CN106631809A - Green synthesis method for preparing nitroalkanes by oxime oxidation - Google Patents

Green synthesis method for preparing nitroalkanes by oxime oxidation Download PDF

Info

Publication number
CN106631809A
CN106631809A CN 201610895014 CN201610895014A CN106631809A CN 106631809 A CN106631809 A CN 106631809A CN 201610895014 CN201610895014 CN 201610895014 CN 201610895014 A CN201610895014 A CN 201610895014A CN 106631809 A CN106631809 A CN 106631809A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
oxime
oxide
catalyst
methyl
solvent
Prior art date
Application number
CN 201610895014
Other languages
Chinese (zh)
Inventor
朱红军
楚庆岩
宋广亮
刘睿
何广科
黄诚
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds

Abstract

The invention belongs to the field of organic chemical industries, and provides a green synthesis method for preparing nitroalkanes by oxime oxidation. At the temperature of 55 to 120 DEG C and under the pressure of 0 to 1.0 MPa, oxime, a solvent and hydrogen peroxide are reacted for 20 to 200min in the presence of certain amounts of nanoporous skeleton metal hybrid catalysts and cocatalysts, a reaction liquid is subjected to membrane separation, the catalysts can be repeatedly used for more than 7 times, and distilled to obtain nitroalkane products, the purity of the products is not less than 99%, and the yield of the products is not less than 95%. Furthermore, the green synthesis method for preparing nitroalkanes by the oxime oxidation disclosed by the invention is a green synthesis method of nitroalkanes, and suitable for large-scale industrialized production.

Description

一种肟氧化制备硝基烷烃的绿色合成方法 Green synthesis method of preparing oximes oxide nitroalkane

技术领域 FIELD

[0001] -种肟氧化制备硝基烷烃的绿色合成方法。 [0001] - oxime synthesis species Green oxide prepared nitroalkane. 本发明涉及一种硝基烷烃的绿色合成方法,具体涉及氧化反应。 The present invention relates to a method of synthesizing green nitroalkanes, particularly to oxidation reactions. 技术背景 technical background

[0002] 硝基烷烃主要用作有机合成原料、溶剂和爆炸物等,可以生产近2000种衍生物。 [0002] mainly used as nitroalkane organic synthesis, explosives, solvents and the like, can produce nearly 2,000 kinds of derivatives. 其用途涉及到医药、农药、炸药、染料、试剂、溶剂、表面活性剂、提取剂、乳化剂和润滑剂等国民经济各行业(《精细与专用化学品》2005年第13卷第1期,27-30页)。 Relates to its use in medicine, pesticides, explosives, dyes, reagents, solvents, surfactants, extraction agents, emulsifiers and lubricants SECTOR ( "Fine and Specialty Chemicals", 2005, Vol. 13, No. 1, pages 27-30). 由硝基烷烃和与醛类缩合,进而还原处理,可制得许多用途广泛的氨基醇产品,是硝基烷烃最具工业应用价值的方面之一(《天然气化工》2006年第31卷,64-66页)。 By the condensation of aldehydes with nitroalkanes and thus reduction treatment, can be prepared by a number of amino alcohol product widespread use, it is one of the most value in terms of industrial nitroalkane ( "Gas Chemical Industry" Vol. 31, 2006, 64 page -66).

[0003] 硝基烷烃的工业化生产方法主要有3种:气相硝化法、液相硝化法和亚硝酸盐置换法。 [0003] The industrial production process nitroalkane mainly three kinds: vapor phase nitration, nitration and nitrite liquid displacement method. 气相硝化法是低碳烷烃和硝酸在高温下反应,主要用于C4以下低碳烷烃硝化制取硝基甲烷、硝基乙烷和硝基丙烷等。 Vapor phase nitration method is lower alkane and nitric acid at elevated temperature, mainly for the following C4 lower alkane nitration Preparation nitromethane, nitroethane and nitropropane and the like. 该法转化率较高,但副反应较多,选择性较低,很难获得较高纯度的硝基烷烃产品(《科技创新与应用》2016年第6期,1-3页)。 The law higher conversion rates, but more side effects, lower selectivity, it is difficult to obtain a high purity product nitroalkanes ( "scientific and technological innovation and application," 2016, No. 6, pp. 1-3). 液相硝化法主要用于C4以上的烷烃和烯烃硝化,同样也存在上述问题(《精细与专用化工品》第13卷第1期,27-30页; TO2009129099)。 Mainly used for liquid phase nitration above nitration C4 alkanes and alkenes, the above problems also exist ( "fine and specialty chemicals", Vol. 13, No. 1, pp. 27-30; TO2009129099). 亚硝酸盐置换法主要是以卤代烷烃和亚硝酸盐发生置换反应生成硝基烷烃,虽然工艺简单,反应温度低,设备腐蚀小,产品选择好,但是会副产大量的废盐无法处理,对环境造成很大的污染,同时原料的来源也有一定的局限性(《辽宁化工》1996年第5期, 40-41 页;KR2011117954)。 Replacement nitrite generated mainly halogenated alkanes and nitroalkanes nitrite replacement reaction, although the process is simple, the reaction temperature is low, little corrosion of the equipment, product selection, but the by-product will be unable to process large amount of waste salt, for cause great environmental pollution, sources of raw materials also has some limitations ( "Liaoning Chemical Industry" 1996, No. 5, pages 40-41; KR2011117954).

[0004] 近年来随着酮或醛氨肟化的技术不断研究,合成酮肟或醛肟的工艺日趋成熟,由肟氧化合成对应硝基烷烃也逐渐成为研究热点。 [0004] In recent years, with a ketone or aldehyde ammoximation technology continues to research, synthesis ketoxime or aldoxime technology matures from the corresponding oximes Oxidation nitroalkanes gradually become a research hotspot. Zolfigol和Keana等人分别以次氯酸钠、臭氧和氯气对肟进行氧化,但产物为氯代硝基烷烃,需要再进一步还原生成硝基烷烃(Journal of the Iranian Chemical Society,8 (4) 1058-1062;2011,Pure and Applied Chemistry,62 (2) ,201-205; 1990)。 Zolfigol Keana et al., Respectively, and sodium hypochlorite, ozone and chlorine oxidation to oximes, but the product is chlorinated nitroalkanes required further reduction of nitro alkanes (Journal of the Iranian Chemical Society, 8 (4) 1058-1062; 2011, Pure and Applied Chemistry, 62 (2), 201-205; 1990). 1996年Ballistreri等人以[BzOMoO(02) 2]-But4N+(Benz-Mo)为催化剂对苯乙酮肟进行氧化,收率为90%,但是使用的催化剂合成困难,价格昂贵,不利于工业放大(Synlett,(11),1093-1094; 1996)。 In 1996 Ballistreri et al in [BzOMoO (02) 2] -But4N + (Benz-Mo) catalyst for the oxidation of the oxime, 90% yield, but the catalyst used in synthesis is difficult, expensive, industrially disadvantageous to enlarge (Synlett, (11), 1093-1094; 1996). 0 Subhas Bose等人用过硫酸氢钾、乙腈和磷酸缓冲溶液对正醛肟进行氧化,1-硝基己烷收率70%,但是此反应反应物繁多,后处理复杂(Synthetic Communications,28 (24),4531_4535 (1998))。 0 Subhas Bose et al used potassium bisulfate, phosphate buffer solution, acetonitrile and n-aldoxime is oxidized to yield 1-nitro-hexane 70%, but this reaction was many, complicated post-treatment (Synthetic Communications, 28 ( 24), 4531_4535 (1998)). 2008年Backstrom等人以过硼酸钠为氧化剂,在冰醋酸中将1-苯丙酮肟氧化成1-硝基苯丙烷,收率45% (Journal Of Physical Organic Chemistry,21 (7-8),603_613;2008)。 In 2008 Backstrom et al, sodium perborate as an oxidizing agent to, acetic acid in a 1- propiophenone oxime 1- nitrobenzene oxidation of propane to yield 45% (Journal Of Physical Organic Chemistry, 21 (7-8), 603_613 ; 2008). 2010年George等人以同样的方法将4-庚酮肟氧化成4-硝基庚烷,转化率为55% (Synlett,(4),337-339;1992);同年, Durchschein等人又以四水过硼酸钠为氧化剂,在冰醋酸中将2-辛酮肟氧化成2-硝基辛烷, 转化率为36% (Green Chenistry,12⑷,616-619;2010)。 George et al. 2010 to the same manner as in the oxidation of 4-heptanone oxime 4-nitro-heptane, the conversion was 55% (Synlett, (4), 337-339; 1992); the same year, Durchschein et al again sodium perborate tetrahydrate as the oxidant, 2-octanone oxime in acetic acid in the oxidation of 2-nitro-octane, the conversion was 36% (Green Chenistry, 12⑷, 616-619; 2010). 这几种肟直接氧化成硝基烷烃的实验方法由于收率较低,催化剂活性低,寿命短,难以重复利用。 These types of oxime nitroalkane direct oxidation test method due to the low yield, the catalyst activity is low, short life, is difficult to reuse. 因此开发新的催化体系与工艺,提高其转化率和选择性是研究的难点和重点。 Therefore, the development of new catalytic systems and processes to improve the difficulty and focus their conversion and selectivity are studied.

[0005] 综上所述,由肟通过绿色氧化剂如双氧水等直接氧化制备硝基烷烃未见文献报道,该方法是一条原子经济的合成路线,符合绿色环保理念,工业化应用前景好。 [0005] In summary, the oxime by hydrogen peroxide and other oxidizing agents such as green oxide prepared directly nitroalkanes not been reported, which is a synthetic route atom economy, in line with the concept of environmental protection, good prospects for industrial application. 为此,本发明以我们自主开发的纳米孔骨架金属杂化氧化催化剂和助催化剂催化双氧水直接对肟氧化反应,高选择性和高收率合成硝基烷烃,产品纯度多99 %,收率多97 %。 To this end, the present invention is to nanoporous metal skeleton developed our hybrid catalytic oxidation catalyst and cocatalyst directly oxime of hydrogen peroxide oxidation, high selectivity and high yield synthesis of nitroalkanes, purity up to 99%, yield multiple 97%. 避免了传统生产工艺亚硝酸盐置换产生的大量废盐,烷烃硝化反应中的高温高压、设备腐蚀、污染大、危险性大等问题,是一种创新性、实用性好的低碳绿色环保合成硝基烷烃新工艺。 Avoid the traditional production process a large amount of waste nitrite salt to the replacement, alkane nitration of high temperature and pressure, corrosion of the equipment, pollution, the risk of such problems, is an innovative, practical good green lower Synthesis new process nitroalkane.

发明内容 SUMMARY

[0006] 本发明的目的,提供了肟氧化制备硝基烷烃的绿色合成方法。 [0006] The object of the present invention, there is provided a method for the synthesis of oximes prepared green oxide nitroalkane.

[0007] 其合成路线如下: [0007] The synthesis route is as follows:

[0008] [0008]

Figure CN106631809AD00041

[0009] 本发明在55~120°C和0~I.OMPa压力下,肟、溶剂和双氧水在一定量的纳米孔骨架金属杂化催化剂和助催化剂存在下反应20~200min,反应液经膜分离,催化剂可重复利用7次以上,精馏得到硝基烷烃产品,产品纯度多99 %,收率多95 %。 [0009] The present invention at and 55 ~ 120 ° C 0 ~ I.OMPa pressure, oxime, and hydrogen peroxide in a solvent an amount of the metal skeleton nanopore hybrid catalyst and the cocatalyst reacted presence of 20 ~ 200min, the reaction solution through the membrane separation of the catalyst can be reused more than 7 times, nitroalkanes distillation to give the product, 99% purity multi, multi yield 95%.

[0010] 助催化剂为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵、氨水、液氨、 氧化锂、氧化钠、氧化钾、氧化镁、氧化妈、氧化钡、氢氧化锂、氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙、氢氧化钡、甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、乙醇胺、二乙醇胺及三乙醇胺之一。 [0010] The co-catalyst is sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, ammonium bicarbonate, aqueous ammonia, ammonia, lithium oxide, sodium oxide, potassium oxide, magnesium oxide, Mom, barium oxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine and one of the three ethanolamine.

[0011] 肟为丙酮肟、丁酮肟、2-戊酮肟、甲基异丙基酮肟、3-戊酮肟、2-己酮肟、4-甲基-2-戊酮肟、环戊酮肟、1-甲基环戊酮肟、2-甲基环戊酮肟、3-甲基环戊酮肟、环己酮肟、2-甲基环己酮肟、苯乙酮肟、甲醛肟、乙醛肟、丙醛肟、正丁醛肟、异丁醛肟、正戊醛肟、异戊醛肟、正己醛肟、异己醛肟、环己基甲醛肟及苯甲醛肟之一。 [0011] oxime acetone oxime, butanone oxime, 2-pentanone oxime, methyl isopropyl ketone oxime, 3-pentanone oxime, 2-hexanone oxime, 4-methyl-2-pentanone oxime, ring pentanone oxime, 1-methyl-cyclopentanone oxime, cyclopentanone oxime 2-methyl, 3-methyl cyclopentanone oxime, cyclohexanone oxime, 2-methyl cyclohexanone oxime, acetophenone oxime, oxime, acetaldehyde oxime, propionaldehyde oxime, n-butyraldehyde oxime, isobutyraldehyde oxime, n-valeraldehyde oxime, aldehyde oxime isopentyl, n-hexyl aldehyde oxime, isohexyl aldehyde oxime, cyclohexanone oxime group one and benzaldehyde oxime.

[0012] 双氧水和肟摩尔比为0.1:1~4:1,催化剂的量为物料总量的0.001~10%,纳米孔骨架金属杂化催化剂和助催化剂重量比为1: . 01~1:1。 [0012] The molar ratio of hydrogen peroxide to oxime and 0.1: 1 to 4: 1, the amount of catalyst is 0.001 to 10% of the total materials, nanoporous metal skeleton and a cocatalyst hybrid catalyst weight ratio of 1: 01 to 1: 1.

[0013] 所需溶剂为甲醇、乙醇、丙醇、异丙醇、叔丁醇及乙腈之一或其水溶液,其水溶液中水分重量百分含量为0.1 %~50% B和溶剂摩尔比为1: 〇. 1~1:30。 [0013] The desired solvent is methanol, ethanol, propanol, isopropanol, tert-butanol and an aqueous solution of one or acetonitrile, an aqueous solution of water in a weight percent of 0.1% ~ 50% B and 1 molar ratio of solvent : square 1 to 1: 30.

具体实施方式 detailed description

[0014] 以下具体实施例用来进一步说明本发明。 Specific examples serve to further illustrate the present invention, [0014] or less.

[0015] 所用催化剂的制备方法参照本单位已申请专利CN201510866441.4。 [0015] Referring patented CN201510866441.4 the unit for preparing the catalyst employed.

[0016] 实施例1、实施例2和实施例3为催化剂重复使用实验。 [0016] Example 1, Example 2 and Example 3 was repeated using an experimental catalyst.

[0017] 实施例1: [0017] Example 1:

[0018] 将丙酮肟73g和甲醇160g经混合器混合后用计量栗A、双氧水(含量为70%) 97g用计量栗B连续加入带有V-ZSM-5催化剂3g (硅金属比为30)、碳酸钠0.003g的反应釜中,温度60 °C,压力0.0 IMPa。 [0018] A 160g of methanol and 73g of acetone oxime mixing the mixer with a metering Li A, hydrogen peroxide (content 70%) 97g was added continuously with a metering Li B with V-ZSM-5 catalyst 3g (silicon metal ratio of 30) , 0.003g of sodium carbonate in the reactor, temperature of 60 ° C, pressure 0.0 IMPa. 膜分离出的反应清液经脱溶后精馏得到2-硝基丙烷85.9g,收率为96.5%,纯度为99.2%,未反应的肟和溶剂经回收后返回继续进行氧化反应,V-ZSM-5催化剂过滤后得到2.87g。 After the reaction the membrane separation solvent stripped serum distillation to give 85.9 g of 2-nitropropane, yield 96.5%, purity of 99.2% unreacted oxime, and the solvent was recycled back to continue the oxidation reaction, V- ZSM-5 catalyst was filtered to give 2.87g.

[0019] 实施例2: [0019] Example 2:

[0020] 将上述回收的V-ZSM-5催化剂按上述实验配比进行重复实验,重复使用8次,收率均在95%以上,第9次实验,转化率降至92%,第10次实验,转化率降至87%。 [0020] The above recovered V-ZSM-5 catalyst ratio above experiment was repeated experiment was repeated 8 times, the yield rate of 95% or more, the ninth experiment, the conversion rate to 92%, 10th experiment, the conversion rate to 87%.

[0021] 实施例3: [0021] Example 3:

[0022]将丁酮肟878和叔丁醇748经混合器混合后用计量栗4、双氧水(含量为27.5%) 125g用计量栗B、连续加入到带有Zr-V-ZSM-5催化剂(娃金属比为50) 14g、碳酸氢钾0.3g的反应釜中,温度65°C,压力0.05MPa,膜分离出的反应清液经脱溶后精馏得到2-硝基丁烷99.9g,收率97%,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 [0022] The tert-butanol butanone oxime and 878 by mixer 748 with a metering 4 Li, hydrogen peroxide (content 27.5%) 125g metering Li B, continuously added to the Zr-V-ZSM-5 catalyst with ( baby metal ratio of 50) 14g, potassium bicarbonate 0.3g reactor, the temperature of 65 ° C, pressure 0.05MPa, the membrane separation after the reaction to give clear liquid desolvation distillation 99.9 g of 2-nitro-butane, 97% yield, 99% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0023] 实施例4: [0023] Example 4:

[0024] 将实施例3回收的Zr-V-ZSM-5催化剂按上述实验配比进行重复实验,重复使用8 次,收率均在95%以上,第10次实验,转化率降至91.5%,第10次实验,转化率降至88.6%。 [0024] Zr-V-ZSM-5 catalyst above experiment was repeated experiments Formulation Example 3 will be recovered embodiment, repeated 8 times, the yield rate of 95% or more of the 10 experiments, the conversion dropped to 91.5% , 10th experiment, the conversion rate to 88.6%. [0025] 实施例5: [0025] Example 5:

[0026] 将和2-戊酮肟101g、丙醇600g (含水量30%)经混合器混合后用计量栗A、双氧水(含量为50%) 34g用计量栗B连续加入带有V-Mo-SBA-15催化剂(硅金属比为65) 0. lg、碳酸铵〇. Ig的反应釜中,温度75°C,压力0.15MPa。 [0026] and the 2-pentanone oxime 101g, 600 g of alcohol (30% moisture) was mixer with a metering Li A, hydrogen peroxide (content 50%) 34g was added continuously with a metering Li B with V-Mo -SBA-15 catalyst (Si metal ratio of 65) 0. lg, ammonium carbonate square. Ig reaction kettle temperature of 75 ° C, pressure of 0.15MPa. 膜分离出的反应清液经脱溶脱氨后精馏2-硝基戊烷55.6g,收率为87 %,纯度为99.3%。 Membrane separated after the reaction supernatant was desolventized deaminase distillation 55.6 g of 2-nitro-pentane, 87% yield, 99.3% pure. ,未反应的肟和溶剂经回收后返回继续进行氨肟化反应。 , The solvent and unreacted oxime continued after recovery returns the ammoximation reaction.

[0027] 实施例6: [0027] Example 6:

[0028] 将实施例5回收的V-Mo-SBA-15催化剂按上述实验配比进行重复实验,重复使用7 次,收率均在95 %以上,第8次实验,转化率降至92.8 %,第9次实验,转化率降至87.3 %。 [0028] V-Mo-SBA-15 was repeated experiments carried out in Example 5 above experimental ratio of the catalyst will be recovered embodiment, is repeated 7 times, yield rate of 95% or more, the eighth experiment, the conversion dropped to 92.8% , 9th experiment, the conversion rate to 87.3%.

[0029] 实施例7: [0029] Example 7:

[0030] 将甲基异丙基酮肟IOlg和异丙醇30g经混合器混合用计量栗A、双氧水(含量为30%) 23g用计量栗B连续加入带有钼掺杂微孔-介孔复合催化剂(硅金属比为32) 13.8g、氧化钠0.15g的反应釜中,温度80°C,压力0.5MPa。 [0030] Methyl isopropyl ketone oxime IOlg and 30g isopropanol was mixed with a mixer metering Li A, hydrogen peroxide (content 30%) 23g B was continuously fed with a metering Li doped with molybdenum microporous - mesoporous composite catalyst (silicon metal ratio of 32) 13.8g, 0.15g sodium oxide reactor, the temperature of 80 ° C, pressure of 0.5MPa. 膜分离出的反应清液经脱溶后精馏得到2-硝基-3-甲基-丁烧22.8g,收率为97.6%,纯度为99.1%,未反应的B和溶剂经回收后返回继续进行氧化反应。 The reaction membrane separated supernatant obtained after distillation desolventizing 3-methyl-2-nitro - 22.8 g of butyl burning, yield 97.6%, purity 99.1%, B, and returning the solvent after the reaction is not recovered continuing the oxidation reaction.

[0031] 实施例8: [0031] Example 8:

[0032] 将3-戊酮肟IOlg和乙醇115g(含水量1.5%)经混合器混合后用计量栗A、双氧水(含量为70%) 185g用计量栗B连续加入带有钛钒掺杂介孔-大孔复合催化剂(硅金属比为70) 0.4g、氧化镁0.1 g的反应釜中,温度105°C,压力0.95MPa。 [0032] A mixture of 3-pentanone oxime IOlg and 115g ethanol (moisture content 1.5%) by the mixer with a metering Li A, hydrogen peroxide (content 70%) 185g was added continuously with a metering B with Li doped dielectric TiV hole - macroporous composite catalyst (silicon metal ratio of 70) 0.4g, 0.1 g of magnesium oxide in the reactor, temperature of 105 ° C, pressure of 0.95MPa. 膜分离出的反应清液经脱溶脱氨后精馏得到3-硝基戊烷111. 3g,收率为95.2%,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 Membrane separated after the reaction supernatant was desolventized deaminase distillation to give 3-nitro-pentane 111. 3g, 95.2% yield, 99% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return .

[0033] 实施例9: [0033] Example 9:

[0034] 将2-己酮肟115g和甲醇640g (含水量5%)经混合器混合后用计量栗A、双氧水(含量为70%) 73g用计量栗B连续加入带有V-Mo-MCM-41 (娃金属比为25) 3.95g氢氧化锂0.16g 的反应釜中,温度l〇〇°C,压力0.6MPa。 [0034] The 2-hexanone oxime 115g and 640 g methanol (water content 5%) was mixer with a metering Li A, hydrogen peroxide (content 70%) 73g B was continuously fed with a metering Li V-Mo-MCM with -41 (baby metal ratio of 25) 3.95g 0.16g of lithium hydroxide in the reactor, the temperature l〇〇 ° C, pressure of 0.6MPa. 膜分离出的反应清液经脱溶后得到2-硝基己烷124.5g,纯度为99.2%,收率为95.1%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 Membrane separation to give a clear liquid reaction after desolventizing 2-nitro-hexane 124.5 g, 99.2% purity, 95.1% yield, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0035] 实施例10: [0035] Example 10:

[0036] 将4-甲基-2-戊酮肟115g和叔丁醇59g经混合器混合后用计量栗A、双氧水(含量为50%) 170g用计量栗B连续加入锆掺杂介孔-大孔复合催化剂(硅钛比为55) 8.5g、氢氧化钾0.1g的反应釜中,温度72 °C,压力0.3MPa。 [0036] 4-methyl-2-pentanone oxime 59g 115g tert-butanol and mixed by a mixer with a metering Li A, hydrogen peroxide (content 50%) 170g was added continuously with a metering Li B zirconium-doped mesoporous - macroporous composite catalyst (titanium-silicon ratio of 55) reactor 8.5g, 0.1g of potassium hydroxide, the temperature of 72 ° C, pressure of 0.3MPa. 膜分离出的反应清液经脱溶后精馏得到2-硝基- 4-甲基戊烷125.9g,收率为96.1 %,纯度为99.1 %,未反应的肟和溶剂回收后返回继续进行氧化反应。 The reaction membrane separated supernatant after desolventizing distillation to give 2-nitro --4- methylpentane 125.9g, 96.1% yield, 99.1% purity, after the solvent and unreacted oxime recycled back to proceed the oxidation reaction.

[0037] 实施例11: [0037] Example 11:

[0038] 将环戊酮肟99g和乙腈1130g (含水量15%)经混合器混合后用计量栗A、双氧水(含量为30%) 90g、用计量栗B连续加入带有锆钒掺杂微孔-介孔复合催化剂(硅金属比为75) 2.3g、氢氧化钙Ig的反应釜中,温度70 °C,压力0.65MPa。 [0038] The cyclopentanone oxime 99g and 1130g of acetonitrile (water content 15%) by the mixer with a metering Li A, hydrogen peroxide (content 30%) 90g, was added continuously with a metering Li B doped with Zr, V micro hole - mesoporous composite catalyst (silicon metal ratio of 75) 2.3g, calcium hydroxide Ig reaction kettle temperature of 70 ° C, pressure of 0.65MPa. 膜分离出的反应清液经脱溶后精馏硝基环戊烷ll〇g,收率为95.8%,纯度为99.2%。 After the reaction the membrane separation solvent stripped serum nitro cyclopentane ll〇g distillation yield of 95.8%, 99.2% purity. 未反应的环己酮和溶剂回收后返回继续进行氧化反应。 Cyclohexanone solvent and unreacted recycled back to continue the oxidation reaction.

[0039] 实施例12: [0039] Example 12:

[0040] 将1-甲基环戊酮肟113g和乙醇345g经混合器混合后用计量栗A、双氧水(含量为50 %) 81.6g用计量栗B连续加入带有Ti-V-SBA-15催化剂(娃金属比为55) 3.8g、液氨0.2g的反应釜中,温度95 °C,压力0.8MPa。 [0040] 1-Methyl cyclopentanone oxime 113g 345g ethanol and mixed by a mixer with a metering Li A, hydrogen peroxide (content 50%) 81.6g was added continuously with a metering Li B with Ti-V-SBA-15 the catalyst (metal ratio of baby 55) 3.8g, 0.2g autoclave liquid ammonia, the temperature of 95 ° C, pressure of 0.8MPa. 膜分离出的反应清液经脱溶后精馏得到122.8g,收率为95.3%,纯度为99%,未反应的B和溶剂经回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 122.8 g, 95.3% yield, purity 99%, B, and after the solvent unreacted recycled back to continue the oxidation reaction.

[0041] 实施例13: [0041] Example 13:

[0042] 将环己酮肟113g和甲醇460g经混合器混合后用计量栗A、双氧水(含量为50%) 122g用计量栗B连续加入带有V-Mo-ZSM-5催化剂(硅金属比为75) 10g、液氨0.35g的反应釜中,温度120°C,压力0.95MPa。 [0042] The cyclohexanone oxime 113g and 460g of methanol was mixed with a mixer, V-Mo-ZSM-5 catalyst (metal silicon with a metering ratio of Li A, hydrogen peroxide (content 50%) 122g was added continuously with a metering Li B is 75) 10g, 0.35g autoclave liquid ammonia, the temperature of 120 ° C, pressure of 0.95MPa. 膜分离出的反应清液经脱溶后精馏得到122.5g,收率为95 %, 纯度为99.1 %,未反应的肟和溶剂经回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 122.5 g, 95% yield, 99.1% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0043] 实施例14: [0043] Example 14:

[0044] 将2-甲基环己酮肟127g和乙腈460g经混合器混合后用计量栗A、双氧水(含量为30%) 73 · 6g用计量栗B连续加入带有V-Zr-MCM-41催化剂(娃金属比为35) 13g、二甲胺0 · 3g 的反应釜中,温度110°C,压力0.8MPa。 [0044] 2-methyl cyclohexanone oxime 127g and 460g of acetonitrile was mixed with a metering Li mixer A, hydrogen peroxide (content 30%) 73 · 6g B was continuously fed with a metering Li V-Zr-MCM- with 41 catalyst (Wa metal ratio of 35) 13g, dimethylamine 0 · 3g reaction kettle temperature of 110 ° C, pressure of 0.8MPa. 膜分离出的反应清液经脱溶后精馏得到88.3g,收率为95%,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 After the membrane was separated supernatant reaction distillation to give 88.3 g of desolvation, in 95% yield, 99% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0045] 实施例15: [0045] Example 15:

[0046] 将苯乙酮肟135g和乙醇138g经混合器混合后用计量栗A、双氧水(含量为50%) 27.2g用计量栗B连续加入带有钛钒掺杂介孔-大孔复合催化剂(娃金属比为40) 11.8g、乙胺0.2g的反应釜中,温度88°C,压力0.75MPa。 [0046] The oxime 135g 138g ethanol and mixed by a mixer with a metering Li A, hydrogen peroxide (content 50%) 27.2g was added continuously with a metering Li B doped with titanium, vanadium mesoporous - macroporous composite catalyst (baby metal ratio of 40) 11.8g, 0.2g triethylamine reactor, the temperature of 88 ° C, pressure of 0.75MPa. 膜分离出的反应清液经脱溶后精馏得到57.2g, 收率为95.2%,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 57.2 g, 95.2% yield, 99% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0047] 实施例16: [0047] Example 16:

[0048] 将甲醛肟45g和叔丁醇600g (含水量45%)经混合器混合后用计量栗A、双氧水(含量为70%) 77g用计量栗B连续加入带有钼钒掺杂微孔-介孔复合催化剂(硅金属比为50) 4.3g、三乙胺0.1 g的反应釜中,温度60°C,压力0.8MPa。 [0048] The carbaldehyde oxime 45g and 600 g of tert-butanol (water content 45%) by the mixer with a metering Li A, hydrogen peroxide (content 70%) 77g B was continuously fed with a metering Li doped with molybdenum, vanadium, microporous - reactor mesoporous composite catalyst (silicon metal ratio of 50) 4.3g, 0.1 g of triethylamine, the temperature of 60 ° C, pressure of 0.8MPa. 膜分离出的反应清液经脱溶后精馏硝基甲烷58.8g,收率为96.5%,纯度为99.1 %。 After the reaction the membrane separation solvent stripped serum distillation nitromethane 58.8 g, 96.5% yield, 99.1% purity. 未反应的甲肟和溶剂经回收后返回继续进行氧化反应。 A solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0049] 实施例17: [0049] Example 17:

[0050] 将乙醛肟59g和异丙醇270g经混合器混合后用计量栗A、双氧水(含量为50%) 91.8g用计量栗B连续加入带有Ti-Mo-MCM-41催化剂(娃金属比为58) 1.6g、乙醇胺0.4g的反应釜中,温度75°C,压力0.5MPa。 [0050] Acetaldehyde oxime 59g and 270g of isopropanol were mixed with a mixer with a metering Li A, hydrogen peroxide (content 50%) 91.8g was added continuously with a metering Li B Ti-Mo-MCM-41 catalyst (with a baby metal ratio of 58) 1.6g, 0.4g of ethanolamine kettle temperature 75 ° C, pressure of 0.5MPa. 膜分离出的反应清液经脱溶后精馏得到1-硝基乙烷71.3g, 收率为95.1 %,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 1-nitro-ethane 71.3 g, 95.1% yield, 99% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0051] 实施例18: [0051] Example 18:

[0052] 将丙醛肟73g和丙醇210g (水含量20%)经混合器混合后用计量栗A、双氧水(含量为27.5%) 170g用计量栗B连续加入带有V-Mo-MCM-41 (娃钛比为42) 46g、氢氧化镁0.2g的反应釜中,温度80°C,压力0.7MPa。 [0052] propionaldehyde oxime 73g and 210g-propanol (water content 20%) by the mixer with a metering Li A, hydrogen peroxide (content 27.5%) 170g was added with a metering Li B continuously with V-Mo-MCM- 41 (baby titanium ratio of 42) 46g, magnesium hydroxide 0.2g reactor, the temperature of 80 ° C, pressure of 0.7MPa. 膜分离出的反应清液经脱溶后精馏得到1-硝基丙烷84.9g, 收率为95.5%,纯度为99%,未反应的肟和溶剂回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 84.9 g 1-nitropropane, yield 95.5%, purity of 99%, after the solvent and unreacted oxime recycled back to continue the oxidation reaction.

[0053] 实施例19: [0053] Example 19:

[0054] 将丁醛肟87g和乙腈120g (含水量10%)经混合器混合后用计量栗A、双氧水(含量为70%) 106g用计量栗B连续加入带有钛掺杂介孔大孔复合催化剂(娃金属比为30)催化剂3g、三乙醇胺0.5g的反应釜中,温度85 °C,压力0.62MPa。 [0054] butyraldehyde oxime 87g and 120g of acetonitrile (water content 10%) by the mixer with a metering Li A, hydrogen peroxide (content 70%) 106g was added continuously with a metering B with Li doped mesoporous titanium macroporous composite catalyst (Wa metal ratio of 30) catalyst 3g, 0.5g triethanolamine reactor, the temperature of 85 ° C, pressure of 0.62MPa. 膜分离出的反应清液经脱溶后得到1-硝基丁烧98.6g,收率为95.8%,纯度为99%,未反应的H亏和溶剂经回收后返回继续进行氧化反应。 Membrane separation to give a clear liquid reaction after desolventizing 1- nitrobut-burning 98.6 g, yield 95.8%, purity 99%, H and solvent losses after the unreacted recycled back to continue the oxidation reaction.

[0055] 实施例20: [0055] Example 20:

[0056] 将正戊醛IOlg和叔丁醇200g (含水15%)经混合器混合用计量栗A、双氧水(含量为27.5%) 300g用计量栗B连续加入带有钼掺杂微孔-介孔复合催化剂(硅金属比为30) 3g、碳酸氢铵O.lg的反应釜中,温度80°C,压力0.55MPa。 [0056] The n-valeraldehyde IOlg and 200 g of t-butanol (containing 15% moisture) mixer by a metering Li A, hydrogen peroxide (content 27.5%) 300g was added continuously with a metering Li B doped with molybdenum micropores - mediated pore complex catalyst (silicon metal ratio of 30) 3g, ammonium bicarbonate O.lg reactor, the temperature of 80 ° C, pressure of 0.55MPa. 膜分离出的反应清液经脱溶后精馏得到1-硝基正戊烧111.2g,收率为95.1%,纯度为99%,未反应的B和溶剂经回收后返回继续进行氧化反应。 After the reaction the membrane separation solvent stripped serum distillation to give 1-nitro-n-pentyl burn 111.2 g, yield 95.1%, purity 99%, B, and after the solvent unreacted recycled back to continue the oxidation reaction.

[0057] 实施例21: [0057] Example 21:

[0058] 将异己醛肟115g和甲醇350g (含水量25%)经混合器混合后用计量栗A、双氧水(含量为30%) 80g用计量栗B连续加入带有Mo-MCM-41 (娃金属比为85) 9g、氢氧化钠0.5g的反应釜中,温度95°C,压力0.6MPa。 [0058] The aldoxime isohexyl 115g and 350 g of methanol (water content 25%) by the mixer with a metering Li A, hydrogen peroxide (content 30%) 80g B was continuously fed with a metering Li Mo-MCM-41 (baby with metal ratio of 85) 9g, 0.5g of sodium hydroxide in a reaction vessel, a temperature of 95 ° C, pressure of 0.6MPa. 膜分离出的反应清液经脱溶脱氨后精馏得到1-硝基异己烷87. Ig,收率为95%,纯度为99.1 %,未反应的肟经回收后返回继续进行氧化反应。 Membrane separated after the reaction supernatant was desolventized deaminase distillation to give 1-nitro isohexane 87. Ig, 95% yield, 99.1% purity after recovery of unreacted oxime was returned to continue the oxidation reaction.

[0059] 实施例22: [0059] Example 22:

[0060] 将异丁醛肟100g和丙醇260g (含水量35%)经混合器混合后用计量栗A、双氧水(含量为50%) 102g用计量栗B连续加入带有催化剂钛锆掺杂微孔-介孔复合催化剂(娃金属比为65) 4.5g、氨水0.6g的反应釜中,温度85°C,压力0.3MPa。 [0060] The alcohol and isobutyraldehyde oxime 100g 260g (35% water content) was mixed with a mixer metering Li A, hydrogen peroxide (content 50%) 102g metering Li titanium catalyst B with a continuous addition of the zirconium-doped microporous - mesoporous composite catalyst (Wa metal ratio of 65) 4.5g, 0.6g of ammonia in the reaction vessel, the temperature of 85 ° C, pressure of 0.3MPa. 膜分离出的反应清液经脱溶后精馏1-硝基异丁烷98.4g,纯度为99.1 %。 Membrane separated supernatant after the reaction distillation desolventizing 1-nitro isobutane 98.4g, 99.1% purity. 收率为95.6%,未反应的肟经回收后返回继续进行氧化反应。 The yield was 95.6%, to return to continue the oxidation reaction of unreacted oxime was recovered.

[0061] 实施例23: [0061] Example 23:

[0062] 将环己基甲醛肟127g和乙醇300g (含水量5%)经混合器混合后用计量栗A、双氧水(含量为30%)34g用计量栗B、连续加入带有Ti-Mo-ZSM-5催化剂15g (娃金属比为90)3.6g、 碳酸氢铵0.1 g的反应釜中,温度95°C,压力0.75MPa,膜分离出的反应清液经脱溶脱氨后精馏得到环己基硝基甲烷40.7g,收率95%,纯度为99.2%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 [0062] The cyclohexyl oxime 127g ethanol and 300g (water content 5%) was mixer with a metering Li A, hydrogen peroxide (content 30%) 34g metering Li B, continuously added with Ti-Mo-ZSM -5 catalyst 15g (Wa metal ratio of 90) 3.6g, 0.1 g ammonium bicarbonate reaction vessel, the temperature of 95 ° C, pressure 0.75MPa, the membrane separation of the reaction solution after the supernatant removal by distillation to give ammonia-cyclohexyl nitromethane 40.7 g, 95% yield, 99.2% purity, the solvent and unreacted oxime was recovered after the oxidation reaction continues to return.

[0063] 实施例24: [0063] Example 24:

[0064] 将苯甲醛肟121g和叔丁醇300g经混合器混合后用计量栗A、双氧水(含量为30%) 17g、用计量栗B连续加入带有V-SBA-15催化剂(硅金属比为30) 10g、氧化钙0.3g的反应釜中,温度105 °C,压力0.5MPa。 [0064] Benzaldehyde oxime 121g 300g tert-butanol and mixed by a mixer with a metering Li A, hydrogen peroxide (content 30%) 17g, was added continuously with a metering Li B with V-SBA-15 catalyst (Si metal ratio It is 30) 10g, 0.3g of calcium oxide reactor, the temperature of 105 ° C, pressure of 0.5MPa. 膜分离出的反应清液经脱溶后精馏得到1-硝基-1-苯基甲烷19.5g,收率为95%,纯度为99%,未反应的肟和溶剂经回收后返回继续进行氧化反应。 The reaction membrane separated supernatant after desolventizing distillation to give 1 19.5 g of diphenylmethane-nitro-1, 95% yield, 99% purity, the solvent and unreacted oxime was recovered after continued return the oxidation reaction.

[0065] 任何本领域的技术人员,在不脱离本发明的精神和范围的情况下,应当可以作出各种修改与变更。 [0065] anyone skilled in the art, without departing from the spirit and scope of the invention, various modifications may be made and should be changed. 因此本发明的保护范围应当视为所附的权力要求书所限定的范围。 Therefore, the scope of the invention should be considered power as defined in the appended claims scope.

Claims (5)

  1. 1. 一种B氧化制备硝基烷烃的绿色合成方法,其特征为:在55~120°C和O~1.0 MPa压力下,肟、溶剂和双氧水在一定量的纳米孔骨架金属杂化催化剂和助催化剂存在下反应20 ~200min,反应液经膜分离,催化剂可重复利用7次以上,精馏得到硝基烷烃产品,产品纯度彡99%,收率彡95%。 Green synthesis method for preparing nitroalkane oxide B, wherein: a pressure ~ 1.0 MPa at 55 ~ 120 ° C, and O, oximes, solvent and hydrogen peroxide in an amount of nanopores skeletal metal catalysts and hybrid cocatalyst reaction 20 ~ 200min, the reaction solution through the membrane separation, the catalyst can be used repeatedly more than 7 times, nitroalkanes distillation to give the product, 99% purity San, San yield 95%.
  2. 2. -种如权利要求1所述的肟氧化制备硝基烷烃的绿色合成方法,其特征在于:所述助催化剂为碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铵、碳酸氢铵、氧化锂、氧化钠、氧化钾、 氧化镁、氧化妈、氧化钡、氢氧化锂、氢氧化钠、氢氧化钾、氢氧化镁、氢氧化妈、氢氧化钡、氨水、液氨、甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、乙醇胺、二乙醇胺及三乙醇胺之一。 2. - Green synthesis method as claimed in species oximes prepared by oxidation of the nitroalkane of claim 1, wherein: said co-catalyst is sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, ammonium carbonate, bicarbonate, ammonium, lithium oxide, sodium oxide, potassium oxide, magnesium oxide, mom, barium oxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, mother, barium hydroxide, ammonia, liquid ammonia, methyl amine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine and triethanolamine one.
  3. 3. -种如权利要求1所述的肟氧化制备硝基烷烃的绿色合成方法,其特征在于:肟为丙酮肟、丁酮肟、2-戊酮肟、甲基异丙基酮肟、3-戊酮肟、2-己酮肟、4-甲基-2-戊酮肟、环戊酮肟、1-甲基环戊酮肟、2-甲基环戊酮肟、3-甲基环戊酮肟、环己酮肟、2-甲基环己酮肟、苯乙酮肟、甲醛肟、乙醛肟、丙醛肟、正丁醛肟、异丁醛肟、正戊醛肟、异戊醛肟、正己醛肟、异己醛肟、环己基甲醛肟及苯甲醛肟之一。 3 - species such as green synthetic process oxime oxide nitroalkane according to claim 1, characterized in that: the oxime of acetone oxime, butanone oxime, 2-pentanone oxime, methyl isopropyl ketone oxime, 3 - pentanone oxime, 2-hexanone oxime, 4-methyl-2-pentanone oxime, cyclopentanone oxime, 1-methyl-cyclopentanone oxime, cyclopentanone oxime 2-methyl, 3-ring amyl ketone oxime, cyclohexanone oxime, 2-methyl cyclohexanone oxime, acetophenone oxime, formaldehyde oxime, acetaldehyde oxime, propionaldehyde oxime, n-butyraldehyde oxime, isobutyraldehyde oxime, n-valeraldehyde oxime, iso valeraldehyde oxime, n-hexyl aldehyde oxime, isohexyl aldehyde oxime, cyclohexanone oxime, and one group benzaldehyde oxime.
  4. 4. 一种如权利要求1所述的肟氧化制备硝基烷烃的绿色合成方法,其特征在于:双氧水和肟摩尔比为0.1:1~4:1,催化剂的量为物料总量的0.001~10%,纳米孔骨架金属杂化催化剂和助催化剂重量比为1:0.01~1:1。 4. A method as green synthesized oxide prepared nitroalkane oxime according to claim 1, wherein: the molar ratio of hydrogen peroxide to oxime and 0.1: 1 to 4: 1, the total amount of catalyst material is from 0.001 to 10%, nanoporous metal skeleton hybrid catalyst and the cocatalyst weight ratio of 1: 0.01 to 1: 1.
  5. 5. -种如权利要求1所述的肟氧化制备硝基烷烃的绿色合成方法,其特征在于:所需溶剂为甲醇、乙醇、丙醇、异丙醇、叔丁醇及乙腈之一或其水溶液,其水溶液中水分重量百分含量为0.1 %~50%;肟和溶剂摩尔比为1:0.1~1:30。 5. - The method of synthesizing green oxide species oximes prepared as claimed in claim 1 nitroalkane, characterized in that: the desired solvent is methanol, ethanol, propanol, isopropanol, tert-butanol, and acetonitrile, or one aqueous solution, an aqueous solution of moisture content of 0.1 percent by weight to 50%; molar ratio of the oxime and the solvent is 1: 0.1 to 1:30.
CN 201610895014 2016-10-10 2016-10-10 Green synthesis method for preparing nitroalkanes by oxime oxidation CN106631809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201610895014 CN106631809A (en) 2016-10-10 2016-10-10 Green synthesis method for preparing nitroalkanes by oxime oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201610895014 CN106631809A (en) 2016-10-10 2016-10-10 Green synthesis method for preparing nitroalkanes by oxime oxidation

Publications (1)

Publication Number Publication Date
CN106631809A true true CN106631809A (en) 2017-05-10

Family

ID=58855393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201610895014 CN106631809A (en) 2016-10-10 2016-10-10 Green synthesis method for preparing nitroalkanes by oxime oxidation

Country Status (1)

Country Link
CN (1) CN106631809A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277329A (en) * 2002-01-15 2003-10-02 Sumitomo Chem Co Ltd Method for producing oxime compound or nitro compound and catalyst therefor
CN101511770A (en) * 2006-06-30 2009-08-19 先灵公司 Synthesis of 3-(5-nitrocyclohex-1-enyl) acrylic acid and esters thereof
US20110065762A1 (en) * 2009-09-11 2011-03-17 Jizhou Wang Methods of use of antiviral compounds
CN102267913A (en) * 2011-05-20 2011-12-07 浙江大学宁波理工学院 Synthesis of 2,3-dimethyl-2,3-dinitro-butane
CN102574768A (en) * 2009-10-20 2012-07-11 安格斯化学公司 Process for nitroalkane recovery by aqueous phase recycle to nitration reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277329A (en) * 2002-01-15 2003-10-02 Sumitomo Chem Co Ltd Method for producing oxime compound or nitro compound and catalyst therefor
CN101511770A (en) * 2006-06-30 2009-08-19 先灵公司 Synthesis of 3-(5-nitrocyclohex-1-enyl) acrylic acid and esters thereof
US20110065762A1 (en) * 2009-09-11 2011-03-17 Jizhou Wang Methods of use of antiviral compounds
CN102574768A (en) * 2009-10-20 2012-07-11 安格斯化学公司 Process for nitroalkane recovery by aqueous phase recycle to nitration reactor
CN102267913A (en) * 2011-05-20 2011-12-07 浙江大学宁波理工学院 Synthesis of 2,3-dimethyl-2,3-dinitro-butane

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OKAMOTO, KELVIN T.等: "Studies on a biomimetic approach to aerothionin and psammaplysin-A", 《TETRAHEDRON LETTERS》 *
ZUOXI ZHUO等: "Insights into the key to highly selective synthesis of oxime via ammoximation over titanosilicates", 《JOURNAL OF CATALYSIS》 *
卓佐西: "选择性合成肟反应导向的钛硅分子筛催化活性中心及其转化行为的研究", 《工程科技Ⅰ辑》 *
张胜建等: "丙酮肟氧化偶联合成2,3-二甲基-2,3-二硝基丁烷反应的研究", 《有机化学》 *

Similar Documents

Publication Publication Date Title
Gutmann et al. Continuous‐flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients
Dhakshinamoorthy et al. Commercial metal–organic frameworks as heterogeneous catalysts
Luz et al. Bridging homogeneous and heterogeneous catalysis with MOFs:“Click” reactions with Cu-MOF catalysts
Kornblum et al. Synthesis of aliphatic nitro compounds
Hass et al. The Nitroparaffins.
CN103787932A (en) Preparation method of dimethyl sulfoxide
CN102838516A (en) Preparation method for sulfoxide and sulphone
Yang et al. One-pot tandem catalysis over Pd@ MIL-101: Boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
CN103570493A (en) Method for synthesizing 1,2-orthodiol through immobilized type heteropolyacid phase-transfer catalytic oxidation
CN102206147A (en) Method for oxidizing cyclohexane
CN1854114A (en) Use of bismuth nitrate and iron nitrate as nitrification agent in aromatic compound nitrification
Rode et al. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide
CN102125838A (en) Method for preparing high-selectivity Pd/TiO2-C hydrogenation catalyst
WO1999042433A1 (en) Process for nitration of aromatic compounds using a non-acid type nitration process
CN101670298A (en) Method for modifying titanium silicalite zeolite
Chill et al. A facile one-pot conversion of aldehydes into nitriles
Balamurugan et al. Gold/copper-catalyzed activation of the aci-form of nitromethane in the synthesis of methylene-bridged bis-1, 3-dicarbonyl compounds
CN1754866A (en) Styrene catalytic oxidation method
Kawade et al. Cu-catalyzed oxidative Povarov reactions between N-alkyl N-methylanilines and saturated oxa-and thiacycles
CN103288691A (en) Method for oxidizing dimethyl sulfide
CN102757407A (en) Allyl chloride epoxidation method for preparing epichlorohydrin
Pigaleva et al. A biphase H 2 O/CO 2 system as a versatile reaction medium for organic synthesis
CN101759542A (en) Method for preparing acetophenone by biomimetic catalytic oxidation of ethylbenzene with oxygen
CN104478731A (en) Method for synthesizing 2, 4-dichloro-3-fluoronitrobenzene by means of micro-channel reactors

Legal Events

Date Code Title Description
PB01
SE01