CN106600542B - 一种航天光学遥感高密度量子化信息处理方法 - Google Patents

一种航天光学遥感高密度量子化信息处理方法 Download PDF

Info

Publication number
CN106600542B
CN106600542B CN201610966208.8A CN201610966208A CN106600542B CN 106600542 B CN106600542 B CN 106600542B CN 201610966208 A CN201610966208 A CN 201610966208A CN 106600542 B CN106600542 B CN 106600542B
Authority
CN
China
Prior art keywords
quantum
information
remote sensing
optical remote
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610966208.8A
Other languages
English (en)
Other versions
CN106600542A (zh
Inventor
张智
林栩凌
何红艳
张璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Space Research Mechanical and Electricity
Original Assignee
Beijing Institute of Space Research Mechanical and Electricity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Space Research Mechanical and Electricity filed Critical Beijing Institute of Space Research Mechanical and Electricity
Priority to CN201610966208.8A priority Critical patent/CN106600542B/zh
Publication of CN106600542A publication Critical patent/CN106600542A/zh
Application granted granted Critical
Publication of CN106600542B publication Critical patent/CN106600542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种航天光学遥感高密度量子化信息处理方法,属于航天遥感技术。现有空间光学遥感器在轨成像阶段,由于探测器尺寸受限,造成地面分辨率很难提高,再加上探测器件退化,会在焦面产生大量噪声,导致所获取图像中出现斑点噪声,采用传统数字图像处理方法往往难以取得理想效果。本发明从信息量子态角度出发,考虑到了叠加态信息,通过在量子空间滤波实现去噪,同时合成多路量子信息,最终提升系统获取的信息量。本发明适于在星上退化图像或地面难以处理的图像,在减少计算复杂度后,有望实现星上处理。

Description

一种航天光学遥感高密度量子化信息处理方法
技术领域
本发明属于航天遥感技术领域中的光学卫星图像处理的一种量子信息处理方法,特别是一种航天光学遥感多路图像量子滤波与合成方法。
背景技术
目前光学遥感器在轨成像阶段,因空间环境变化等多种复杂因素造成探测元器件性能退化,再加上探测器件固有特性,在焦面出现大量噪声,造成成像质量退化。目前,卫星在轨阶段,难以有效提升成像质量,需要通过数字图像处理的手段进一步提升像质。
由于探测器像元规模受限,造成光学成像卫星在轨成像分辨率难以提高,采样到信息量较低;另外因空间环境变化,很多复杂因素造成探测元器件性能退化,或因探测器件固有特性,退化图像质量,影响图像判读,采用传统方法往往难以得到理想效果。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种航天光学遥感高密度量子化信息处理方法,在量子空间对信号进行处理,同时采用多路量子信息合成的方法进一步提升数据的信息量,能够更有效的去除噪声,大大提升了图像的有效信息量。
本发明技术解决方案:一种航天光学遥感图像量子滤波与合成方法,包括如下步骤:
步骤一、获取光学遥感卫星对目标成像的多路观测信息,并结合光学遥感成像系统信息,对成像系统建模,得到多路光学遥感图像;
步骤二、将多路光学遥感图像转换到量子空间,分解到个量子比特面上,得到多路光学遥感图像对应的量子比特面中量子态向量;
步骤三、将多路光学遥感图像对应的量子比特面中量子态向量进行滤波,通过对多路成像信息的量子比特面信息进行范数优化,实现对量子信息的滤波,得到滤波后的多路量子信息;
步骤四、将滤波后的多路量子信息合成,即在量子比特面内对多路分解后的量子信息进行重采样,进行量子信息合成,得到合成后的量子信息;
步骤五、信息重构,即将合成后量子信息重构转换回图像信息,得到处理后的高清晰图像。
所述步骤一中,成像系统建模公式如下
Figure GDA0001222955040000021
其中:(m,n)为获取到光学遥感图像数据的尺寸,其中m为图像在横轴方向的尺寸,n为图像在纵轴方向的尺寸;H为PSF的二维高斯状的s×s矩阵表示,由测量得到,s为点扩展函数PSF在一个方向的尺寸;I(m,n)为理想场景信息,N为噪声项,f(m,n)为光学遥感图像。
所述s取值为:
Figure GDA0001222955040000022
所述步骤二中,将多路光学遥感图像转换到量子空间表示如下:
Figure GDA0001222955040000023
上式是光学遥感图像转换到量子空间转化表示,其中t代表多路成像信息,b代表成像信息的量化位数,p(t,b)代表第t路信息内第b个比特面f的概率的均方,|ψt,b(μ,ν)>为图像f对应第t路信息内第b个量子比特面中量子态向量,<ψt,b(μ,ν)|代表图像对应量子态向量的左矢,为|ψt,b(μ,ν)>的共轭转置,(μ,ν)代表量子态向量在量子比特面上的位置。
得到多路光学遥感图像对应的量子比特面中量子态向量为:
Figure GDA0001222955040000031
上式中θ和φ分别表示量子比特空间上对应向量与z轴夹角和投影在xy面与x轴之间的夹角。
所述步骤三中,多路光学遥感图像对应的量子比特面中量子态向量进行滤波,表示如下
Figure GDA0001222955040000032
其中:λt,b为每个比特面的调整系数,取0~1之间;
Figure GDA0001222955040000033
表示求2范数最小化,||·||1表示1范数;量子范畴的范数空间近似于图像域的范数空间,即在不同比特面内求得的范数表达,其展开运算遵守量子运算规则,通过优化使得
Figure GDA0001222955040000034
趋近于理想值,最终得到优化后的光学遥感图像对应的量子态向量;
Figure GDA0001222955040000035
为光学遥感成像系统PSF对应的矩阵H在第t路第b个量子比特面量子态向量;
Figure GDA0001222955040000036
为理想光学遥感图像I在第t路第b个量子比特面量子态向量;
Figure GDA0001222955040000041
为光学遥感图像第t路第b个量子比特面上的量子态向量;
Figure GDA0001222955040000042
表示光学遥感成像系统噪声N对应第t路第b个量子比特面上的量子态向量。
所述步骤四中,在各个量子比特面内对多路分解后的量子信息进行重采样,信息合成得到
Figure GDA0001222955040000043
|ψ't,b(μ,ν)>为得到的合成后的量子信息,上式重采样采用插值的方法;
Figure GDA0001222955040000044
t为多路成像信息中的第t路信息(本发明取t=4),b为量子比特面数(本发明取b=8)。
所述步骤五中,信息从量子空间转换回图像空间,表示为
Figure GDA0001222955040000046
其中,|ψ't,b(μ,ν)>为滤波后的量子态向量;<ψ't,b(μ,ν)|为滤波后量子态向量的左矢,为|ψ't,b(μ,ν)>的共轭转置;f'(m,n)为转换后的图像。
所述H由两种测量方法得到,第一种是实验室通过点源靶标,实现对系统点扩展函数PSF的精确测量;第二种是在卫星过境星下点铺设地面靶标,实现对卫星动态点扩展函数PSF的测量。
所述步骤(三)中对多路光学遥感图像对应的量子比特面中量子态向量进行滤波时,量子向量之间的运算满足如下法则:
Figure GDA0001222955040000047
Figure GDA0001222955040000048
则有
Figure GDA0001222955040000049
Figure GDA0001222955040000051
且有
Figure GDA0001222955040000052
Figure GDA0001222955040000053
上式中代表任意两个量子态向量之间的运算关系,其中量子态向量|ψj>的矩阵表示为
Figure GDA0001222955040000054
而|ψk>的矩阵表示为
Figure GDA0001222955040000055
因此|ψj>与|ψk>之间的运算关系均满足展开式
Figure GDA0001222955040000056
Figure GDA0001222955040000057
之间运算。这样量子态向量之间的运算关系就可以由矩阵之间运算来实现。
所述插值方法采用双线性插值、三次插值等插值方法。
本发明与现有技术相比的优点在于:
(1)本发明采用量子比特的概念,将空域信息转换到量子空间分析。在量子比特面对图像进行滤波、信息合成,实现良好的滤波效果。由于信息是通过量子比特的形式表达的,能够表示出基态之间的叠加态,这种存在于叠加态的噪声信息是传统图像处理方法无法处理的,同时采用多路量子信息合成一路量子化信息的方法。由于合成后的信息结合了多路信息,可提高图像的有效信息量,如峰值信噪比、模糊度等指标。
(2)本发明对多路成像信息采用量子比特转换的方法将图像转换到量子空间,考虑到各种叠加态信息,因而滤波更明显。
(3)本发明适于在星上分辨率受限,存在大量噪声难以处理的图像,适于在星上无法处理或地面难以滤除的图像,或分辨率难以提升的图像,在有效降低计算复杂度后,能够实现星上实时处理。
附图说明
图1为本发明的量子图像处理的主要过程示意图;
图2为原图中量子比特面下的分解示意图,其中a.第1层分解图,b.第2层分解图,c.第3层分解图,d.第4层分解图,e.第5层分解图,f.第6层分解图,g.第7层分解图,h.第8层分解图;
图3为原始图及本发明处理结果比较,其中a.遥感器获取图像,b.传统处理方法(滤波+插值),c.为本发明量子空间处理方法。
具体实施方式
如图1所示,本发明方法具体实现如下:
步骤(一),获取光学遥感卫星对目标成像的多路观测信息,并结合光学遥感成像系统信息,对成像系统建模,得到多路光学遥感图像。数值经过归一化后,在[0,1]区间。光学遥感成像系统可视为线性系统,表示如下:
Figure GDA0001222955040000061
其中(m,n)为获取到图像数据的尺寸,s为PSF在一个方向的尺寸,I(m,n)为理想场景信息,N为噪声项;
上式中H代表光学遥感成像系统中的点扩展函数PSF,可由测量得到。测量方法有两种,一种是实验室通过点源靶标,实现对系统点扩展函数PSF的精确测量。第二种是在卫星过境星下点铺设地面靶标,实现对卫星动态点扩展函数PSF的测量。总之,测得的PSF以二维矩阵H形式表达,表示为高斯状的s×s矩阵,为运算方便取
Figure GDA0001222955040000062
步骤(二),将多路光学遥感图像转换到量子空间,分解到个量子比特面上,得到多路光学遥感图像对应的量子比特面中量子态向量。
Figure GDA0001222955040000071
上式子(2)是多路信息从图像空间到量子空间的转化表达,其中t代表多路成像信息,b代表成像信息的量化位数,p(t,b)代表第t路信息内第b个比特面f的概率的均方,|ψt,b(μ,ν)>为图像f对应第t路信息内第b个量子比特面中量子态向量;<ψt,b(μ,ν)|代表图像对应量子态向量的左矢,为|ψt,b(μ,ν)>的共轭转置。
信息量子化建模,将图像f归一化,即f(m,n)满足f(m,n)∈[0,1],此时图像f(m,n)的量化比特可表达为
Figure GDA0001222955040000072
这里,|0>和|1>分别表示为图像量子比特中的两个基态。如果α>和β>可理解为光入射后形成不同的偏振态,且满足α22=1。
进一步推导为
Figure GDA0001222955040000073
式子(4)中因子e对信息没有明显的效果,因而可忽略掉。θ和φ分别表示量子比特空间上对应向量与z轴夹角和投影在xy面与x轴之间的夹角;
本发明实施例中t=4,即有4路信息,每个通道内有8个比特面,得到32个量子态向量。
步骤(三),将多路光学遥感图像对应的量子比特面中量子态向量进行滤波,通过对多路成像信息的量子比特面信息进行范数优化,实现对量子信息的滤波,得到滤波后的多路量子信息;量子信息滤波过程:对每一路成像信息进行滤波。通过对每一路成像信息量子态向量|ψt,b(μ,ν)>进行范数最小凸优化,实现对量子信息的滤波,即
Figure GDA0001222955040000081
这里λt,b为每个比特面的调整系数,这里取0~1之间;
Figure GDA0001222955040000082
表示求2范数最小化,||·||1表示1范数。通过优化使得
Figure GDA0001222955040000083
趋近于理想值,最终得到优化后的光学遥感图像对应的量子态向量。
Figure GDA0001222955040000084
为光学遥感成像系统PSF对应的矩阵H在第t路、第b个量子比特面量子态向量;
Figure GDA0001222955040000085
为理想光学遥感图像在第t路、第b个量子比特面量子态向量;
Figure GDA0001222955040000086
为光学遥感图像在第t路、第b个量子比特面上的量子态向量;
Figure GDA0001222955040000087
表示光学遥感成像系统噪声N对应第t路、第b个量子比特面上的量子态向量;
量子范畴的范数空间近似于图像域的范数空间,即在不同比特面内求得的范数表达,其量子向量运算遵守量子运算规则:
定理:若
Figure GDA0001222955040000088
Figure GDA0001222955040000089
则有
Figure GDA0001222955040000091
Figure GDA0001222955040000092
且有
Figure GDA0001222955040000093
Figure GDA0001222955040000094
上式中代表任意两个量子态向量之间的运算关系,其中量子态向量|ψj>的矩阵表示为
Figure GDA0001222955040000095
而|ψk>的矩阵表示为
Figure GDA0001222955040000096
因此|ψj>与|ψk>之间的运算关系均满足展开式
Figure GDA0001222955040000097
Figure GDA0001222955040000098
之间运算。这样量子态向量之间的运算关系就可以由矩阵之间运算来实现。
步骤(四),将滤波后的多路量子信息合成,即在量子比特面内对多路分解后的量子信息进行重采样,进行量子信息合成,得到合成后的量子信息;量子信息合成过程,即在第b个比特面内多路分解后的量子信息进行重采样,合成高密度的量子信息,即
Figure GDA0001222955040000099
重采样采用插值的方法,具体各类插值方法为业内公知(如双线性插值、三次插值等插值方法),这里取
Figure GDA00012229550400000911
t为多路成像信息中的第t路信息,b为量子比特面数;
步骤(五),信息重构,即将合成后量子信息重构转换回图像信息,得到处理后的高清晰图像,表示如下
Figure GDA00012229550400000912
其中,|ψ't,b(μ,ν)>为滤波后的量子态向量;<ψ't,b(μ,ν)|为滤波后量子态向量的左矢,为|ψ't,b(μ,ν)>的共轭转置;f'(m,n)为转换后的图像。最终,得到处理后的高清晰图像。
实施例1
本发明实施例中选用全色谱段成像,图像选取航母作为仿真图,如图3中的(a),同时包含稀疏的海洋背景信息。实施例中t=4,每路信息分解8个比特面,共32个图像的量子态向量。如图1中所示,通过获取上述4路成像信息进行结合系统先验信息点扩展函数PSF的量子滤波方法,然后合成高密度的量子信息,最后重建滤波后的高信息量图像。图2为不同量子面内的分解图,层数越大信息分解的越精细。通过逐层分解可以将信号和噪声在量子空间精细分解。
图3中的(b)可见,在图像空间采用传统图像滤波方法(均值滤波+线性插值)合成一幅图像,图像中的去除了部分噪声,同时丢失很多细节信息。而图3中的(c)量子滤波方法考虑到更多叠加态特性并且在量子空间合成多路量子信息,能够更有效去除噪声,增强图像的细节信息,得到的图像像质更清晰。
如表1为采用传统图像滤波方法与本发明量子方法处理后图像质量的评价结果表。由表可见,本发明处理后图像的细节信息评价指标与传统图像滤波方法相比更高,说明处理后的图像质量优于在传统图像滤波处理结果。
表1传统处理方法与本发明量子化信息处理方法后对比(海面舰船图)
Figure GDA0001222955040000111
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

1.一种航天光学遥感高密度量子化信息处理方法,其特征在于:包括如下步骤:
步骤一、获取光学遥感卫星对目标成像的多路观测信息,并结合光学遥感成像系统信息,对成像系统建模,得到多路光学遥感图像;
步骤二、将多路光学遥感图像转换到量子空间,分解到各量子比特面上,得到多路光学遥感图像对应的量子比特面中量子态向量;
步骤三、将多路光学遥感图像对应的量子比特面中量子态向量进行滤波,通过对多路成像信息的量子比特面信息进行范数优化,实现对量子信息的滤波,得到滤波后的多路量子信息;
步骤四、将滤波后的多路量子信息合成,即在量子比特面内对多路分解后的量子信息进行重采样,进行量子信息合成,得到合成后的量子信息;
步骤五、信息重构,即将合成后量子信息重构转换回图像信息,得到处理后的高清晰图像。
2.根据权利要求1所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤一中,成像系统建模公式如下
Figure FDA0002230671160000011
其中:(m,n)为获取到光学遥感图像数据的尺寸,其中m为图像在横轴方向的尺寸,n为图像在纵轴方向的尺寸;H为PSF的二维高斯状的s×s矩阵表示,由测量得到,s为点扩展函数PSF在一个方向的尺寸;I(m,n)为理想场景信息,N为噪声项,f(m,n)为光学遥感图像。
3.根据权利要求2所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述s取值为:
Figure FDA0002230671160000021
4.根据权利要求1所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤二中,将多路光学遥感图像转换到量子空间表示如下:
Figure FDA0002230671160000022
上式是光学遥感图像转换到量子空间转化表示,其中t代表多路成像信息,b代表成像信息的量化位数,pt,b代表第t路信息内第b个比特面量子化信息出现概率的均方,|ψt,b(μ,ν)>为图像f对应第t路信息内第b个量子比特面中量子态向量,<ψt,b(μ,ν)|代表图像对应量子态向量的左矢,为|ψt,b(μ,ν)>的共轭转置,(μ,ν)代表量子态向量在量子比特面上的位置;
得到多路光学遥感图像对应的量子比特面中量子态向量为:
Figure FDA0002230671160000023
上式中θ和φ分别表示量子比特空间上对应向量与z轴夹角和投影在xy面与x轴之间的夹角。
5.根据权利要求1所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤三中,多路光学遥感图像对应的量子比特面中量子态向量进行滤波,表示如下
Figure FDA0002230671160000031
其中:λt,b为每个比特面的调整系数,取0~1之间;
Figure FDA0002230671160000032
表示求2范数最小化,||·||1表示1范数;量子范畴的范数空间即在不同比特面内求得的范数表达,其展开运算遵守量子运算规则,通过优化使得
Figure FDA0002230671160000033
趋近于理想值,最终得到优化后的光学遥感图像对应的量子态向量;
Figure FDA0002230671160000034
为光学遥感成像系统PSF对应的矩阵H在第t路第b个量子比特面量子态向量;
Figure FDA0002230671160000035
为理想光学遥感图像I在第t路第b个量子比特面量子态向量;
Figure FDA0002230671160000036
表示光学遥感成像系统噪声N对应第t路第b个量子比特面上的量子态向量;
Figure FDA0002230671160000037
为光学遥感图像第t路第b个量子比特面上的初始量子态向量;
t,b(μ,ν)>为光学遥感图像第t路第b个量子比特面上的量子态向量。
6.根据权利要求1所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤四中,在各个量子比特面内对多路分解后的量子信息进行重采样,信息合成得到
Figure FDA0002230671160000038
|ψ't,b(μ,ν)>为得到的合成后的量子信息,|ψt,b(μ+h,ν+k)>为插值重采用后的量子信息,上式重采样采用插值的方法;
Figure FDA0002230671160000041
t为多路成像信息中的第t路信息,b为量子比特面数。
7.根据权利要求4所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤五中,信息从量子空间转换回图像空间,表示为
Figure FDA0002230671160000042
其中,|ψ't,b(μ,ν)>为滤波后的量子态向量;<ψ't,b(μ,ν)|为滤波后量子态向量的左矢,为|ψ't,b(μ,ν)>的共轭转置;f'(m,n)为转换后的图像。
8.根据权利要求2所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述H由两种测量方法得到,第一种是实验室通过点源靶标,实现对系统点扩展函数PSF的精确测量;第二种是在卫星过境星下点铺设地面靶标,实现对卫星动态点扩展函数PSF的测量。
9.根据权利要求1所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述步骤(三)中对多路光学遥感图像对应量子比特面中量子态向量进行滤波时,量子态向量之间运算满足如下法则:
Figure FDA0002230671160000043
Figure FDA0002230671160000044
则有
Figure FDA0002230671160000045
Figure FDA0002230671160000046
且有
Figure FDA0002230671160000051
Figure FDA0002230671160000052
上式中代表任意两个量子态向量之间的运算关系,其中量子态向量|ψj>的矩阵表示为
Figure FDA0002230671160000053
而|ψk>的矩阵表示为
Figure FDA0002230671160000054
j>与|ψk>之间的运算关系均满足展开式
Figure FDA0002230671160000055
Figure FDA0002230671160000056
之间运算,这样量子态向量之间的运算关系就由矩阵之间运算来实现。
10.根据权利要求6所述的一种航天光学遥感高密度量子化信息处理方法,其特征在于:所述插值方法采用双线性插值方法、三次插值方法。
CN201610966208.8A 2016-10-31 2016-10-31 一种航天光学遥感高密度量子化信息处理方法 Active CN106600542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610966208.8A CN106600542B (zh) 2016-10-31 2016-10-31 一种航天光学遥感高密度量子化信息处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610966208.8A CN106600542B (zh) 2016-10-31 2016-10-31 一种航天光学遥感高密度量子化信息处理方法

Publications (2)

Publication Number Publication Date
CN106600542A CN106600542A (zh) 2017-04-26
CN106600542B true CN106600542B (zh) 2020-04-10

Family

ID=58590647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610966208.8A Active CN106600542B (zh) 2016-10-31 2016-10-31 一种航天光学遥感高密度量子化信息处理方法

Country Status (1)

Country Link
CN (1) CN106600542B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107680066B (zh) * 2017-09-04 2020-05-12 北京空间机电研究所 空间相机动态成像仿真及频域滤波方法
CN108765350B (zh) * 2018-05-31 2022-03-04 北京空间机电研究所 一种面向航天光学遥感图像量子化滤波方法
CN109377456B (zh) * 2018-09-28 2022-04-12 北京空间机电研究所 一种光学遥感太赫兹图像数据增强方法
CN109345481B (zh) * 2018-09-28 2020-09-18 北京空间机电研究所 一种用于航天光学遥感图像的量子优化方法
CN110187356B (zh) * 2019-06-14 2021-07-09 中国科学技术大学 远距离超分辨单光子成像重构方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892698A (zh) * 2006-05-19 2007-01-10 中国科学院研究生院 基于小波分形的遥感图像插值方法
CN101625755A (zh) * 2009-08-06 2010-01-13 西安电子科技大学 基于分水岭-量子进化聚类算法的图像分割方法
CN101908213A (zh) * 2010-07-16 2010-12-08 西安电子科技大学 基于量子免疫克隆的sar图像变化检测方法
CN102141613A (zh) * 2010-12-01 2011-08-03 北京空间机电研究所 一种结合卫星轨道特性的光学遥感器信噪比确定方法
CN202794027U (zh) * 2012-08-20 2013-03-13 杭州电子科技大学 一种基于量子级联激光器的汽车尾气遥感检测系统
CN103714354A (zh) * 2014-01-16 2014-04-09 西安电子科技大学 基于量子粒子群算法的高光谱图像波段选择方法
CN105891804A (zh) * 2016-06-27 2016-08-24 北方民族大学 一种多波长拉曼偏振激光分光系统及雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892698A (zh) * 2006-05-19 2007-01-10 中国科学院研究生院 基于小波分形的遥感图像插值方法
CN101625755A (zh) * 2009-08-06 2010-01-13 西安电子科技大学 基于分水岭-量子进化聚类算法的图像分割方法
CN101908213A (zh) * 2010-07-16 2010-12-08 西安电子科技大学 基于量子免疫克隆的sar图像变化检测方法
CN102141613A (zh) * 2010-12-01 2011-08-03 北京空间机电研究所 一种结合卫星轨道特性的光学遥感器信噪比确定方法
CN202794027U (zh) * 2012-08-20 2013-03-13 杭州电子科技大学 一种基于量子级联激光器的汽车尾气遥感检测系统
CN103714354A (zh) * 2014-01-16 2014-04-09 西安电子科技大学 基于量子粒子群算法的高光谱图像波段选择方法
CN105891804A (zh) * 2016-06-27 2016-08-24 北方民族大学 一种多波长拉曼偏振激光分光系统及雷达系统

Also Published As

Publication number Publication date
CN106600542A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106600542B (zh) 一种航天光学遥感高密度量子化信息处理方法
CN109636742B (zh) 基于对抗生成网络的sar图像和可见光图像的模式转换方法
CN110501072B (zh) 一种基于张量低秩约束的快照式光谱成像系统的重构方法
CN109345481B (zh) 一种用于航天光学遥感图像的量子优化方法
CN102005037B (zh) 结合多尺度双边滤波与方向滤波的多模图像融合方法
CN109194959B (zh) 一种压缩感知成像方法、装置、设备、系统及存储介质
CN116152120B (zh) 一种融合高低频特征信息的低光图像增强方法及装置
CN104569880A (zh) 一种磁共振快速成像方法及系统
CN113066033B (zh) 一种彩色图像的多阶段去噪系统及方法
CN104680502B (zh) 基于稀疏字典和非下采样Contourlet变换的红外图像超分辨重建方法
Larsen Greiner et al. Cross-streamer wavefield reconstruction through wavelet domain learning
US8358559B2 (en) System and method for imaging
Bi et al. Image compressed sensing based on wavelet transform in contourlet domain
Priyadharsini et al. Underwater acoustic image enhancement using wavelet and KL transform
CN109978802B (zh) 基于nsct和pcnn的压缩感知域内的高动态范围图像融合方法
CN101388113A (zh) 一种星图图像的快速去噪方法
CN108765350B (zh) 一种面向航天光学遥感图像量子化滤波方法
Kawase et al. Demosaicking using a spatial reference image for an anti-aliasing multispectral filter array
Jadhav et al. Satellite image resolution enhancement using Dyadic-integer coefficients based bi-orthogonal wavelet filters
Dhekale et al. Satellite image (multispectral) enhancement techniques in wavelet domain: an overview
CN111932473B (zh) 一种多分辨率稀疏编码的相位信息降噪算法及存储介质
CN110517196B (zh) 一种sar图像降噪方法及系统
Flaute et al. Resampling and super-resolution of hexagonally sampled images using deep learning
Stanković et al. Algorithms for compressive sensing signal reconstruction with applications
Sivapriya et al. Iterative dual tree wavelet transform with posterior probability for sar despeckling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant