CN106596723A - Acoustic detection method of structural mechanical parameters of multilayer composite material - Google Patents
Acoustic detection method of structural mechanical parameters of multilayer composite material Download PDFInfo
- Publication number
- CN106596723A CN106596723A CN201710013869.3A CN201710013869A CN106596723A CN 106596723 A CN106596723 A CN 106596723A CN 201710013869 A CN201710013869 A CN 201710013869A CN 106596723 A CN106596723 A CN 106596723A
- Authority
- CN
- China
- Prior art keywords
- composite material
- multilayer composite
- poisson
- ratio
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 20
- 239000011185 multilayer composite material Substances 0.000 title abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005452 bending Methods 0.000 claims abstract description 23
- 230000005284 excitation Effects 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 27
- 238000012937 correction Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000010008 shearing Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000010561 standard procedure Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000009659 non-destructive testing Methods 0.000 description 5
- 230000001066 destructive effect Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001845 vibrational spectrum Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/045—Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0231—Composite or layered materials
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明涉及一种多层复合材料结构力学参数声学检测方法。通过经验公式分别建立多层复合材料结构弹性模量和剪切模量与几何尺寸、质量、和共振频率的关系,进而在一端激励,另一端获得时域振动信号,得到ff和ft,与多层复合材料结构的几何尺寸和质量作为经验公式的输入最后获得动态杨氏模量E和动态剪切模量G。本发明克服了经典脉冲激振检测力学参数标准方法需要制备矩形截面样件的缺点,克服了传统力学参数检测过程中对机械结构的损伤,简化了检测的步骤,大大缩短了检测时间,适合于多层复合材料结构的实际应用条件;通过对多层复合材料板的弯曲共振频率和剪切共振频率的识别,高效、准确、无损地检测多层复合材料板的动态力学参数。
The invention relates to an acoustic detection method for mechanical parameters of a multilayer composite material structure. The relationship between the elastic modulus and shear modulus of the multilayer composite material structure and the geometric size, mass, and resonance frequency are respectively established through empirical formulas, and then excited at one end, and the time-domain vibration signal is obtained at the other end to obtain f f and f t , The geometric dimensions and mass of the multilayer composite structure are used as the input of the empirical formula to finally obtain the dynamic Young's modulus E and the dynamic shear modulus G. The present invention overcomes the shortcoming of preparing a rectangular section sample in the standard method of detecting mechanical parameters by pulse excitation, overcomes the damage to the mechanical structure during the traditional mechanical parameter detection process, simplifies the detection steps, greatly shortens the detection time, and is suitable for The actual application conditions of the multilayer composite material structure; through the identification of the bending resonance frequency and shear resonance frequency of the multilayer composite material plate, the dynamic mechanical parameters of the multilayer composite material plate can be detected efficiently, accurately and non-destructively.
Description
技术领域technical field
本发明属于机械结构无损检测技术领域,涉及一种多层复合材料结构力学参数声学检测方法。The invention belongs to the technical field of non-destructive testing of mechanical structures, and relates to an acoustic testing method for mechanical parameters of a multilayer composite material structure.
背景技术Background technique
目前,随着国家制造业的飞速发展,社会对机械装备的需求日益扩大。高性能的复合材料广泛应用于各个制造领域,行业对材料性能要求越来越高,由于材料自身的特性可能随应用环境和工况的变化发生改变,这将导致材料以及整个机械装备的稳定性和可靠性降低,由此引发安全事故时有发生。因此事先对系统进行数字模拟仿真实现对机械结构状态稳定性的评估和使用寿命的预测变得尤为重要,将极大地提高机械装备整体运行安全性和可靠性,避免恶性事故。在数字建模仿真过程中弹性模量、剪切模量是最基本的力学特性参数,由于工作条件和应用环境的不确定性,将导致力学参数的值发生变化,为了使仿真预测的结果更加准确,一种高效、无损、准确的力学参数检测方法变得十分必要。At present, with the rapid development of the country's manufacturing industry, the society's demand for mechanical equipment is expanding day by day. High-performance composite materials are widely used in various manufacturing fields. The industry has higher and higher requirements for material performance. Since the characteristics of the material itself may change with the application environment and working conditions, this will lead to the stability of the material and the entire mechanical equipment. And the reliability is reduced, which leads to safety accidents from time to time. Therefore, it is particularly important to carry out digital simulation of the system in advance to realize the evaluation of the stability of the mechanical structure and the prediction of the service life, which will greatly improve the overall operation safety and reliability of the mechanical equipment and avoid malignant accidents. In the process of digital modeling and simulation, elastic modulus and shear modulus are the most basic mechanical characteristic parameters. Due to the uncertainty of working conditions and application environment, the values of mechanical parameters will change. In order to make the simulation prediction results more accurate Accurate, an efficient, non-destructive, accurate mechanical parameter detection method becomes very necessary.
脉冲激振法(Impulse Excitation Technique)是一种号称无损检测方法,通过试样固有频率、尺寸和质量来获取材料杨氏模量、剪切模量、泊松比的一种方法。脉冲激振法是指通过合适的外力给定试样某一特定位置一个连续的脉冲激振信号,当激振信号中的某一频率与试样的固有频率相一致时,产生共振,此时振幅最大,延时最长,通过测量传感器接收该振动信号,然后通过数据的分析处理获得试样的固有频率,该固有频率依据试样的振动方式不同而获得不同类型的频率,如弯曲频率、扭曲频率等,然后由标准试样的经验公式计算得出其杨氏模量E、剪切模量G、泊松比及阻尼比等,是目前世界上公认的先进的非接触测定各种材料弹性模量的一种理想检测方法。Impulse Excitation Technique (Impulse Excitation Technique) is a so-called non-destructive testing method, which is a method to obtain the Young's modulus, shear modulus and Poisson's ratio of the material through the natural frequency, size and quality of the sample. The pulse excitation method refers to a continuous pulse excitation signal given to a specific position of the sample by an appropriate external force. When a certain frequency in the excitation signal is consistent with the natural frequency of the sample, resonance is generated. At this time The amplitude is the largest and the delay is the longest. The vibration signal is received by the measuring sensor, and then the natural frequency of the sample is obtained through data analysis and processing. The natural frequency obtains different types of frequencies according to the vibration mode of the sample, such as bending frequency, Then the Young’s modulus E, shear modulus G, Poisson’s ratio and damping ratio are calculated by the empirical formula of the standard sample. It is currently recognized as an advanced non-contact measurement of various materials in the world. An ideal test method for elastic modulus.
近几年来,基于结构振动信息的材料力学参数识别技术已经引起了工程结构无损检测领域研究者的广泛关注。脉冲激振检测方法是新近发展起来的一种具有广阔应用前景的方法,该方法通过无损的方法准确地识别出多层复合材料板的力学参数,并在实验室研究中取得了较好的效果。然而,之前的研究仅仅局限于传统的工程材料,针对多层复合材料板类结构在实际运行条件下的力学参数的快速识别,目前由于缺乏适用的方法而未见报道。In recent years, the identification technology of material mechanical parameters based on structural vibration information has attracted extensive attention from researchers in the field of nondestructive testing of engineering structures. The pulse excitation detection method is a newly developed method with broad application prospects. This method accurately identifies the mechanical parameters of the multilayer composite material plate through a non-destructive method, and has achieved good results in laboratory research. . However, previous studies were limited to traditional engineering materials, and the rapid identification of mechanical parameters of multilayer composite plate structures under actual operating conditions has not been reported due to the lack of applicable methods.
发明内容Contents of the invention
为了克服以上的技术不足,本发明提供一种多层复合材料结构力学参数声学检测方法。In order to overcome the above technical deficiencies, the present invention provides an acoustic detection method for mechanical parameters of a multilayer composite material structure.
本发明提供一种多层复合材料结构力学参数声学检测方法,其步骤如下:The invention provides an acoustic detection method for mechanical parameters of a multilayer composite material structure, the steps of which are as follows:
1)通过有限元分析法对模拟多层复合材料结构进行模态频率计算,获得第一阶弯曲共振频率ff和第一阶剪切共振频率ft,并对获得的数据进行处理拟合,分别得到弹性模量E和剪切模量G与多层复合材料结构的几何尺寸和质量之间的关系,并得到获取力学参数的经验公式;1) Calculate the modal frequency of the simulated multilayer composite structure by finite element analysis method, obtain the first-order bending resonance frequency f f and the first-order shear resonance frequency f t , and process and fit the obtained data, The relationship between the elastic modulus E and the shear modulus G and the geometric size and mass of the multilayer composite structure is obtained respectively, and the empirical formula for obtaining the mechanical parameters is obtained;
2)距离两端面均为0.198L处用用弹性金属线悬吊起多层复合材料结构,使其处于自由振动的状态,并通过力锤在多层复合材料结构的左端激励,而在右端用声压传感器拾取多层复合材料结构的振动信号,并通过快速傅里叶变换获得第一阶弯曲共振频率ff;2) Suspend the multi-layer composite material structure with elastic metal wires at a distance of 0.198L from both ends, so that it is in a state of free vibration, and use a hammer to excite the left end of the multi-layer composite material structure, while the right end uses The sound pressure sensor picks up the vibration signal of the multilayer composite material structure, and obtains the first-order bending resonance frequency f f through fast Fourier transform;
3)在长度和宽度方向的中线处用弹性金属绳悬吊起多层复合材料结构,使其处于自由振动的状态,并通过力锤在多层复合材料结构的左端激励,而在右端用声压传感器拾取多层复合材料结构的振动信号,并通过快速傅里叶变换获得第一阶剪切共振频率ft;3) Suspend the multi-layer composite material structure with elastic metal ropes at the midline of the length and width directions, so that it is in a state of free vibration, and use a hammer to excite the left end of the multi-layer composite material structure, and use a sound at the right end. The pressure sensor picks up the vibration signal of the multi-layer composite material structure, and obtains the first-order shear resonance frequency f t through fast Fourier transform;
4)将第一阶弯曲共振频率ff和第一阶剪切共振频率ft与多层复合材料结构的几何尺寸、质量参数,代入1)中的经验公式中,分别获得弹性模量E和剪切模量G。4) Substitute the first-order bending resonance frequency f f and the first-order shear resonance frequency f t into the empirical formula in 1) to obtain the elastic modulus E and Shear modulus G.
1)中获取弹性模量E的关系式如下:1) The relational expression for obtaining the modulus of elasticity E is as follows:
其中,m是多层复合材料结构的质量,ff是第一阶弯曲共振频率,T1是弯曲振动下的校正系数,μ是材料的泊松比,where m is the mass of the multilayer composite structure, f is the first -order bending resonance frequency, T is the correction coefficient under bending vibration, μ is the Poisson’s ratio of the material,
。 .
1)中获取剪切模量G的关系式如下:1) The relational expression for obtaining the shear modulus G is as follows:
其中A和B是在剪切状态时关于多层复合材料结构宽度b和厚度t的校正系数,where A and B are the correction coefficients for the width b and thickness t of the multilayer composite structure in the shear state,
在泊松比未知时,获得多层复合材料结构的各个力学参数的值的方法如下:When the Poisson's ratio is unknown, the method to obtain the value of each mechanical parameter of the multilayer composite structure is as follows:
(1)当多层复合材料板的尺寸、质量以及第一阶弯曲共振频率ff和第一阶剪切共振频率ft被测得时,利用(1) When the dimensions, mass, first-order bending resonance frequency f f and first-order shear resonance frequency f t of the multilayer composite material plate are measured, use
获得得到多层复合材料板的剪切模量G。The shear modulus G of the resulting multilayer composite sheet was obtained.
(2)通过获得得到多层复合材料板的弹性模量E,利用弹性模量E、剪切模量G和泊松比μ的关系(2) pass Obtain the elastic modulus E of the multilayer composite plate, using the relationship between elastic modulus E, shear modulus G and Poisson's ratio μ
得到更新后的泊松比μn。Get the updated Poisson's ratio μ n .
(3)通过判断标准(3) Pass the judgment standard
来检验更新后的泊松比μn是否满足要求,如果满足要求,则多层复合材料板的力学参数E、G和μ就被确定;如果更新后的泊松比μn不满足要求,则将μn作为下一次迭代过程的泊松比值,重复步骤(2),直至得到满足要求的泊松比μn,进而确定多层复合材料板的最终力学参数E、G和μ。To check whether the updated Poisson’s ratio μ n meets the requirements, if the requirements are met, the mechanical parameters E, G and μ of the multilayer composite material plate are determined; if the updated Poisson’s ratio μ n does not meet the requirements, then Taking μ n as the Poisson’s ratio value of the next iteration process, repeat step (2) until the required Poisson’s ratio μ n is obtained, and then determine the final mechanical parameters E, G and μ of the multilayer composite plate.
本发明的有益效果:只需对多层复合材料板进行激振产生振动响应信号并且通过非接触式的声压传感器进行振动信号的采集分析,克服了传统力学参数检测过程中对机械结构的损伤影响,实现了检测的无损性,也适用于多层复合材料结构的实际应用条件。通过对多层复合材料工程结构的弯曲共振频率和剪切共振频率的识别,只需通过经验公式就可以高效、准确、无损地检测多层复合材料的动态力学参数。Beneficial effects of the present invention: it only needs to excite the multi-layer composite material plate to generate a vibration response signal and collect and analyze the vibration signal through a non-contact sound pressure sensor, which overcomes the damage to the mechanical structure in the traditional mechanical parameter detection process Influence, realize the non-destructiveness of the detection, and also apply to the actual application conditions of the multi-layer composite structure. Through the identification of the bending resonance frequency and shear resonance frequency of the multilayer composite material engineering structure, the dynamic mechanical parameters of the multilayer composite material can be detected efficiently, accurately and non-destructively only through empirical formulas.
附图说明Description of drawings
图1为多层复合材料板的截面图。Figure 1 is a cross-sectional view of a multilayer composite material panel.
图2为结构的支撑方式,其中1为弯曲振动的支撑方式,2为剪切振动的支撑方式。Figure 2 shows the support mode of the structure, in which 1 is the support mode of bending vibration, and 2 is the support mode of shear vibration.
图3为泊松比未知时迭代过程流程图。Figure 3 is a flowchart of the iterative process when Poisson's ratio is unknown.
图4为传动轴损伤检测方法流程图。Fig. 4 is a flow chart of the transmission shaft damage detection method.
图5为弯曲振动的振动响应图和振动频谱图,其中1为振动响应图,2为频谱图。Fig. 5 is a vibration response diagram and a vibration spectrum diagram of bending vibration, wherein 1 is a vibration response diagram, and 2 is a spectrum diagram.
图6为剪切振动的振动响应图和振动频谱图,其中1为振动响应图,2为频谱图。Figure 6 is the vibration response diagram and vibration spectrum diagram of shear vibration, wherein 1 is the vibration response diagram and 2 is the frequency spectrum diagram.
具体实施方式detailed description
下面结合附图对本发明实施例作进一步说明:Embodiments of the present invention will be further described below in conjunction with accompanying drawings:
如图所示,通过有限元分析法和数据处理软件Design-expert得到多层复合材料结构脉冲激振检测弹性模量和剪切模量的经验公式,分别建立多层复合材料结构弹性模量和剪切模量与几何尺寸、质量、和共振频率的关系,进而通过力锤在多层复合材料结构一端激励,另一端用声压传感器非接触测量多层复合材料板在弯曲振动和剪切振动状态下的时域振动信号,通过数据采集分析仪对时域振动信号进行快速傅里叶变换(FFT)来提取信号的共振频率并取平均,得到计算多层复合材料板的第一阶弯曲共振频率ff和第一阶剪切共振频率ft,与多层复合材料结构的几何尺寸和质量作为经验公式的输入最后计算求得多层复合材料板的动态弹性模量E和动态剪切模量G。以多层复合材料3240环氧板作为研究对象,检测方法的实施包括以下步骤:As shown in the figure, the empirical formulas for the elastic modulus and shear modulus of the multilayer composite structure pulse excitation detection are obtained through the finite element analysis method and the data processing software Design-expert, and the elastic modulus and shear modulus of the multilayer composite structure are respectively established. The relationship between the shear modulus and the geometric size, mass, and resonance frequency, and then the hammer is used to excite one end of the multilayer composite structure, and the other end uses a sound pressure sensor to measure the bending vibration and shear vibration of the multilayer composite material plate non-contact The time-domain vibration signal in the state, through the data acquisition analyzer to perform fast Fourier transform (FFT) on the time-domain vibration signal to extract the resonance frequency of the signal and take the average, and calculate the first-order bending resonance of the multi-layer composite material plate The frequency f f and the first-order shear resonance frequency f t , and the geometric dimensions and mass of the multilayer composite material structure are used as the input of the empirical formula for the final calculation to obtain the dynamic elastic modulus E and dynamic shear modulus of the multilayer composite material plate Quantity G. Taking the multi-layer composite material 3240 epoxy board as the research object, the implementation of the detection method includes the following steps:
1、脉冲激振检测多层复合材料结构在不同温度载荷作用下的弹性模量和剪切模量的经验公式。1. Empirical formulas for pulse excitation to detect elastic modulus and shear modulus of multilayer composite material structures under different temperature loads.
图1所示为多层复合材料结构的截面简化模型图,其中b和t分别为多层复合材料结构的长度宽度和厚度;图2所示的是多层复合材料结构支撑位置的简图,其中L为结构的长度。如图2所示,对于弯曲振动状态时支撑位置为距离两端面均为0.198L;对于剪切振动状态时支撑位置为结构长度和宽度的中线处(0.5L和0.5b)。通过有限元分析法得到多层复合材料板脉冲激振检测弹性模量和剪切模量的经验公式,建立多层复合材料结构弹性模量和剪切模量与其几何尺寸、质量和共振频率的关系。具体实施流程:Figure 1 is a simplified cross-sectional model diagram of the multilayer composite structure, where b and t are the length, width and thickness of the multilayer composite structure; Figure 2 is a simplified diagram of the support position of the multilayer composite structure, where L is the length of the structure. As shown in Figure 2, the support position is 0.198L from both ends in the bending vibration state; the support position is the midline of the structure length and width (0.5L and 0.5b) in the shear vibration state. The empirical formulas of elastic modulus and shear modulus for multilayer composite plate pulse excitation detection are obtained by finite element analysis, and the relationship between elastic modulus and shear modulus of multilayer composite material structure and its geometric size, mass and resonance frequency is established. relation. Specific implementation process:
通过有限元方法,运用有限元分析软件ANSYS,采用实体单元“Solid 186”,四阶梯机床主轴材料参数为泊松比μ=0.3,材料密度ρ=7860kg/m3,对于弯曲振动时约束位置在0.198L处,对于剪切振动时约束位置在0.5L和0.5b(如图2所示)处,进行模态频率计算,获得第一阶弯曲共振频率ff和第一阶剪切共振频率ft。经过大量的仿真实验得到足够多的仿真数据,然后通过具有强大数据拟合能力的软件Design-expert对仿真数据进行处理拟合,分别得到弹性模量E和剪切模量G与多层复合材料结构的几何尺寸和质量之间的关系,得到计算力学参数的经验公式。Through the finite element method, using the finite element analysis software ANSYS, using the solid element "Solid 186", the material parameters of the spindle of the four-step machine tool are Poisson's ratio μ = 0.3, the material density ρ = 7860kg/m 3 , and the restraint position is at At 0.198L, for shear vibration, the constrained position is at 0.5L and 0.5b (as shown in Figure 2), and the modal frequency is calculated to obtain the first-order bending resonance frequency f f and the first-order shear resonance frequency f t . After a large number of simulation experiments, enough simulation data are obtained, and then the simulation data is processed and fitted by the software Design-expert with powerful data fitting capabilities, and the elastic modulus E and shear modulus G are obtained respectively. The relationship between the geometrical dimensions and the mass of the structure gives empirical formulas for calculating the mechanical parameters.
(1)泊松比已知时弹性模量的计算(1) Calculation of elastic modulus when Poisson's ratio is known
当第一阶弯曲共振频率提取后,多层复合材料板的杨氏模量的计算公式经验计算公式为:After the first-order bending resonance frequency is extracted, the empirical calculation formula of the Young's modulus of the multilayer composite plate is:
式中,m是多层复合材料板的质量,ff是第一阶弯曲共振频率,T1是弯曲振动下的校正系数,μ是材料的泊松比。where m is the mass of the multilayer composite plate, f f is the first-order bending resonance frequency, T 1 is the correction coefficient under bending vibration, and μ is the Poisson's ratio of the material.
(2)剪切模量的计算(2) Calculation of shear modulus
当第一阶剪切共振频率,多层复合材料板的剪切模量可以通过如下的经验计算公式得到:When the first-order shear resonance frequency is reached, the shear modulus of the multilayer composite plate can be obtained by the following empirical formula:
式中,A和B是在剪切状态时关于多层复合材料板宽度b和厚度t的校正系数。where A and B are correction coefficients for the width b and thickness t of the multilayer composite sheet in the shear state.
(3)泊松比未知时弹性模量、泊松比的计算(3) Calculation of elastic modulus and Poisson's ratio when Poisson's ratio is unknown
在计算杨氏模量的过程中,如果泊松比μ的值是未知的,则需要通过如图3所示的流程图来进行迭代运算最终确定多层复合材料板的弹性模量E和泊松比μ。In the process of calculating Young's modulus, if the value of Poisson's ratio μ is unknown, it is necessary to perform an iterative operation through the flow chart shown in Figure 3 to finally determine the elastic modulus E and Poisson's modulus of the multilayer composite plate. than μ.
由材料力学,泊松比计算公式:From the mechanics of materials, Poisson's ratio calculation formula:
迭代过程步骤说明如下:The steps of the iterative process are described as follows:
(1)当多层复合材料板的尺寸、质量以及第一阶弯曲共振频率ff和第一阶剪切共振频率ft被测得时,利用公式(3)计算得到多层复合材料板的剪切模量G(与泊松比无关)。(1) When the size, mass, first-order bending resonance frequency f f and first-order shear resonance frequency f t of the multi-layer composite material plate are measured, use the formula (3) to calculate the multi-layer composite material plate Shear modulus G (independent of Poisson's ratio).
(2)通过公式(1)计算得到多层复合材料板的弹性模量E(与泊松比有关)。利用弹性模量E、剪切模量G和泊松比μ的关系公式(6)计算得到更新后的泊松比μn。(2) Calculate the elastic modulus E (related to Poisson's ratio) of the multilayer composite material plate by formula (1). The updated Poisson's ratio μ n is calculated by using the relational formula (6) of the elastic modulus E, the shear modulus G and the Poisson's ratio μ.
(3)通过判断标准来检验更新后的泊松比μn是否满足要求,如果满足要求,则多层复合材料板的力学参数E、G和μ就被确定;如果更新后的泊松比μn不满足要求,则将μn作为下一次迭代过程的泊松比值,重复迭代步骤(2),直至得到满足要求的泊松比μn,进而确定多层复合材料板的最终力学参数E、G和μ(3) Pass the judgment standard To check whether the updated Poisson’s ratio μ n meets the requirements, if the requirements are met, the mechanical parameters E, G and μ of the multilayer composite material plate are determined; if the updated Poisson’s ratio μ n does not meet the requirements, then Taking μ n as the Poisson’s ratio value of the next iteration process, repeat the iterative step (2) until the Poisson’s ratio μ n that meets the requirements is obtained, and then determine the final mechanical parameters E, G and μ of the multilayer composite plate
由以上步骤可知,在第一次迭代时,需假设一个原始的泊松比值μ0(范围可取0.23-0.35)。From the above steps, it can be seen that in the first iteration, an original Poisson's ratio value μ 0 (the range can be 0.23-0.35) should be assumed.
2、多层复合材料结构力学参数声学检测方法无损检测方法。2. Acoustic testing method for structural mechanical parameters of multilayer composite materials Non-destructive testing method.
图4为检测方法流程图。多层复合材料板的弹性模量和剪切模量无损检测方法操作流程:Fig. 4 is a flow chart of the detection method. The operation flow of the non-destructive testing method for elastic modulus and shear modulus of multi-layer composite material board:
首先按图2所示,对于弯曲振动状态时,距离两端面均为0.198L处用用弹性金属线悬吊起多层复合材料板;对于剪切振动状态时,在长度和宽度方向的中线处用弹性金属绳悬吊起多层复合材料板。使其处于自由振动的状态。First, as shown in Figure 2, for the state of bending vibration, the multi-layer composite material plate is suspended with elastic metal wires at a distance of 0.198L from both ends; for the state of shear vibration, at the midline of the length and width directions The multi-layer composite panels are suspended by elastic metal ropes. make it in a state of free vibration.
然后通过力锤在多层复合材料板的左端激励,而在右端用声压传感器拾取多层复合材料板的振动信号(如图5(1)和图6(1)所示),经过信号调理器放大、数字采样、滤波等处理,得到数字信号输入到计算机,通过快速傅里叶变换获得第一阶弯曲共振频率ff和第一阶剪切共振频率ft(如图5(2)和图6(2)所示);Then the hammer is used to excite the left end of the multi-layer composite material plate, and the sound pressure sensor is used to pick up the vibration signal of the multi-layer composite material plate at the right end (as shown in Figure 5(1) and Figure 6(1)), after signal conditioning amplifier, digital sampling, filtering and other processing, the digital signal is input to the computer, and the first-order bending resonance frequency f f and the first-order shearing resonance frequency f t are obtained through fast Fourier transform (as shown in Figure 5(2) and Figure 6 (2) shown);
最后分别将第一阶弯曲共振频率ff和第一阶剪切共振频率ft与多层复合材料板的几何尺寸、质量等参数,代入经验公式(1)和(3)中,分别计算出弹性模量E和剪切模量G。Finally, the first-order bending resonance frequency f f and the first-order shear resonance frequency f t are substituted into the empirical formulas (1) and (3) to calculate the Elastic modulus E and shear modulus G.
实施例不应视为对本发明的限制,任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。The embodiment should not be regarded as limiting the present invention, and any improvement based on the spirit of the present invention should be within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710013869.3A CN106596723A (en) | 2017-01-09 | 2017-01-09 | Acoustic detection method of structural mechanical parameters of multilayer composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710013869.3A CN106596723A (en) | 2017-01-09 | 2017-01-09 | Acoustic detection method of structural mechanical parameters of multilayer composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106596723A true CN106596723A (en) | 2017-04-26 |
Family
ID=58582915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710013869.3A Pending CN106596723A (en) | 2017-01-09 | 2017-01-09 | Acoustic detection method of structural mechanical parameters of multilayer composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106596723A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108802203A (en) * | 2018-06-20 | 2018-11-13 | 中国科学院声学研究所 | A kind of rod component internal flaw localization method based on multi-modal technology |
CN108828067A (en) * | 2018-03-29 | 2018-11-16 | 江苏理工学院 | A kind of damage of composite materials type separation method for including in acoustic emission signal |
CN109187232A (en) * | 2018-08-01 | 2019-01-11 | 彩虹显示器件股份有限公司 | A kind of test method for testing glass plate elasticity modulus and modulus of shearing |
CN109270169A (en) * | 2018-10-19 | 2019-01-25 | 中国工程物理研究院总体工程研究所 | A kind of fibre reinforced composites elastic parameter rapid assay methods and system |
CN112444563A (en) * | 2020-11-25 | 2021-03-05 | 大连理工大学 | Transverse isotropic material damage evaluation method based on ultrasonic back reflection |
CN113790954A (en) * | 2021-08-20 | 2021-12-14 | 河北光兴半导体技术有限公司 | Thin glass elastic modulus testing method and device |
CN116312898A (en) * | 2023-05-11 | 2023-06-23 | 中国电子科技集团公司信息科学研究院 | Method and device for identifying mechanical parameters of composite material and training identification model of composite material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103868994A (en) * | 2012-12-18 | 2014-06-18 | 空中客车运营简化股份公司 | Device and method for detecting an impact on composite material structure |
CN105301112A (en) * | 2015-10-30 | 2016-02-03 | 贵州大学 | Method for measuring and calculating visco-elastic dynamic mechanical parameters of rubber-like damping material |
-
2017
- 2017-01-09 CN CN201710013869.3A patent/CN106596723A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103868994A (en) * | 2012-12-18 | 2014-06-18 | 空中客车运营简化股份公司 | Device and method for detecting an impact on composite material structure |
CN105301112A (en) * | 2015-10-30 | 2016-02-03 | 贵州大学 | Method for measuring and calculating visco-elastic dynamic mechanical parameters of rubber-like damping material |
Non-Patent Citations (7)
Title |
---|
A. HAUERT ET AL.: "Young’s modulus of ceramic particle reinforced aluminium: Measurement by the Impulse Excitation Technique and confrontation with analytical models", 《COMPOSITES: PART A》 * |
METALLURGY ET AL.: "Elastic modulus determination of coating layers as applied to layered ceramic composites", 《MATERIALS SCIENCE AND ENGINEERING》 * |
S.J. RUPITSCH ET AL.: "Simulationbasedestimationofdynamicmechanicalproperties for viscoelasticmaterials used for vocal fold models", 《JOURNAL OFSOUNDAND VIBRATION》 * |
WENLEI SONG ET AL.: "Mechanical parameters identification for laminated composites based on the impulse excitation technique", 《COMPOSITE STRUCTURES》 * |
宋德杰: "《传感器技术与应用》", 30 September 2014, 机械工业出版社 * |
谭继勇 等: "冲击信号的随机共振自适应检测方法", 《机械工程学报》 * |
陈德成 等: "有限元模型修正技术的工程应用", 《中国工程科学》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108828067A (en) * | 2018-03-29 | 2018-11-16 | 江苏理工学院 | A kind of damage of composite materials type separation method for including in acoustic emission signal |
CN108802203A (en) * | 2018-06-20 | 2018-11-13 | 中国科学院声学研究所 | A kind of rod component internal flaw localization method based on multi-modal technology |
CN108802203B (en) * | 2018-06-20 | 2019-12-17 | 中国科学院声学研究所 | A Method for Locating Internal Defects of Rod-Shaped Components Based on Multimodal Technology |
CN109187232A (en) * | 2018-08-01 | 2019-01-11 | 彩虹显示器件股份有限公司 | A kind of test method for testing glass plate elasticity modulus and modulus of shearing |
CN109270169A (en) * | 2018-10-19 | 2019-01-25 | 中国工程物理研究院总体工程研究所 | A kind of fibre reinforced composites elastic parameter rapid assay methods and system |
CN112444563A (en) * | 2020-11-25 | 2021-03-05 | 大连理工大学 | Transverse isotropic material damage evaluation method based on ultrasonic back reflection |
CN112444563B (en) * | 2020-11-25 | 2022-05-10 | 大连理工大学 | A method for damage assessment of transversely isotropic materials based on ultrasonic back reflection |
CN113790954A (en) * | 2021-08-20 | 2021-12-14 | 河北光兴半导体技术有限公司 | Thin glass elastic modulus testing method and device |
CN113790954B (en) * | 2021-08-20 | 2024-07-19 | 河北光兴半导体技术有限公司 | Method and device for testing elastic modulus of thin glass |
CN116312898A (en) * | 2023-05-11 | 2023-06-23 | 中国电子科技集团公司信息科学研究院 | Method and device for identifying mechanical parameters of composite material and training identification model of composite material |
CN116312898B (en) * | 2023-05-11 | 2023-08-25 | 中国电子科技集团公司信息科学研究院 | Method and device for identifying mechanical parameters of composite material and training identification model of composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106596723A (en) | Acoustic detection method of structural mechanical parameters of multilayer composite material | |
CN101285796B (en) | Acoustic emission real-time detection method for thermal barrier coating damage and failure process | |
US8494790B2 (en) | System and method for detecting structural damage | |
Gillich et al. | Method to enhance the frequency readability for detecting incipient structural damage | |
CN103049608B (en) | Based on load identification system and the method for binding side strain extreme coordinates | |
Soleimanpour et al. | Scattering of the fundamental anti-symmetric Lamb wave at through-thickness notches in isotropic plates | |
CN108038285B (en) | Method for material type selection and computer readable storage medium | |
CN109933871A (en) | Method and device for impact load identification of composite structures based on iteratively weighted sparse | |
CN106596100B (en) | A kind of four-step machine tool chief axis elasticity modulus lossless detection method and device | |
CN106770648A (en) | A kind of non-destructive measuring method of composite material rigidity coefficient | |
CN112529842A (en) | Multi-excitation fusion plate structure damage identification method based on wavelet packet energy | |
CN106767475B (en) | A Method for Diagnosing Hole Edge Cracks Based on Spectral Image Analysis of Transversely Patched Fiber Bragg Gratings | |
CN105606463A (en) | Comprehensive structural surface shearing strength evaluation method for rock mass based on mean value function | |
CN113933392A (en) | A damage localization imaging method based on ultrasonic guided wave feature fusion probability reconstruction | |
CN106769560A (en) | A kind of I-beam mechanics parameter lossless detection method based on vibration | |
CN102539537B (en) | Frame structure damage method based on additional virtual quality | |
CN115659737A (en) | A Damage Identification Method for Beam Members Based on Curvature Mode and Discrete Wavelet Transform | |
Providakis et al. | T-WiEYE: An early-age concrete strength development monitoring and miniaturized wireless impedance sensing system | |
CN107228797B (en) | Shock location method and device | |
CN106093197A (en) | Large scale wood-based plate elastic modelling quantity and the lossless detection method of In-plane Shear Modulus | |
Zhang et al. | Structural damage detection based on virtual element boundary measurement | |
CN106769561B (en) | A non-destructive testing method for mechanical parameters of hollow drive shaft under temperature load | |
CN107702990A (en) | A kind of sound emission extensometer and its test method | |
CN112966346B (en) | Frequency response function uncertainty analysis method based on equivalent frequency dispersion | |
US6575036B1 (en) | Method for in-situ nondestructive measurement of Young's modulus of plate structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |