备的板材,其力学性能明显优于常规方法制备的板材。
实施例7
从附图1可以看出:普通铝合金板材的铸态组织图中存在大量网格状的析出相,这表明合金内存在较多的析出状况,合金的均匀性不够理想。
从附图2、3可以看出:本发明轧制方法制备的铝合金板材,网格状析出相已经消失或部分消失,部分消失的情况下也只有较少量的颗粒状析出物,已经取得了较大的改善,体现了更好的均匀化效果。
从附图4可以看出,本发明实施例1的Al-Mg-Si-Cu合金板材在应力低于460MPa时,应力随着应变的增大而增大,在460MPa时,达到极限载荷,此时的应变为0.08;460MPa之后,板材开始发生不均匀塑性变形并形成缩颈,应力下降,最后应力达到375Mpa时板材断裂。

Claims (8)

1.一种高强度铝合金板材的轧制方法,其特征在于,包括如下步骤:
A、将精炼结束后的铝合金锭坯在500~600℃下均匀化退火12~36h;
B、控制退火后的铝合金锭坯的温度在390-410℃,待铝合金锭坯内外温度均匀后,对其进行单道次15~20%的热轧预变形,继续控制铝合金锭坯的温度为390~410℃,然后进行单道次70~80%的大压下量轧制变形,轧制得到厚板坯,将厚板坯进行水冷或空冷至室温;
C、将冷却后的厚板坯在450~550℃下进行0.5~2h固溶处理,然后水淬;
D、将水淬后的厚板坯在150~250℃下进行10~15h的预时效处理,然后空冷至室温;
E、将空冷至室温后的厚板坯进行单道次40~60%的冷轧变形,得到板材,然后对板材进行150~200℃的终时效处理,处理时间为3~5h。
2.根据权利要求1所述的高强度铝合金板材的轧制方法,其特征在于:所述的步骤A中铝合金锭坯的退化温度为520~580℃。
3.根据权利要求1所述的高强度铝合金板材的轧制方法,其特征在于:所述的步骤C中固溶温度为490~520℃。
4.根据权利要求1所述的高强度铝合金板材的轧制方法,其特征在于:所述的热轧和冷轧过程中,轧辊轧制线速度为0.4~0.6m/min。
5.根据权利要求1-4任一项所述的高强度铝合金板材的轧制方法,其特征在于:所述的铝合金锭坯为1-8系铝合金锭坯中的任一种。
6.根据权利要求5所述的高强度铝合金板材的轧制方法,其特征在于:所述的铝合金锭坯为Al-Mg-Si-Cu合金锭坯。
7.根据权利要求6所述的高强度铝合金板材的轧制方法,其特征在于:所述的Al-Mg-Si-Cu合金锭坯的成分配比为:Mg0.6~1.0%,Si0.6~0.8%,Cu0.2~0.8%,Mn0.3~0.5%,Ti0.1~0.3%,Zr0.1~0.3%,Er0.2~0.5%,其余为Al。
8.根据权利要求7所述的高强度铝合金板材的轧制方法,其特征在于,所述的Al-Mg-Si-Cu合金锭坯的铸造方法为:将所述的各个成分在740~780℃下进行熔炼,熔炼过程中采用氮气保护,并采用钠盐与六氯乙烷进行精炼和除气,制得Al-Mg-Si-Cu合金锭坯。
CN201610978748.8A 2016-11-08 2016-11-08 一种高强度铝合金板材的轧制方法 Expired - Fee Related CN106637008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610978748.8A CN106637008B (zh) 2016-11-08 2016-11-08 一种高强度铝合金板材的轧制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610978748.8A CN106637008B (zh) 2016-11-08 2016-11-08 一种高强度铝合金板材的轧制方法

Publications (2)

Publication Number Publication Date
CN106637008A true CN106637008A (zh) 2017-05-10
CN106637008B CN106637008B (zh) 2018-05-15

Family

ID=58805814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610978748.8A Expired - Fee Related CN106637008B (zh) 2016-11-08 2016-11-08 一种高强度铝合金板材的轧制方法

Country Status (1)

Country Link
CN (1) CN106637008B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969806A (zh) * 2018-10-31 2021-06-15 爱励轧制产品德国有限责任公司 制造具有改善的耐疲劳失效性的2xxx系列铝合金板材产品的方法
CN112981195A (zh) * 2021-02-20 2021-06-18 太原理工大学 一种高强度铝镁硅钙导电铝合金及制备方法
CN113862538A (zh) * 2021-09-27 2021-12-31 长沙新材料产业研究院有限公司 高强耐热镁合金薄板及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045918A (zh) * 2012-04-10 2013-04-17 湖南晟通科技集团有限公司 高焊接强度Al-Mg-Si合金及其型材制备方法
CN103305779A (zh) * 2013-06-18 2013-09-18 常州大学 一种6000系铝合金的形变热处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045918A (zh) * 2012-04-10 2013-04-17 湖南晟通科技集团有限公司 高焊接强度Al-Mg-Si合金及其型材制备方法
CN103305779A (zh) * 2013-06-18 2013-09-18 常州大学 一种6000系铝合金的形变热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩俊等: "热轧工艺对2524铝合金组织和力学性能的影响研究", 《热加工工艺》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969806A (zh) * 2018-10-31 2021-06-15 爱励轧制产品德国有限责任公司 制造具有改善的耐疲劳失效性的2xxx系列铝合金板材产品的方法
CN112981195A (zh) * 2021-02-20 2021-06-18 太原理工大学 一种高强度铝镁硅钙导电铝合金及制备方法
CN112981195B (zh) * 2021-02-20 2021-12-21 太原理工大学 一种高强度铝镁硅钙导电铝合金及制备方法
CN113862538A (zh) * 2021-09-27 2021-12-31 长沙新材料产业研究院有限公司 高强耐热镁合金薄板及其制备方法

Also Published As

Publication number Publication date
CN106637008B (zh) 2018-05-15

Similar Documents

Publication Publication Date Title
CN106480384B (zh) 一种超高强度铝合金板材的轧制方法
CN108823472B (zh) 一种高强韧Al-Zn-Mg-Cu系铝合金及其热处理方法
CN106591650B (zh) 一种改善铝锂合金抗应力腐蚀性能的方法
CN104928568B (zh) 一种铁素体低密度高强钢及其制造方法
CN103981404B (zh) 一种耐蚀、易加工铝合金板材、制造方法及其应用
CN108359920B (zh) 一种短流程制备高强高耐蚀Al-Mg-Zn铝合金的形变热处理方法
CN107119216B (zh) 一种高强耐腐蚀铝合金及其制备方法
CN103710595B (zh) 一种热轧铝锌合金板材及其制备方法
CN104894442A (zh) 一种车用铝合金板材及其制备方法
CN101880802A (zh) 汽车车身板用Al-Mg系高镁铝合金及其制造方法
CN110042333A (zh) 一种航空用625MPa级大规格铝合金预拉伸板材的制造方法
CN105803280A (zh) 一种耐损伤容限高强铝合金板材及其制备方法
CN109554595B (zh) 一种控制Al-Cu-Mg-Si-Mn合金弥散相析出的方法
CN106756672B (zh) 一种提高汽车用Al‑Mg‑Si‑Cu系合金强度的处理方法
CN103243247A (zh) 一种铝合金及其制备方法
CN106637008B (zh) 一种高强度铝合金板材的轧制方法
CN110331319B (zh) 一种含钪和铒的高强、高塑性耐蚀铝合金及其制备方法
CN105838928A (zh) 高强度铝合金板
AU759402B2 (en) Aluminium based alloy and method for subjecting it to heat treatment
CN106011561A (zh) 一种高性能Al-Mg合金冷作板材的制造方法
CN110184508A (zh) 一种无级变速器铝合金外壳及其制备方法
CN110343919A (zh) 一种质量轻硬度大强度高的铝合金及其制备方法
CN111074121B (zh) 铝合金及其制备方法
CN103255323A (zh) 一种Al-Mg-Zn-Cu合金及其制备方法
CN111286650A (zh) 一种喷射成形7055超高强铝合金挤压板材均匀化退火加固溶时效新型热处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Youping

Inventor after: Wang Songhui

Inventor after: He Jiangmei

Inventor before: Sun Youping

Inventor before: He Jiangmei

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180515

Termination date: 20191108