CN106636950A - 一种耐湿耐氧化电磁波吸收剂 - Google Patents

一种耐湿耐氧化电磁波吸收剂 Download PDF

Info

Publication number
CN106636950A
CN106636950A CN201611234071.3A CN201611234071A CN106636950A CN 106636950 A CN106636950 A CN 106636950A CN 201611234071 A CN201611234071 A CN 201611234071A CN 106636950 A CN106636950 A CN 106636950A
Authority
CN
China
Prior art keywords
oxidation
moisture
radio
resistant
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611234071.3A
Other languages
English (en)
Inventor
冯永宝
张金祥
王娜
王金平
黄忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Nanda Boping Electronics Information Co Ltd
Original Assignee
Nanjing Nanda Boping Electronics Information Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Nanda Boping Electronics Information Co Ltd filed Critical Nanjing Nanda Boping Electronics Information Co Ltd
Priority to CN201611234071.3A priority Critical patent/CN106636950A/zh
Publication of CN106636950A publication Critical patent/CN106636950A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种耐湿耐氧化电磁波吸收剂,其特征在于其化学成分及质量百分含量分别为:Cr,14%~20%;Mo,0.5%~1.5%;Mn,0.1%~2%;Fe,76.5%~85.4%。该电磁波吸收剂粒度小于等于100微米,可以采用气雾化、水雾化或高能球磨方法中的一种制备。采用气雾化和水雾化方法制备的吸收剂呈球状;采用高能球磨方法制备的吸收剂呈片状。本发明所提出的耐湿耐氧化电磁波吸收剂,不仅具有良好的耐湿耐氧化性能,同时具有优异的电磁波吸收性能,可采用多种方法制备,工艺简单。

Description

一种耐湿耐氧化电磁波吸收剂
技术领域
本发明涉及电磁波吸收剂和电磁波吸收材料的研究领域,公开了一种耐湿耐氧化电磁波吸收剂。
背景技术
随着科技的进步,电子化、信息化技术的应用得到迅速发展,各种现代电子设备如无线电广播、电视、手机等快速普及,由电子设备产生的电磁辐射所带来的信息泄露、损害健康和电磁干扰等问题日益显现。电磁波吸收材料在解决这一问题中起到了关键作用。
电磁波吸收材料通常是由无机吸收剂与塑料、橡胶、胶粘剂、涂料等高分子有机基体组成,高分子基体是吸收剂的载体,吸收剂提供了电磁波吸收所需要的电磁性能,是决定吸波性能优劣的关键组分。电磁波吸收剂按损耗机理分为两类:(1)介电损耗类吸收剂,如炭黑、碳纤维、石墨和SiC纤维等;(2)磁损耗类吸收剂,如铁氧体、羰基铁粉和其他磁性金属微粉等。介电损耗类吸收材料厚度大,吸收频带窄,性能相对较差;而磁性吸收剂由于具有高的磁导率和磁损耗,吸波频带宽且厚度薄。中国专利CN1923413对磁性吸收剂表面包裹了一层高电阻率的包覆膜,降低了其介电常数;中国专利CN1292632C提供了一种包括软磁材料的扁平粉末和粘结材料的电磁波吸收剂;中国专利CN101328534采用熔体快淬工艺、高能球磨处理工艺和真空热处理工艺制备了薄片状纳米晶微波吸收剂,具有较高微波磁导率和磁损耗。已有公开文献中的金属吸收剂虽然具有优异的电磁性能,但其耐湿和耐氧化等性能并不能满足某些特殊场合的使用要求。
发明人在经过大量研究和实验后发现:在纯铁吸收剂中引入Cr、Mo和Mn等元素可以有效提高其耐湿和耐氧化等性能,同时保持较好的吸波性能。基于上述发现完成本发明。
发明内容
本发明的目的是克服现有技术的不足,提供一种耐湿耐氧化电磁波吸收剂。
本发明解决技术问题采用的技术方案是:
耐湿耐氧化电磁波吸收剂,具有以下的化学成分及质量百分含量:Cr,14%~20%;Mo,0.5%~1.5%;Mn,0.1%~2%;Fe,76.5%~85.4%。
所述耐湿耐氧化电磁波吸收剂可以是块状或粉状Cr、Mo、Mn和Fe等原料经真空熔炼后,采用气雾化或水雾化方法制备;也可以是将粉末状Cr、Mo、Mn和Fe等原料置于惰性气氛保护的球磨罐中,采用高能球磨法制备。
所述耐湿耐氧化电磁波吸收剂经筛分或分级机,控制其粒度小于等于100微米。
所述耐湿耐氧化电磁波吸收剂,采用气雾化和水雾化方法制备的产品呈球状,吸收剂粉体典型的扫描电镜照片分别见图1和图2;采用高能球磨方法制备的产品呈片状,吸收剂粉体典型扫描电镜照片见图3。
本发明与现有技术相比具有以下优点:
(1)本发明所提出的耐湿耐氧化电磁波吸收剂,不仅具有良好的耐湿耐氧化性能,同时具有优异的电磁波吸收性能。
(2)本发明所提出的耐湿耐氧化电磁波吸收剂可采用多种方法制备,工艺简单。
附图说明
图1为实施例1所制备耐湿耐氧化电磁波吸收剂典型的SEM照片;
图2为实施例2所制备耐湿耐氧化电磁波吸收剂典型的SEM照片;
图3为实施例3所制备耐湿耐氧化电磁波吸收剂典型的SEM照片;
图4为实施例1制备耐湿耐氧化电磁波吸收剂与硅橡胶所形成的吸波材料的反射率曲线;
图5为实施例2制备耐湿耐氧化电磁波吸收剂与硅橡胶所形成的吸波材料的反射率曲线;
图6为实施例3制备耐湿耐氧化电磁波吸收剂与硅橡胶所形成的吸波材料的反射率曲线。
具体实施方式
以下是本发明的具体实施案例,注意这些案例仅用于说明本发明而不用于限制本发明的范围。
实施例1:
采用气雾化法制备球状耐湿耐氧化电磁波吸收剂,控制其化学成分及质量百分含量为Cr,14%;Mo,0.5%;Mn,0.1%;Fe,85.4%。经筛分控制吸收剂粒度小于100微米。
将吸收剂在相对湿度95%、温度100℃的环境中湿热氧化24h,按照吸收剂的体积分数为20%制备2.0mm厚硅橡胶基吸波材料,测量其在6-18GHz时的电磁参数和反射率,见图4。该材料在13-18GHz范围内反射率均小于-8dB,在13.9-18GHz范围内反射率均小于-10dB。
实施例2
采用水雾化制备球状耐湿耐氧化电磁波吸收剂,控制其化学成分及质量百分含量:Cr,20%;Mo,1.5%;Mn,2%;Fe,76.5%。经分级机控制吸收剂粒度小于100微米。
将吸收剂在相对湿度95%、温度100℃的环境中湿热氧化24h,按照吸收剂的体积分数为30%制备1.7mm厚硅橡胶基吸波材料,测量其在6-18GHz时的电磁参数和反射率,见图5。该材料在11.2-18GHz范围内反射率均小于-8dB,在12.2-18GHz范围内反射率均小于-10dB。
实施例3:
采用高能球磨法制备片状耐湿耐氧化电磁波吸收剂,控制其化学成分及质量百分含量:Cr,17%;Mo,1.25%;Mn,1%;Fe,80.75%。经筛分控制吸收剂粒度小于100微米。
将吸收剂在相对湿度95%、温度100℃的环境中湿热氧化24h,按照吸收剂的体积分数为30%制备2.0mm厚硅橡胶基吸波材料,测量其在6-18GHz时的电磁参数和反射率,见图6。该材料在8.6-15.9GHz范围内反射率均小于-8dB,在9.9-14.9GHz范围内反射率均小于-10dB。

Claims (6)

1.一种耐湿耐氧化电磁波吸收剂,其特征在于其化学成分及质量百分含量分别为:Cr,14%~20%;Mo,0.5%~1.5%;Mn,0.1%~2%;Fe,76.5%~85.4%。
2.根据权利要求1所述的耐湿耐氧化电磁波吸收剂,其特征在于其粒度小于等于100微米。
3.根据权利要求1所述的耐湿耐氧化电磁波吸收剂,其特征在于该电磁波吸收剂的是通过气雾化、水雾化或高能球磨方法制得。
4.根据权利要求1所述的耐湿耐氧化电磁波吸收剂,其特征在于所述耐湿耐氧化电磁波吸收剂呈球状或片状。
5.根据权利要求4所述的耐湿耐氧化电磁波吸收剂,其特征在于,所述球状耐湿耐氧化电磁波吸收剂是采用气雾化或水雾化制备得到。
6.根据权利要求4所述的耐湿耐氧化电磁波吸收剂,其特征在于,所述片状耐湿耐氧化电磁波吸收剂是采用高能球磨法制备得到。
CN201611234071.3A 2016-12-28 2016-12-28 一种耐湿耐氧化电磁波吸收剂 Pending CN106636950A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611234071.3A CN106636950A (zh) 2016-12-28 2016-12-28 一种耐湿耐氧化电磁波吸收剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611234071.3A CN106636950A (zh) 2016-12-28 2016-12-28 一种耐湿耐氧化电磁波吸收剂

Publications (1)

Publication Number Publication Date
CN106636950A true CN106636950A (zh) 2017-05-10

Family

ID=58832084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611234071.3A Pending CN106636950A (zh) 2016-12-28 2016-12-28 一种耐湿耐氧化电磁波吸收剂

Country Status (1)

Country Link
CN (1) CN106636950A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770716A (ja) * 1993-06-30 1995-03-14 Aichi Steel Works Ltd 冷鍛性、耐食性、溶接性に優れた軟磁性ステンレス鋼
JPH08127801A (ja) * 1994-11-01 1996-05-21 Mitsubishi Steel Mfg Co Ltd 磁気センサーローター製造用粉末および磁気センサーローターの製造方法
CN1371241A (zh) * 2001-02-15 2002-09-25 住友电气工业株式会社 电磁波吸收剂及生产用于该电磁波吸收剂的磁粉的方法
CN1417264A (zh) * 2001-11-07 2003-05-14 株式会社盟德 软磁性树脂组合物及其制造方法和成型制品
EP1211331B1 (en) * 2000-11-30 2006-11-08 Nisshin Steel Co., Ltd. A Fe-Cr soft magnetic material and a method of manufacturing thereof
CN102605262A (zh) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 一种铁素体不锈钢及其制造方法
CN103173683A (zh) * 2013-03-29 2013-06-26 电子科技大学 一种合金微粉电磁波吸收剂及其制备方法
JP2014131054A (ja) * 2011-08-31 2014-07-10 Toshiba Corp 磁性材料
CN105448452A (zh) * 2014-09-19 2016-03-30 株式会社东芝 复合磁性材料的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770716A (ja) * 1993-06-30 1995-03-14 Aichi Steel Works Ltd 冷鍛性、耐食性、溶接性に優れた軟磁性ステンレス鋼
JPH08127801A (ja) * 1994-11-01 1996-05-21 Mitsubishi Steel Mfg Co Ltd 磁気センサーローター製造用粉末および磁気センサーローターの製造方法
EP1211331B1 (en) * 2000-11-30 2006-11-08 Nisshin Steel Co., Ltd. A Fe-Cr soft magnetic material and a method of manufacturing thereof
CN1371241A (zh) * 2001-02-15 2002-09-25 住友电气工业株式会社 电磁波吸收剂及生产用于该电磁波吸收剂的磁粉的方法
CN1417264A (zh) * 2001-11-07 2003-05-14 株式会社盟德 软磁性树脂组合物及其制造方法和成型制品
CN102605262A (zh) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 一种铁素体不锈钢及其制造方法
JP2014131054A (ja) * 2011-08-31 2014-07-10 Toshiba Corp 磁性材料
CN103173683A (zh) * 2013-03-29 2013-06-26 电子科技大学 一种合金微粉电磁波吸收剂及其制备方法
CN105448452A (zh) * 2014-09-19 2016-03-30 株式会社东芝 复合磁性材料的制造方法

Similar Documents

Publication Publication Date Title
Zhang et al. High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method
Liu et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption
Zhang et al. Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading
Liu et al. Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption
Ding et al. Rational design of core-shell Co@ C microspheres for high-performance microwave absorption
Liu et al. Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber
Liu et al. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black
Bera et al. An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated RGO–SWCNH composite through pressure induced tunability
Pawar et al. High performance electromagnetic wave absorbers derived from PC/SAN blends containing multiwall carbon nanotubes and Fe 3 O 4 decorated onto graphene oxide sheets
CN106753237B (zh) 一种石墨烯/四氧化三铁复合吸波材料及其制备方法
Yu et al. MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption
Han et al. Enhanced microwave absorption of ZnO-coated planar anisotropy carbonyl-iron particles in quasimicrowave frequency band
Wang et al. Synthesis, characterization and enhanced electromagnetic properties of NiFe2O4@ SiO2-decorated reduced graphene oxide nanosheets
Chen et al. Study on microwave absorption properties of metal-containing foam glass
CN112430451A (zh) 氮掺杂石墨烯/钴锌铁氧体复合气凝胶吸波材料及其制备方法
Li et al. Carbonized foams from graphene/phenolic resin composite aerogels for superior electromagnetic wave absorbers
Al‐Hartomy et al. Influence of graphite nanosheets on the structure and properties of PVC‐based nanocomposites
Kang et al. Porous core-shell zeolitic imidazolate framework-derived Co/NPC@ ZnO-decorated reduced graphene oxide for lightweight and broadband electromagnetic wave absorber
Liu et al. Three-dimensional porous nanocomposite of highly dispersed Fe3 O4 nanoparticles on carbon nanofibers for high-performance microwave absorbents
Kuchi et al. Synthesis of porous Fe3O4-SnO2 core-void-shell nanocomposites as high-performance microwave absorbers
Zhang et al. Porous carbon/graphite nanosheet/ferromagnetic nanoparticle composite absorbents with adjustable electromagnetic properties
Wu et al. Preparation of magnetic expanded graphite with microwave absorption and infrared stealth characteristics
Mazurenko et al. Synthesis of nanosized spinel ferrites MnFe2O4 on the surface of carbon nanotubes for the creation of polymer composites with enhanced microwave absorption capacity
Zhong et al. Sandwich-like graphite–fullerene composites with enhanced electromagnetic wave absorption
CN104927762B (zh) 类蠕虫孔洞多孔碳/磁性粒子复合吸波剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication