CN106598116A - Anti-condensation control method for power equipment box - Google Patents
Anti-condensation control method for power equipment box Download PDFInfo
- Publication number
- CN106598116A CN106598116A CN201611042391.9A CN201611042391A CN106598116A CN 106598116 A CN106598116 A CN 106598116A CN 201611042391 A CN201611042391 A CN 201611042391A CN 106598116 A CN106598116 A CN 106598116A
- Authority
- CN
- China
- Prior art keywords
- fuzzy
- temperature
- temperature error
- cabinet
- fuzzy set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009833 condensation Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000008859 change Effects 0.000 claims abstract description 37
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000013139 quantization Methods 0.000 claims description 22
- 238000013507 mapping Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000009418 renovation Methods 0.000 abstract 1
- 230000005494 condensation Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000007791 dehumidification Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D27/00—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
- G05D27/02—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供一种电力设备箱防凝露控制方法,通过实时监测电力设备箱柜内外温度、湿度;分区间判断外部环境温度所处的情形,得到当前的温度误差e以及温度误差变化ec,在通过模糊以及计算处理后,得到对应的△Kp、△Ki、△Kd的模糊集以及Kp、Ki、Kd值,根据所述Kp、Ki、Kd值,计算获得PID控制参数对加热器进行控制,使当前柜内温度T2与柜外温度T1的差值保持在预定范围内。本发明实施例具有防凝露效果好,且易于改造升级维护等优点。
The present invention provides an anti-condensation control method for power equipment cabinets. By monitoring the temperature and humidity inside and outside the power equipment cabinets in real time and judging the situation of the external environment temperature in different regions, the current temperature error e and temperature error change ec are obtained. After fuzzy and calculation processing, the corresponding fuzzy sets of △Kp, △Ki, △Kd and Kp, Ki, Kd values are obtained. According to the Kp, Ki, Kd values, the PID control parameters are calculated to control the heater. Keep the difference between the current temperature T2 inside the cabinet and the temperature T1 outside the cabinet within a predetermined range. The embodiment of the present invention has the advantages of good anti-condensation effect, easy renovation, upgrading and maintenance.
Description
技术领域technical field
本发明涉及电力设备的防凝露技术领域,具体涉及一种电力设备箱防凝露控制方法。The invention relates to the technical field of anti-condensation of electric equipment, in particular to an anti-condensation control method of an electric equipment box.
背景技术Background technique
在一些地区(例如亚热带季风气候区),春夏之交空气湿度较高,由于变电站内设备箱体内湿度高,容易发生凝露现象,尤其是户外端子箱容易出现这种现象。如果由于封堵不严密、温度湿度控制措施不妥当等原因,箱体内往往容易产生凝露现象,从而引起爬电、闪络事故,甚至有时因短路引起端子箱着火,因此解决箱体内凝露问题是非常重要。In some areas (such as the subtropical monsoon climate zone), the air humidity is high at the turn of spring and summer. Due to the high humidity inside the equipment box in the substation, condensation is prone to occur, especially in outdoor terminal boxes. If the sealing is not tight, the temperature and humidity control measures are not appropriate, etc., the condensation phenomenon in the box is often prone to occur, resulting in creepage, flashover accidents, and sometimes the terminal box catches fire due to a short circuit, so the problem of condensation in the box is solved is very important.
在现有技术中,普遍采用柜内采用加热型除湿和半导体型除湿两种方法,这两种方法都有明显的缺陷,除湿效果难以满足需求。另外进行技术更新改造,需要对现有的设备整体更换,需要一次设备停电,并重新进行二次接线,改造时误碰、误接线风险较大。In the prior art, two methods of heating-type dehumidification and semiconductor-type dehumidification are commonly used in the cabinet. These two methods have obvious defects, and the dehumidification effect is difficult to meet the demand. In addition, for technological upgrading and transformation, the existing equipment needs to be replaced as a whole, and the equipment needs to be powered off once, and the secondary wiring needs to be re-wired. The risk of accidental contact and miswiring during the transformation is relatively high.
发明内容Contents of the invention
本发明所要解决的技术问题在于,提供一电力设备箱防凝露控制方法,防凝露效果好,且易于改造。The technical problem to be solved by the present invention is to provide an anti-condensation control method for an electric equipment box, which has a good anti-condensation effect and is easy to modify.
为解决上述技术问题,本发明实施例提供一种电力设备箱防凝露控制方法,包括如下步骤:In order to solve the above technical problems, an embodiment of the present invention provides an anti-condensation control method for a power equipment box, including the following steps:
通过多种感应器实时至少获得电力设备箱的柜内温度T2、柜外温度T1以及柜内湿度H2;Obtain at least the temperature T2 inside the cabinet, the temperature T1 outside the cabinet and the humidity H2 inside the cabinet in real time through a variety of sensors;
分区间判断外部环境温度所处的情形,根据所述柜内温度T2、柜外温度T1计算获得当前的温度误差e以及温度误差变化ec;Judging the situation of the external environment temperature in different regions, calculating and obtaining the current temperature error e and temperature error change ec according to the temperature T2 inside the cabinet and the temperature T1 outside the cabinet;
对所述温度误差e以及温度误差变化ec进行模糊化处理,获得所述温度误差e对应的模糊集E和温度误差变化ec对应的模糊集EC,其中所述模糊集为正大PB、正中PM、正小PS、零Z、负小NS、负中NM以及负大ND中之一;The temperature error e and the temperature error change ec are fuzzified to obtain the fuzzy set E corresponding to the temperature error e and the fuzzy set EC corresponding to the temperature error change ec, wherein the fuzzy set is Zhengda PB, Zhengzhong PM, One of positive small PS, zero Z, negative small NS, negative medium NM and negative large ND;
根据所述温度误差模糊集E和温度误差变化模糊集EC,查询预先生成的△Kp规律表、△Ki规律表、△Kd规律表,获得△Kp、△Ki、△Kd的模糊集,所述△Kp、△Ki、△Kd的模糊集为正大PB、正中PM、正小PS、零Z、负小NS、负中NM以及负大ND中之一;According to the temperature error fuzzy set E and the temperature error change fuzzy set EC, query the pre-generated △Kp law table, △Ki law table, △Kd law table, and obtain the fuzzy sets of △Kp, △Ki, △Kd, the said The fuzzy set of △Kp, △Ki, △Kd is one of positive big PB, positive middle PM, positive small PS, zero Z, negative small NS, negative middle NM and negative big ND;
根据所述△Kp、△Ki、△Kd的模糊集进行去模糊化计算获得Kp、Ki、Kd值;Perform defuzzification calculations according to the fuzzy sets of ΔKp, ΔKi, and ΔKd to obtain Kp, Ki, and Kd values;
根据所述Kp、Ki、Kd值,计算获得PID控制参数,根据所述PID控制参数对加热器进行控制,使当前柜内温度T2与柜外温度T1的差值保持在预定范围内;Calculate and obtain PID control parameters according to the Kp, Ki, and Kd values, and control the heater according to the PID control parameters, so that the difference between the current cabinet temperature T2 and the cabinet external temperature T1 remains within a predetermined range;
在当前柜内湿度H2大于一启动阈值时,控制压缩机启动对端子箱内部进行除湿处理。When the humidity H2 in the current cabinet is greater than a startup threshold, the compressor is controlled to start to dehumidify the inside of the terminal box.
其中,对所述温度误差e以及温度误差变化ec进行模糊化处理,获得所述温度误差e对应的模糊集E和温度误差变化ec对应的模糊集EC的步骤具体为:Wherein, the temperature error e and the temperature error change ec are fuzzified, and the steps of obtaining the fuzzy set E corresponding to the temperature error e and the fuzzy set EC corresponding to the temperature error change ec are as follows:
根据温度误差e的实际论域与模糊论域之间的关系,获得输入量化因子ke,将温度误差e的实际值乘以所述输入量化因子ke,获得温度误差e的量化输入值,并进行模糊化处理,获得对应模糊集E;According to the relationship between the actual domain of the temperature error e and the fuzzy universe, the input quantization factor ke is obtained, the actual value of the temperature error e is multiplied by the input quantization factor ke, the quantization input value of the temperature error e is obtained, and Fuzzy processing to obtain the corresponding fuzzy set E;
根据温度误差变化ec的实际论域与模糊论域之间的关系,获得输入量化因子kec,将温度误差变化ec的实际值乘以所述输入量化因子kec,获得温度误差变化ec的量化输入值,并进行模糊化处理,获得对应模糊集EC。According to the relationship between the actual universe of the temperature error change ec and the fuzzy universe, the input quantization factor kec is obtained, and the actual value of the temperature error change ec is multiplied by the input quantization factor kec to obtain the quantized input value of the temperature error change ec , and perform fuzzy processing to obtain the corresponding fuzzy set EC.
其中,所述进行模糊化处理具体为:Wherein, the fuzzification process is specifically as follows:
根据温度误差e所对应的模糊子集的隶属度函数,获得对应的模糊集E;或Obtain the corresponding fuzzy set E according to the membership function of the fuzzy subset corresponding to the temperature error e; or
根据温度误差ec所对应的模糊子集的隶属度函数,获得对应的模糊集EC;According to the membership function of the fuzzy subset corresponding to the temperature error ec, the corresponding fuzzy set EC is obtained;
其中,所述隶属度函数为三角函数或高斯隶属度函数。Wherein, the membership function is a trigonometric function or a Gaussian membership function.
其中,进一步包括预先生成△Kp规律表、△Ki规律表、△Kd规律表的步骤,其中,E、EC、△Kp、△Ki、△Kd存在如下的映射关系:Wherein, it further includes the step of generating the △Kp law table, △Ki law table, and △Kd law table in advance, wherein, E, EC, △Kp, △Ki, △Kd have the following mapping relationship:
E×EC→ΔKp×ΔKi×ΔKdE×EC→ΔKp×ΔKi×ΔKd
在所述△Kp规律表、△Ki规律表、△Kd规律表中,对应于E和EC的每一论域值,所述△Kp、△Ki、△Kd均具有一确定的论域值。In the ΔKp rule table, ΔKi rule table, and ΔKd rule table, corresponding to each domain value of E and EC, the ΔKp, ΔKi, and ΔKd all have a definite domain value.
其中,根据所述△Kp、△Ki、△Kd的模糊集进行去模糊化计算获得Kp、Ki、Kd值的步骤具体为:Wherein, according to the fuzzy sets of ΔKp, ΔKi, ΔKd, the steps of performing defuzzification calculation to obtain Kp, Ki, and Kd values are as follows:
对所述△Kp、△Ki、△Kd的模糊集进行去模糊化处理,得到对应的论域值;Defuzzifying the fuzzy sets of ΔKp, ΔKi, and ΔKd to obtain corresponding domain values;
将所述△Kp、△Ki、△Kd对应的论域值乘以输出变量的量化因子,获得Kp、Ki、Kd值,所述输出量化因子依据△Kp、△Ki、△Kd的实际论域与模糊论域之间的关系得出。Multiply the domain value corresponding to △Kp, △Ki, △Kd by the quantization factor of the output variable to obtain the Kp, Ki, Kd value, and the output quantization factor is based on the actual domain of △Kp, △Ki, △Kd The relationship between fuzzy domain of discourse is obtained.
其中,所述启动阈值为50%,所述预定范围为±3℃。Wherein, the activation threshold is 50%, and the predetermined range is ±3°C.
实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:
本发明实施例,提供了一种电力设备箱防凝露控制方法,可以通过模糊控制方法使电力设备箱内外温度差保持在预定的范围内,同时结合柜内湿度进行抽湿处理,可以很好地防止凝露的产生,同时减少箱体改造的工程量和改造风险,便于维护。The embodiment of the present invention provides an anti-condensation control method for a power equipment box, which can keep the temperature difference inside and outside the power equipment box within a predetermined range through the fuzzy control method, and at the same time perform dehumidification treatment in combination with the humidity in the cabinet, which can be very good It can effectively prevent the generation of condensation, and at the same time reduce the engineering quantity and risk of the transformation of the cabinet, and facilitate maintenance.
附图说明Description of drawings
图1是本发明提供的一种电力设备箱防凝露控制方法的一个实施例的主流程示意图;Fig. 1 is a schematic diagram of the main flow of an embodiment of an anti-condensation control method for a power equipment box provided by the present invention;
图2示出了本发明方法所采用的PID调节原理图;Fig. 2 has shown the PID adjustment schematic diagram that the inventive method adopts;
图3示出了图1的一个实施例中温度误差e对应的隶属度函数示意图;Fig. 3 shows a schematic diagram of the membership function corresponding to the temperature error e in an embodiment of Fig. 1;
图4为图3中隶属度函数对应的表格形式;Fig. 4 is the tabular form corresponding to the degree of membership function in Fig. 3;
图5示出了图1的一个实施例中温度误差变化ec对应的隶属度函数示意图;Fig. 5 shows a schematic diagram of the membership function corresponding to the temperature error change ec in an embodiment of Fig. 1;
图6为图5中隶属度函数对应的表格形式;Fig. 6 is the tabular form corresponding to the degree of membership function in Fig. 5;
图7示出了一个△Kp规律表的示意图;Fig. 7 shows a schematic diagram of a ΔKp law table;
图8示出了一个△Ki规律表的示意图;Figure 8 shows a schematic diagram of a ΔKi law table;
图9示出了一个△Kd规律表的示意图;Fig. 9 shows a schematic diagram of a ΔKd law table;
图10示出了一种电力设备箱防凝露控制方法的一个实施例的详细流程示意图。Fig. 10 shows a detailed flowchart of an embodiment of an anti-condensation control method for a power equipment box.
具体实施方式detailed description
下述将结合附图对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,示出了本发明提供的一种电力设备箱防凝露控制方法的一个实施例的主流程示意图。请一并结合图2至图9所示,在该实施例中,该电力设备箱防凝露控制方法包括如下步骤:As shown in FIG. 1 , it shows a schematic flow diagram of an embodiment of an anti-condensation control method for a power equipment box provided by the present invention. Please combine with FIG. 2 to FIG. 9, in this embodiment, the anti-condensation control method for the electrical equipment box includes the following steps:
步骤S10,通过设置于电力设备箱内外的温度感应器分别实时获得端子箱的柜内温度T2、柜外温度T1;通过温度感应器获得柜内湿度H2;Step S10, obtain the temperature T2 inside the cabinet and the temperature T1 outside the cabinet of the terminal box in real time through the temperature sensors installed inside and outside the power equipment box; obtain the humidity H2 inside the cabinet through the temperature sensor;
步骤S11,分区间判断外部环境温度所处的情形,根据所述柜内温度T2、柜外温度T1计算获得当前的温度误差e以及温度误差变化ec,其中,温度误关e为柜内温度T2与柜外温度T1之差,温度误差变化ec为此次获得的e与上次测量获得的e之间的变化值;Step S11, judge the situation of the external environment temperature in different regions, calculate and obtain the current temperature error e and temperature error change ec according to the temperature T2 inside the cabinet and the temperature T1 outside the cabinet, where the temperature error e is the temperature inside the cabinet T2 The difference from the temperature T1 outside the cabinet, the temperature error change ec is the change value between the e obtained this time and the e obtained in the last measurement;
参见图2所示,示出了本方法所采用的PID调节原理图;其中,本方法所采用的模糊自调整PID算法的输入只有两个,误差和误差的变化。系统通过在PID控制之前加入模糊自整定PID三个参数(比例参数Kp、积分参数Ki、微分参数Kd),最后三个参数变化量加入到初值的基础上。Referring to FIG. 2 , it shows the principle diagram of the PID adjustment adopted in the method; wherein, the fuzzy self-adjusting PID algorithm adopted in the method has only two inputs, the error and the change of the error. The system adds three fuzzy self-tuning PID parameters (proportional parameter Kp, integral parameter Ki, differential parameter Kd) before PID control, and the last three parameter changes are added to the initial value.
在本发明的方法中,需要判断外部环境温度上升、下降、平稳,再通过防凝露的温度条件进行动作。可以理解的是,在大幅度的降温环境或者低温环境下,电柜内温度高于柜外的话会产生凝露,而在大幅度的升温环境或者高温环境下,电柜内温度低于柜外的话会产生凝露。故当外部环境温度上升(或高温状态),一般要求要求柜内温度高于柜外才可防止凝露的出现;而当外部环境温度下降(或低温状态,一般要求柜内温度低于柜外温度才可防止凝露的出现。故针对不同的环境,采用不同的方式计算获得当前的温度误差以及温度误差变化,具体可以参照图10中的步骤。In the method of the present invention, it is necessary to judge whether the external environment temperature rises, falls, or is stable, and then operates under the anti-condensation temperature condition. It is understandable that condensation will occur if the temperature inside the electric cabinet is higher than that outside the cabinet in a large cooling environment or low temperature environment, and condensation will occur if the temperature inside the electric cabinet is higher than that outside the cabinet. Condensation will occur. Therefore, when the external ambient temperature rises (or in a high temperature state), it is generally required that the temperature inside the cabinet be higher than that outside the cabinet to prevent condensation; and when the external ambient temperature drops (or in a low temperature state), it is generally required that the temperature inside the cabinet is lower than that outside the cabinet. Only the temperature can prevent condensation. Therefore, according to different environments, different methods are used to calculate and obtain the current temperature error and temperature error change. For details, please refer to the steps in Figure 10.
步骤S12,对所述温度误差e以及温度误差变化ec进行模糊化处理,获得所述温度误差e对应的模糊集E和温度误差变化ec对应的模糊集EC,其中所述模糊集为正大PB、正中PM、正小PS、零Z、负小NS、负中NM以及负大ND中之一;Step S12, performing fuzzy processing on the temperature error e and temperature error change ec to obtain a fuzzy set E corresponding to the temperature error e and a fuzzy set EC corresponding to the temperature error change ec, wherein the fuzzy sets are Zhengda PB, One of positive middle PM, positive small PS, zero Z, negative small NS, negative middle NM and negative big ND;
具体地,包括:根据温度误差e的实际论域与模糊论域之间的关系,获得输入量化因子ke,将温度误差e的实际值乘以所述输入量化因子ke,获得温度误差e的量化输入值,并进行模糊化处理,获得对应模糊集E;例如,在一个例子中实际论域e∈[-10,10],模糊论域e∈[-3,3],则此时的输入最化因子ke为0.3。Specifically, it includes: according to the relationship between the actual domain of the temperature error e and the fuzzy universe, the input quantization factor ke is obtained, and the actual value of the temperature error e is multiplied by the input quantization factor ke to obtain the quantization of the temperature error e Input the value and perform fuzzy processing to obtain the corresponding fuzzy set E; The optimization factor ke is 0.3.
根据温度误差变化ec的实际论域与模糊论域之间的关系,获得输入量化因子kec,将温度误差变化ec的实际值乘以所述输入量化因子kec,获得温度误差变化ec的量化输入值,并进行模糊化处理,获得对应模糊集EC,例如,在一个例子中,实际论域ec∈[-5,5],模糊论域ec∈[-3,3],则此时的输入量化因为为0.6。According to the relationship between the actual universe of the temperature error change ec and the fuzzy universe, the input quantization factor kec is obtained, and the actual value of the temperature error change ec is multiplied by the input quantization factor kec to obtain the quantized input value of the temperature error change ec , and perform fuzzy processing to obtain the corresponding fuzzy set EC, for example, in an example, the actual domain ec∈[-5,5], the fuzzy domain ec∈[-3,3], then the input quantization at this time Because it is 0.6.
根据温度误差e所对应的模糊子集的隶属度函数,获得对应的模糊集E;或Obtain the corresponding fuzzy set E according to the membership function of the fuzzy subset corresponding to the temperature error e; or
根据温度误差ec所对应的模糊子集的隶属度函数,获得对应的模糊集EC;According to the membership function of the fuzzy subset corresponding to the temperature error ec, the corresponding fuzzy set EC is obtained;
其中,所述隶属度函数为三角函数或高斯隶属度函数,如图2和图4分别示出了温度误差e所对应的隶属度函数以及温度误差变化ec所对应的隶属度函数。Wherein, the membership function is a trigonometric function or a Gaussian membership function, and FIG. 2 and FIG. 4 respectively show the membership function corresponding to the temperature error e and the membership function corresponding to the temperature error change ec.
步骤S13,根据所述温度误差模糊集E和温度误差变化模糊集EC,查询预先生成的△Kp规律表、△Ki规律表、△Kd规律表,获得△Kp、△Ki、△Kd的模糊集,所述△Kp、△Ki、△Kd的模糊集为正大PB、正中PM、正小PS、零Z、负小NS、负中NM以及负大ND中之一;Step S13, according to the temperature error fuzzy set E and the temperature error change fuzzy set EC, query the pre-generated △Kp law table, △Ki law table, △Kd law table, and obtain the fuzzy sets of △Kp, △Ki, △Kd , the fuzzy set of △Kp, △Ki, △Kd is one of positive big PB, positive middle PM, positive small PS, zero Z, negative small NS, negative middle NM and negative big ND;
进一步包括预先生成△Kp规律表、△Ki规律表、△Kd规律表的步骤,其中,E、EC、△Kp、△Ki、△Kd存在如下的映射关系:It further includes the step of generating the △Kp law table, △Ki law table, and △Kd law table in advance, wherein E, EC, △Kp, △Ki, △Kd have the following mapping relationship:
E×EC→ΔKp×ΔKi×ΔKdE×EC→ΔKp×ΔKi×ΔKd
在所述△Kp规律表、△Ki规律表、△Kd规律表中,对应于E和EC的每一论域值,所述△Kp、△Ki、△Kd均具有一确定的论域值,其中△Kp规律表、△Ki规律表、△Kd规律表可分别参见图7、图8以及图9所示。In the △Kp law table, △Ki law table, and △Kd law table, corresponding to each domain value of E and EC, the △Kp, △Ki, △Kd all have a definite domain value, Among them, the △Kp law table, △Ki law table, and △Kd law table can be shown in Fig. 7, Fig. 8 and Fig. 9 respectively.
可以理解的是,在其他的实施例中,也可以通过实时计算的方式来获得当前温度误差模糊集E和温度误差变化模糊集EC所对应的△Kp、△Ki、△Kd的模糊集。It can be understood that, in other embodiments, the fuzzy sets of ΔKp, ΔKi, and ΔKd corresponding to the current temperature error fuzzy set E and the temperature error change fuzzy set EC can also be obtained through real-time calculation.
可以理解的是,E、EC二输入组成的模糊推理关系为:It can be understood that the fuzzy inference relationship composed of E and EC two inputs is:
If E=A且EC=B,故Kx=C;其中,A、B、C均为为正大PB、正中PM、正小PS、零Z、负小NS、负中NM以及负大ND中之一;If E=A and EC=B, so Kx=C; among them, A, B, and C are among positive big PB, positive middle PM, positive small PS, zero Z, negative small NS, negative middle NM and negative big ND one;
采用mamdani计算方法,可以直接求出△Kp、△ki、△kd的规律表。Using the mamdani calculation method, the law table of △Kp, △ki, △kd can be obtained directly.
例如,在一个例子中,可以通过下述的方式来获得E和EC对就的△Kp、△Ki、△Kd的模糊集:For example, in one example, the fuzzy sets of △Kp, △Ki, △Kd corresponding to E and EC can be obtained in the following way:
系统模糊控制器为二输入三输出,其映射关系:The system fuzzy controller has two inputs and three outputs, and its mapping relationship is:
E×EC→Kpf×Kif×KdfE×EC→Kpf×Kif×Kdf
其中上述各参量为对应输出输入的模糊量。Each of the above parameters is the fuzzy quantity corresponding to the output and input.
其模糊关系:Its fuzzy relationship:
R=Yij[Ei×ECj×Kxij]R=Y ij [E i ×EC j ×Kx ij ]
式子:Kx为Kpf、Kif、Kdf。Formula: Kx is Kpf, Kif, Kdf.
则R的隶属度函数:Then the membership function of R is:
当e、ec输入被模糊化成模糊集E、EC,输出模糊控制量为Kx。其模糊推理为:When e, ec input is fuzzy into fuzzy sets E, EC, the output fuzzy control quantity is Kx. Its fuzzy reasoning is:
Kx=(E×EC)×RK x =(E×EC)×R
因此,K的隶属度函数为:Therefore, the membership function of K is:
步骤S14,根据所述△Kp、△Ki、△Kd的模糊集进行去模糊化计算获得Kp、Ki、Kd值;Step S14, performing defuzzification calculation according to the fuzzy sets of ΔKp, ΔKi, ΔKd to obtain Kp, Ki, Kd values;
对所述△Kp、△Ki、△Kd的模糊集进行去模糊化处理,得到对应的论域值;Defuzzifying the fuzzy sets of ΔKp, ΔKi, and ΔKd to obtain corresponding domain values;
将所述△Kp、△Ki、△Kd对应的论域值乘以输出变量的量化因子,获得Kp、Ki、Kd值,所述输出量化因子依据△Kp、△Ki、△Kd的实际论域与模糊论域之间的关系得出。Multiply the domain value corresponding to △Kp, △Ki, △Kd by the quantization factor of the output variable to obtain the Kp, Ki, Kd value, and the output quantization factor is based on the actual domain of △Kp, △Ki, △Kd The relationship between fuzzy domain of discourse is obtained.
在一个例子中,也可以通过加权平均法来实现去模糊化计算,例如可以通过下述公式进行计算:In an example, the defuzzification calculation can also be realized by the weighted average method, for example, the calculation can be performed by the following formula:
其中z为变量,在论域内积分。Kc为kp,ki,kd。Where z is a variable and is integrated within the domain of discourse. Kc is kp, ki, kd.
步骤S15,根据所述Kp、Ki、Kd值,计算获得PID控制参数,根据所述PID控制参数对加热器进行控制,使当前柜内温度T2与柜外温度T1的差值保持在预定范围(如±3℃)内;通过不断地获得当前对应的Kp、Ki、Kd值,系统可以稳定地调节柜内的温度。其中,通过Kp、Ki、Kd值计算获得PID控制参数是非常成熟的技术,在此不进行详述。Step S15: Calculate and obtain PID control parameters according to the Kp, Ki, and Kd values, and control the heater according to the PID control parameters so that the difference between the current cabinet temperature T2 and the cabinet external temperature T1 is maintained within a predetermined range ( Such as within ±3°C); by continuously obtaining the current corresponding Kp, Ki, and Kd values, the system can stably adjust the temperature in the cabinet. Among them, calculating and obtaining PID control parameters through Kp, Ki, and Kd values is a very mature technology, and will not be described in detail here.
步骤S16,在当前柜内湿度H2大于一启动阈值时,控制压缩机启动对端子箱内部进行除湿处理,在一个例子,该启动阈值为50%。Step S16, when the humidity H2 in the current cabinet is greater than a starting threshold, control the compressor to start to dehumidify the inside of the terminal box. In one example, the starting threshold is 50%.
由于除湿机除湿过程是使柜内环境温度降低了,因此湿度和温度的控制可以产生相互监控影响的作用。Since the dehumidification process of the dehumidifier reduces the ambient temperature in the cabinet, the control of humidity and temperature can have a mutual monitoring effect.
重复前述步骤,就可以防止电力箱内产生凝露。Repeat the preceding steps to prevent condensation in the power box.
如图10所示,示出了本发明提供的一种电力设备箱防凝露控制方法的一个实施例的详细流程示意图。在该实施例中,通过传感器获得柜外温度T1、柜内温度T2以及柜内温度H2等信息,并计算获得柜外温度变化△T1,从而分区间判断外部环境温度上升、下降、平稳,再通过防凝露的温度条件进行动作。As shown in FIG. 10 , it shows a detailed flowchart of an embodiment of an anti-condensation control method for a power equipment box provided by the present invention. In this embodiment, information such as temperature T1 outside the cabinet, temperature T2 inside the cabinet, and temperature H2 inside the cabinet are obtained through sensors, and the temperature change ΔT1 outside the cabinet is obtained by calculation, so as to determine whether the external environment temperature rises, falls, or is stable, and then Operate under the temperature condition of anti-condensation.
其中,需要参照实际的误差值和误差变化值经过量化对应的论域,本流程系统温度误差e变化范围正常在0°~100°,然而当|e|>10°时,直接用现有的PID控制。当|e|<10°时,PID参数由模糊控制自整定获得。当出现后面的情形时,需要先判断误差范围;其中,T1、T2、H1、H2分别为柜外温度、柜内温度、柜外湿度、柜内湿度,e(k)为第k次采样输入误差,ec(k)为第k次采样输入误差变化。然后通过算法判断环境温度变化,确定防凝露的措施,因为在降温或低温环境和升温或高温环境下,采用不同的计算方法,可以获得e和ec的值,然后对e和ek进行模糊化,并进行模糊整定获得△Kp、△Ki、△Kd;根据该△Kp、△Ki、△Kd计算获得相应的kp、ki以及kd值,从而控制PID的输出,对加热器进行调节;同时根据H2的值确定是否需要启动压缩机进行抽湿处理。Among them, it is necessary to refer to the actual error value and error change value to quantify the corresponding domain. The temperature error e of the process system normally ranges from 0° to 100°. However, when |e|>10°, directly use the existing PID control. When |e|<10°, PID parameters are obtained by fuzzy control self-tuning. When the following situation occurs, the error range needs to be judged first; among them, T1, T2, H1, and H2 are the temperature outside the cabinet, the temperature inside the cabinet, the humidity outside the cabinet, and the humidity inside the cabinet, and e(k) is the kth sampling input Error, ec(k) is the input error change of the kth sampling. Then use the algorithm to judge the environmental temperature change and determine the anti-condensation measures, because in the cooling or low temperature environment and the heating or high temperature environment, different calculation methods can be used to obtain the values of e and ec, and then fuzzy e and ek , and perform fuzzy tuning to obtain △Kp, △Ki, △Kd; calculate the corresponding kp, ki and kd values according to the △Kp, △Ki, △Kd, so as to control the output of PID and adjust the heater; at the same time, according to The value of H2 determines whether the compressor needs to be activated for dehumidification.
实施本发明,具有如下有益效果:Implement the present invention, have following beneficial effect:
本发明实施例,提供了一种电力设备箱防凝露控制方法,可以通过模糊控制方法使电力设备箱内外温度差保持在预定的范围内,同时结合柜内湿度进行抽湿处理,可以很好地防止凝露的产生,同时减少箱体改造的工程量和改造风险,便于维护。The embodiment of the present invention provides an anti-condensation control method for a power equipment box, which can keep the temperature difference inside and outside the power equipment box within a predetermined range through the fuzzy control method, and at the same time perform dehumidification treatment in combination with the humidity in the cabinet, which can be very good It can effectively prevent the generation of condensation, and at the same time reduce the engineering quantity and risk of the transformation of the cabinet, and facilitate maintenance.
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明的,任何熟习此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,因此本发明的保护范围应当以本申请的权利要求保护范围所界定的为准。Although the present invention has been disclosed as above with preferred embodiments, they are not intended to limit the present invention. Any skilled person can make various changes or modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the protection scope of the claims of the present application.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611042391.9A CN106598116A (en) | 2016-11-22 | 2016-11-22 | Anti-condensation control method for power equipment box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611042391.9A CN106598116A (en) | 2016-11-22 | 2016-11-22 | Anti-condensation control method for power equipment box |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106598116A true CN106598116A (en) | 2017-04-26 |
Family
ID=58592958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611042391.9A Pending CN106598116A (en) | 2016-11-22 | 2016-11-22 | Anti-condensation control method for power equipment box |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106598116A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006142A (en) * | 2019-03-22 | 2019-07-12 | 北京小米移动软件有限公司 | Constant-temperature control method, device, electronic equipment and storage medium |
CN110707560A (en) * | 2019-09-02 | 2020-01-17 | 国网江西省电力有限公司电力科学研究院 | A method and device for preventing condensation of closed box equipment based on temperature sensor |
CN111562803A (en) * | 2020-06-12 | 2020-08-21 | 西安易朴通讯技术有限公司 | Electronic device, temperature controller, temperature control method, device, and storage medium |
CN112556741A (en) * | 2020-11-26 | 2021-03-26 | 广西电网有限责任公司玉林供电局 | Accurate calibration system and method suitable for temperature and humidity sensor of transformer substation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142016A (en) * | 1984-08-02 | 1986-02-28 | Mitsubishi Heavy Ind Ltd | Dew condensation preventing device |
CN201312068Y (en) * | 2008-11-20 | 2009-09-16 | 常州帕斯菲克自动化技术有限公司 | Switch cabinet intelligent temperature difference type anti condensation controller |
CN103235620A (en) * | 2013-04-19 | 2013-08-07 | 河北农业大学 | Greenhouse environment intelligent control method based on global variable prediction model |
CN104317339A (en) * | 2014-11-13 | 2015-01-28 | 国家电网公司 | Dehumidification and anti-condensation intelligent control system and method for ring main unit |
CN104360623A (en) * | 2014-12-09 | 2015-02-18 | 国网上海市电力公司 | Method for controlling heater switch in power distribution cabinet |
CN104503520A (en) * | 2014-12-09 | 2015-04-08 | 国网上海市电力公司 | On-off control circuit for heater in power distribution cabinet |
CN105910174A (en) * | 2016-04-13 | 2016-08-31 | 珠海格力电器股份有限公司 | Anti-condensation control method and device for fixed frequency machine and air conditioning system |
-
2016
- 2016-11-22 CN CN201611042391.9A patent/CN106598116A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142016A (en) * | 1984-08-02 | 1986-02-28 | Mitsubishi Heavy Ind Ltd | Dew condensation preventing device |
CN201312068Y (en) * | 2008-11-20 | 2009-09-16 | 常州帕斯菲克自动化技术有限公司 | Switch cabinet intelligent temperature difference type anti condensation controller |
CN103235620A (en) * | 2013-04-19 | 2013-08-07 | 河北农业大学 | Greenhouse environment intelligent control method based on global variable prediction model |
CN104317339A (en) * | 2014-11-13 | 2015-01-28 | 国家电网公司 | Dehumidification and anti-condensation intelligent control system and method for ring main unit |
CN104360623A (en) * | 2014-12-09 | 2015-02-18 | 国网上海市电力公司 | Method for controlling heater switch in power distribution cabinet |
CN104503520A (en) * | 2014-12-09 | 2015-04-08 | 国网上海市电力公司 | On-off control circuit for heater in power distribution cabinet |
CN105910174A (en) * | 2016-04-13 | 2016-08-31 | 珠海格力电器股份有限公司 | Anti-condensation control method and device for fixed frequency machine and air conditioning system |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110006142A (en) * | 2019-03-22 | 2019-07-12 | 北京小米移动软件有限公司 | Constant-temperature control method, device, electronic equipment and storage medium |
CN110006142B (en) * | 2019-03-22 | 2021-12-07 | 北京小米移动软件有限公司 | Constant temperature control method and device, electronic equipment and storage medium |
CN110707560A (en) * | 2019-09-02 | 2020-01-17 | 国网江西省电力有限公司电力科学研究院 | A method and device for preventing condensation of closed box equipment based on temperature sensor |
CN111562803A (en) * | 2020-06-12 | 2020-08-21 | 西安易朴通讯技术有限公司 | Electronic device, temperature controller, temperature control method, device, and storage medium |
CN112556741A (en) * | 2020-11-26 | 2021-03-26 | 广西电网有限责任公司玉林供电局 | Accurate calibration system and method suitable for temperature and humidity sensor of transformer substation |
CN112556741B (en) * | 2020-11-26 | 2023-02-14 | 广西电网有限责任公司玉林供电局 | Accurate calibration system and method suitable for temperature and humidity sensor of transformer substation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Verma et al. | Indirect IMC‐PID controller design | |
CN106598116A (en) | Anti-condensation control method for power equipment box | |
CN104154635B (en) | Variable air rate room temp. control method based on fuzzy Yu predictive control algorithm | |
US20190146423A1 (en) | Feedback control system with normalized performance indices for setpoint alarming | |
CN106169754B (en) | Active Power Filter-APF neural network dynamic PID total-sliding-mode control methods | |
CN107453362A (en) | Active Power Filter-APF inverting global sliding mode fuzzy control based on neutral net | |
CN103322553A (en) | Multi-model disturbance estimation predictive-control method for superheated steam temperature of thermal power generating unit | |
Zakaria et al. | Algebraic observer‐based output‐feedback controller design for a PEM fuel cell air‐supply subsystem | |
Liu et al. | Observer-based direct adaptive fuzzy control of uncertain nonlinear systems and its applications | |
CN104467741B (en) | Active filter Intelligent current tracking and controlling method based on T S obscurity model buildings | |
CN112330189A (en) | Thermal power generating unit AGC dynamic characteristic evaluation method based on test information | |
Huang et al. | Design of voltage loop for three-phase PWM rectifier based on single neuron adaptive PID control | |
CN108710290A (en) | A kind of design method for High Order Nonlinear System recurrence integral terminal sliding mode face | |
Yang et al. | Design and realization of fuzzy self-tuning PID water temperature controller based on PLC | |
CN108268083A (en) | A kind of adaptive increment conductance MPPT algorithm | |
Deng et al. | Self-tuning PID-type fuzzy adaptive control for CRAC in datacenters | |
Yazdkhasti et al. | Demand side management using model-free fuzzy controller in a direct load control program | |
Yang et al. | Design and research on temperature and humidity controller system of intelligent distribution transformer box | |
Lasri et al. | Reducing the Electrical Consumption in the Humidity Control Process for Electric Cells using an Intelligent Fuzzy Logic Controller | |
Zeng et al. | Multivariable IMC-PID within air-conditioned room temperature and relative humidity control system | |
Fliess et al. | Towards a control-theoretic trivialization of ABR video streaming | |
Chen et al. | Fuzzy PID Combined with Smith Predictor Control of GSHP Terminal Fan System | |
Liu et al. | A composite PID fuzzy control method for the transformer cooling system | |
CN111663032B (en) | Active disturbance rejection temperature control method for amorphous iron core annealing furnace | |
Ma et al. | Control strategy for boost converter based on adaptive integral terminal sliding-mode control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |
|
RJ01 | Rejection of invention patent application after publication |