CN106575918A - 具有低输入及低输出纹波的使用降压控制器的浮动输出电压升压‑降压调节器 - Google Patents

具有低输入及低输出纹波的使用降压控制器的浮动输出电压升压‑降压调节器 Download PDF

Info

Publication number
CN106575918A
CN106575918A CN201580043093.9A CN201580043093A CN106575918A CN 106575918 A CN106575918 A CN 106575918A CN 201580043093 A CN201580043093 A CN 201580043093A CN 106575918 A CN106575918 A CN 106575918A
Authority
CN
China
Prior art keywords
inductor
switch
coupled
load
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580043093.9A
Other languages
English (en)
Other versions
CN106575918B (zh
Inventor
基思·D·索露莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Linear Technology LLC
Original Assignee
Linear Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linear Technology LLC filed Critical Linear Technology LLC
Publication of CN106575918A publication Critical patent/CN106575918A/zh
Application granted granted Critical
Publication of CN106575918B publication Critical patent/CN106575918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

转换器产生跨越例如LED串等浮动负载的输出电压差分。所述转换器从电力供应器接收输入电压Vin,且所述浮动输出电压差分可大于或小于Vin。所述转换器在升压模式类型配置中使用第一开关及第一电感器,且在降压模式类型配置中使用第二开关及第二电感器。所述电感器具有共用节点。所述第一电感器具有耦合到接地的另一端,且所述第二电感器的另一端耦合到所述负载。两个电感器取决于所述开关的导通性而一起进行充电及放电。所述负载的一端将为大约零伏特,而另一端将处于负电压VEE。所述两个电感器使输入电流/电压纹波及输出电流/电压纹波平滑,从而导致低EMI。

Description

具有低输入及低输出纹波的使用降压控制器的浮动输出电压 升压-降压调节器
相关申请案交叉参考
本申请案主张由基斯D.塞卢莎(Keith D.Szolusha)于2014年8月26日提出申请的美国临时申请案第62/042,094号的优先权,所述美国临时申请案受让于本发明受让人且以引用的方式并入。
技术领域
本发明涉及电压或电流调节器,且特定来说,涉及输出跨越例如发光二极管(LED)串等浮动负载的电压的调节器配置,其中跨越负载的电压可大于或小于输入电压,且其中第一电感器使输入电流或输入电压纹波平滑且其中第二电感器使输出电流或输出电压纹波平滑以实现低EMI。
背景技术
使用DC/DC切换模式电力供应转换器来驱动串联LED串是常见的。LED串的一端可连接到参考源(例如,接地或输入电压),或所述串的两端可为浮动的,这是因为仅穿过所述串的经调节电流与光输出相关。转换器可为步升(升压)或步降(降压)转换器。存在使用视需要使输入电压升压或降压的四个开关的其它类型的转换器(降压-升压)。额外开关增加成本及大小,且降压模式与升压模式之间的转变可形成噪声。此类降压-升压转换器既不具有低输入电压纹波又不具有低输出电压纹波,因此产生高于期望的EMI。
需要用于例如LED串等浮动负载的高效转换器,其中仅需要两个开关,且其中配置固有地使输入电流纹波及输出电流纹波两者平滑以实现低EMI。转换器应在调节LED串电流时输出跨越浮动负载的可大于或小于输入电压的电压。归因于由降压控制器提供的不可用于升压控制器或降压-升压控制器的特征,因此开关控制器可为现成降压控制器IC。使用此现成降压控制器还将大大减小转换器的实施方案的成本。
发明内容
针对驱动LED串,不必将LED的任一侧连接到参考电压(例如接地或输入电压电力供应器),这是因为仅穿过LED的电流(及跨越LED的所得电压)控制LED的亮度。其它类型的浮动负载包含电池充电器及电机。本文中所描述的实例使用LED,但可使用任何浮动负载。
在本发明的一个实施例中,现成常规降压控制器IC以新颖方式配置以产生跨越LED串的任何电压,其中施加到LED串的上电压及下电压两者均由控制器控制以致使经调节电流流动穿过LED。跨越LED串的电压差分可大于或小于输入电压。针对同步配置仅需要两个切换晶体管,或针对异步配置需要一个开关及一个二极管。配置使用两个电感器或单个经耦合电感器:一个电感器用于输入纹波平滑化且另一电感器用于输出纹波平滑化,因此存在归因于高频率切换(例如,100KHz到5MHz)而产生的极小EMI。
在优选实施例中,高侧MOSFET及低侧MOSFET(高频率切换开关)耦合于输入电压Vin与由转换器产生的负电压VEE之间。VEE耦合到LED串的第一端(阴极端)。第一电感器具有耦合到MOSFET之间的节点的第一端且具有经由低值第一感测电阻器耦合到接地的第二端。第二电感器连接于节点与LED串的第二端(阳极端)之间,其中转换器的操作导致LED串的第二端处的电压为大约0伏特,因此跨越LED串的电压为大约VEE。
转换器产生穿过LED串的目标(经调节)电流,此导致所述串的一端处的特定电压VEE。脉冲宽度调制(PWM)MOSFET及第二感测电阻器串联耦合于LED串与VEE之间。降压控制器输出相对低频率(例如,100Hz)信号以用于施加到PWM MOSFET以控制LED的所感知亮度。当PWM MOSFET接通时,LED电流经由第二感测电阻器馈送回到控制器。控制器调节高频率高侧MOSFET工作循环,使得LED电流匹配由用户设定的目标电流。
为调节输出电流,控制器经由第一感测电阻器控制在高侧MOSFET接通时穿过所述高侧MOSFET的峰值瞬时电流,且第一电感器使来自高侧MOSFET的切换噪声平滑,因此存在注入于电力供应总线上的极小纹波,从而导致低EMI。此类型的控制器称作峰值电流模式控制器。当高侧MOSFET接通时,第一电感器及第二电感器两者充电。
当高侧MOSFET关断且低侧MOSFET接通时,第一电感器及第二电感器放电,从而导致经调节LED电流产生。通过第二电感器及输出电容器而使穿过LED串的电流平滑,因此存在极小输出电压纹波及低EMI。输出电容器针对LED应用为任选的。
针对异步配置可用续流(或钳位)二极管来替换低侧MOSFET,但效率将稍微减小。
在替代实施例中,使用两组开关,其中每一组开关由单个栅极信号控制,使得此替代实施例能够使用常规降压控制器IC。
许多现成降压控制器为适合的。
附图说明
图1图解说明用目标电流驱动浮动LED串的使用两个切换晶体管的升压模式-后接降压转换器的新颖配置。
图2图解说明当使用特定降压控制器IC时的图1的配置。可替代地使用许多其它现成降压控制器。
图3图解说明图2的降压控制器的内部结构。
图4图解说明用目标电流驱动浮动LED串的使用两组切换晶体管的升压模式-后接降压模式转换器的新颖配置。
具体实施方式
图1图解说明根据本发明的一个实施例的电流调节器10的实施例。调节器控制器12可为连接于新颖配置中的常规降压控制器IC。控制器12可具有与本发明不相关但为系统设计者所期望的各种特征。
电力供应器PS提供相对于接地的输入电压Vin。输入电容器Cin减小耦合到电力供应总线的切换噪声。LED串16跨越电流调节器10的浮动输出端子连接。
控制器12含有可形成大于100kHz的切换频率的振荡器。
在稳态操作期间,可为MOSFET或其它适合晶体管开关的开关S1在切换循环开始时闭合以跨越电感器L1耦合Vin。接着用斜变电流对电感器L1进行充电。由于由电感器L1传导的电流平滑地斜变,因此极小纹波耦合到电力供应总线。因此,使EMI最小化。开关S1的操作类似于升压操作模式。
穿过开关S1及电感器L1的斜变电流由控制器12中的监测跨越低值感测电阻器Rs1的电压的差分放大器检测。此瞬时电流是第一反馈信号。可使用其它类型的瞬时电流检测,例如跨越开关S1的电压降。感测电阻器Rs1可与电感器L1串联或其可与开关S1串联。
当穿过开关S1的瞬时电流达到由穿过LED串16的目标电流确定的阈值(有时称为控制信号)时,控制器12切断开关S1。当PWM MOSFET 18接通且电流流动穿过LED及低值感测电阻器Rs2时,控制器12中的差异放大器测量跨越电阻器Rs2的电压以感测输出电流(ILED)。此输出电流(ILED)信号是第二反馈信号。控制器12中的误差放大器确定对应于实际输出电流的第一信号与对应于通常由用户设定的目标电流的第二信号之间的差。反馈环路产生阈值,所述阈值具有对应于使输出电流保持等于目标电流所需要的开关S1的工作循环及峰值电流的量值。
当开关S1闭合时,Vin还施加到第二电感器L2的左端子,且也用斜变(ramping)电流对电感器L2进行充电。
当穿过电感器L1(或开关S1)的斜变电流与阈值交叉时,控制器12中的PWM比较器切断开关S1且接通开关S2。当开关S1关断时,电感器L1的右侧端子变为负的,且电感器L2左侧变为负的。此负电压被施加到输出电容器Cout的顶部端子(经由开关S2)。通过穿过开关S2的斜降电流而对电感器L1及L2进行放电。当主振荡器确定下一切换循环应开始时,开关S2关断且开关S1重新接通。
电感器L2的右侧处的电压为大约0伏特,这是因为针对每一循环通过开关S1及S2而对电感器L2同等地进行充电及放电以便使系统保持稳定。因此,跨越输出电容器Cout且跨越LED串16的电压为大约VEE。当在PWM MOSFET 18接通的情况下目标(经调节)电流流动穿过LED串16时,产生VEE。
临时电容器Cint阻断Vin与VEE之间的DC电流且进一步对切换噪声进行滤波。电容器Cint提供短路径以供高dI/dt‘热环路(hot-loop)’电流流动以阻止高dI/dt电流到达输入或输出电容器,从而使高频率EMI保持较低。
在下一切换循环开始时,开关S1再次接通且开关S2关断。
可由续流(或钳位)二极管(例如肖特基(Schottky)二极管)替换开关S2(以及图4中的开关S2’);然而,将接着发生小的二极管压降,从而减小效率。在任一配置中,开关S2/S2’及二极管充当整流器。
如所见,转换器10产生浮动负电压VEE及大约0伏特的浮动电压以实现穿过LED串16的目标电流ILED。
基本上,开关S1及S2的操作一起致使转换器操作为产生可大于或小于Vin的浮动电压差分的升压模式-后接降压转换器。控制器12使用“电流模式”来调节穿过开关S1的峰值电流以实现穿过LED的目标电流。归因于电感器L1及L2以及电容器Cin、Cint及Cout,因此存在极小输入及输出纹波。
电感器L1及L2可为相对小的,这是因为在充电及放电循环期间采用两个电感。因此,在输入及输出处减小EMI而不存在电感器的总体大小的任何增加。虽然输入电容器及输出电容器可对切换频率噪声进行滤波,但电感器L1及L2减小此切换频率噪声的量值,使得电容器能够为较小的。
在其中电感器L1及L2为经耦合电感器的实施例中,电感器的极性由图1中的圆点指定。
在另一实施例中,使用穿过开关S2或电感器L1的谷值电流而非峰值电流来触发开关S1及S2的切换。调节将为相同的。
图2图解说明使用LT3744降压控制器IC(来自线性技术公司(Linear TechnologyCorporation))作为控制器12的图1的配置。可使用感测穿过负载的电流以用于调节输出电流的许多其它类型的市售“电流模式”降压控制器(尤其是用于驱动LED的“电流模式”降压控制器)。
在图2的实例中,开关S1为N沟道MOSFET M1,且开关S2为N沟道MOSFET M2。用于过电压保护、过电流保护、产生所需栅极电压、控制振荡器频率、软启动及端接封装引线的各种组件展示于图2中但不与本发明相关。
控制器12封装具有用于接收外部产生的低频率PWM信号以用于控制PWM MOSFET18的输入端子PWM1。当PWM MOSFET 18接通时,感测穿过感测电阻器Rs2的电流。用于PWMMOSFET 18的低频率PWM信号可为来自输入PWM信号的经电平移位信号且所述低频率PWM信号可指LED-或LED+以便使LED串接通及关断。
图3是图2的LT3744降压控制器IC内部的电路的示意图。对电路及其连接的标示将控制器的操作完全传达给所属领域的技术人员。控制器中所使用的相关电路可为常规的。
PWM输出驱动器30将所需栅极电压供应到PWM MOSFET 18(图2)。LED电流感测放大器32将阈值输出到PWM比较器34,所述阈值设定致使到LED电流感测放大器32中的输入相等所需要的所需工作循环。穿过感测电阻器Rs1(图2)的瞬时斜变电流由电感器电流感测放大器36感测,且将所述电感器电流感测放大器的输出以及振荡器38信号施加到PWM比较器34的另一输入。当斜变电流信号与由LED电流感测放大器32产生的阈值交叉时,PWM比较器34的输出使开关S1关断。振荡器38接着在下一切换循环起始时将开关S1重新接通。目标电流是由用户利用感测电阻器Rs2而设定。目标电流可进一步由用户利用外部电阻器分压器(图2)或连接到CTRL1端子的电压而调整。本发明中所使用的LT3744的方面可为常规的。降压控制器提供为用户所期望但不可用于常规升压-降压调节器的许多特征。
在一个实例中,LED 16可为需要约12伏特来接通的三个串联连接的LED。因此,VEE必须为至少-12伏特。LED负载可为不需要连接到接地的任何其它负载。
虽然已将转换器10描述为调节穿过负载的电流(经由感测电阻器Rs2),但用于产生工作循环控制信号的反馈信号可对应于跨越负载的电压,因此转换器调节跨越负载的电压。电压反馈可为分压电压,其中降压控制器中的误差放大器接收分压电压及参考电压,且所述控制器控制工作循环以匹配到误差放大器中的输入。
虽然图1及2的配置归因于对仅两个(且在使用续流二极管来替代开关S2的情况下仅一个)开关的使用而为优选的,但也可用四个开关实施升压模式-后接降压电路(如图4中所展示),同时由于两个电感器L1及L2而实现低EMI的相同总体结果。
在图4中,开关S1及S1’两者同时并以相同方式切换,且开关S2及S2’两者同时并以相同方式切换。在其它方面操作与图1及2的操作相同。在相同目标电流下,工作循环将与针对图1及2的工作循环相同。在图4中,开关S1及S2执行升压模式操作,且开关S1’及S2’执行降压操作。可以与之前相同的方式用二极管来替换S2及S2’。
所有实施例中的输出电容器Cout均为任选的(尤其针对LED驱动器),但可对于在特定应用中使输出纹波进一步平滑来说为期望的。通过LED的小的三角形电感器纹波对观察者不可见,且不具有输出电容器允许用户在不同数目个LED之间迅速切换而不存在显著过冲(overshoot)或下冲(undershoot)。
在另一实施例中,整个电路(只有大的电容器及电感器除外)可形成为单个IC,因此不使用单独降压控制器IC。
尽管已展示及描述了本发明的特定实施例,但所属领域的技术人员将明了,可在本发明的较广泛方面中在不背离本发明的情况下做出改变及修改,且因此,所附权利要求书将所有此类改变及修改囊括于其范围内,如归属于本发明的真正精神及范围内一样。

Claims (14)

1.一种电路,其具有经耦合以驱动浮动负载的转换器,所述电路包括:
输入端子,其用于接收输入电压Vin;
第一电感器,其具有用于耦合到接地的第一端;
第一开关,其耦合到所述第一电感器的第二端以用于在所述第一开关处于接通状态中时将所述第二端耦合到所述输入电压以对所述第一电感器进行充电;
整流器,其耦合到所述第一电感器的所述第二端以用于在所述第一开关处于关断状态中时将所述第一电感器的所述第二端电耦合到所述负载的第一端子,其中所述转换器在稳态操作期间在所述第一端子处产生电压VEE;
第一电容器,其耦合于所述输入电压与所述负载的所述第一端子之间,其中跨越所述第一电容器的电压等于Vin-VEE,其中VEE是所述负载的所述第一端子处的相对于接地的负电压;
第二电感器,其第一端至少在所述第一开关处于其接通状态中时的时间期间耦合到所述第一电感器的所述第二端,其中所述负载耦合于所述第二电感器的第二端与所述第一电容器之间;及
控制器,其经耦合以接收对应于在所述第一开关接通时穿过所述第一电感器的瞬时电流的第一反馈信号,且所述控制器经耦合以接收对应于负载电流或负载电压的第二反馈信号,
其中所述控制器至少控制所述第一开关以调节穿过所述第一电感器的峰值电流,从而调节所述负载电流或负载电压。
2.根据权利要求1所述的电路,其中所述浮动负载是发光二极管LED负载。
3.根据权利要求2所述的电路,其中所述LED负载进一步包括与LED串串联的PWM调光开关,使得所述第二电容器跨越所述PWM调光开关及所述LED串,其中所述PWM调光开关的工作循环用于控制所述LED的所感知亮度。
4.根据权利要求1所述的电路,其中所述第一电感器的所述第一端经由用于检测穿过所述第一电感器的所述瞬时电流的感测电阻器而耦合到接地。
5.根据权利要求1所述的电路,其中所述第二电感器的所述第一端直接耦合到所述第一电感器的所述第二端。
6.根据权利要求1所述的电路,其中所述整流器包括由所述控制器控制以具有与所述第一开关的状态相反的状态的第二开关。
7.根据权利要求6所述的电路,其中所述第二电感器的所述第一端经由所述第一开关及第三开关而耦合到所述第一电感器的所述第二端,其中所述第三开关串联于所述第二电感器的所述第一端与所述输入电压之间。
8.根据权利要求1所述的电路,其中当所述第一开关处于其接通状态中时,所述第二电感器的所述第一端耦合到所述输入电压。
9.根据权利要求1所述的电路,其中所述负载包括感测电阻器,所述感测电阻器与所述负载串联连接以用于检测穿过所述负载的电流来作为所述第二反馈信号。
10.根据权利要求1所述的电路,其中所述转换器产生经调节电流。
11.根据权利要求1所述的电路,其中所述转换器产生经调节电压。
12.根据权利要求1所述的电路,其中所述控制器是封装式降压控制器集成电路。
13.根据权利要求1所述的电路,其中所述第一开关及所述第二开关是N沟道MOSFET。
14.根据权利要求1所述的电路,其进一步包括第二电容器,所述第二电容器耦合于所述第二电感器的所述第二端与VEE之间以便跨越所述负载。
CN201580043093.9A 2014-08-26 2015-05-07 具有低输入及低输出纹波的使用降压控制器的浮动输出电压升压-降压调节器 Active CN106575918B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462042094P 2014-08-26 2014-08-26
US62/042,094 2014-08-26
US14/638,868 2015-03-04
US14/638,868 US9178427B1 (en) 2014-08-26 2015-03-04 Floating output voltage boost-buck regulator using a buck controller with low input and low output ripple
PCT/US2015/029684 WO2016032579A1 (en) 2014-08-26 2015-05-07 Floating output voltage boost-buck regulator using a buck controller with low input and low output ripple

Publications (2)

Publication Number Publication Date
CN106575918A true CN106575918A (zh) 2017-04-19
CN106575918B CN106575918B (zh) 2018-12-28

Family

ID=54352828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580043093.9A Active CN106575918B (zh) 2014-08-26 2015-05-07 具有低输入及低输出纹波的使用降压控制器的浮动输出电压升压-降压调节器

Country Status (5)

Country Link
US (1) US9178427B1 (zh)
EP (1) EP3186877B1 (zh)
KR (1) KR101905343B1 (zh)
CN (1) CN106575918B (zh)
WO (1) WO2016032579A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511193A (zh) * 2017-09-14 2019-03-22 捷微科技股份有限公司 致能直流负载的精密控制装置及具有该控制装置的组件
CN112040595A (zh) * 2019-05-17 2020-12-04 马克西姆综合产品公司 Led驱动器系统和方法
CN113098245A (zh) * 2021-04-08 2021-07-09 广东海洋大学 一种实现输入输出低纹波的升压变换电路及变换器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276808B1 (en) 2016-07-26 2018-12-26 NXP USA, Inc. Accurate non-isolated high voltage dc-dc feedback
US10201052B1 (en) * 2017-09-22 2019-02-05 Linear Technology Holding, LLC LED dimming
US10123384B1 (en) * 2017-09-22 2018-11-06 Linear Technology Holding, LLC LED dimming
US10136488B1 (en) 2017-10-05 2018-11-20 Linear Technology Holding, LLC LED dimming
JP2021005959A (ja) * 2019-06-26 2021-01-14 ファナック株式会社 入力直流電圧を出力直流電圧に変換するスイッチングレギュレータ回路
US11716022B2 (en) * 2021-03-16 2023-08-01 Apple Inc. Hybrid buck-boost power converter with embedded charge pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274133A (en) * 1979-06-20 1981-06-16 California Institute Of Technology DC-to-DC Converter having reduced ripple without need for adjustments
US4672303A (en) * 1986-08-28 1987-06-09 International Business Machines Corporation Inductor current control circuit
US5442534A (en) * 1993-02-23 1995-08-15 California Institute Of Technology Isolated multiple output Cuk converter with primary input voltage regulation feedback loop decoupled from secondary load regulation loops
US20040100149A1 (en) * 2002-11-22 2004-05-27 Jih-Sheng Lai Topologies for multiple energy sources
US20040164557A1 (en) * 2003-02-21 2004-08-26 Richard West Monopolar dc to bipolar to ac converter
US20080037305A1 (en) * 2003-02-21 2008-02-14 Distributed Power, Inc. Monopolar dc to bipolar dc to ac converter
CN103560666A (zh) * 2013-11-14 2014-02-05 南京集能易新能源技术有限公司 具有低纹波的四开关升降压变换器及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538534B2 (en) 2004-11-29 2009-05-26 Supentex, Inc. Method and apparatus for controlling output current of a cascaded DC/DC converter
US8125205B2 (en) * 2006-08-31 2012-02-28 Flextronics International Usa, Inc. Power converter employing regulators with a coupled inductor
US8569963B2 (en) * 2011-06-17 2013-10-29 Intersil Americas Inc. Cascade boost and inverting buck converter with independent control
US9172304B2 (en) 2012-02-27 2015-10-27 Raytheon Company Constant input current filter using high-frequency switching for power supplies and related system and method
US20140117878A1 (en) * 2012-05-15 2014-05-01 Exar Corporation Merged-stage high efficiency high power factor hb-led driver without electrolytic capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274133A (en) * 1979-06-20 1981-06-16 California Institute Of Technology DC-to-DC Converter having reduced ripple without need for adjustments
US4672303A (en) * 1986-08-28 1987-06-09 International Business Machines Corporation Inductor current control circuit
US5442534A (en) * 1993-02-23 1995-08-15 California Institute Of Technology Isolated multiple output Cuk converter with primary input voltage regulation feedback loop decoupled from secondary load regulation loops
US20040100149A1 (en) * 2002-11-22 2004-05-27 Jih-Sheng Lai Topologies for multiple energy sources
US20040164557A1 (en) * 2003-02-21 2004-08-26 Richard West Monopolar dc to bipolar to ac converter
US20080037305A1 (en) * 2003-02-21 2008-02-14 Distributed Power, Inc. Monopolar dc to bipolar dc to ac converter
CN103560666A (zh) * 2013-11-14 2014-02-05 南京集能易新能源技术有限公司 具有低纹波的四开关升降压变换器及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511193A (zh) * 2017-09-14 2019-03-22 捷微科技股份有限公司 致能直流负载的精密控制装置及具有该控制装置的组件
CN112040595A (zh) * 2019-05-17 2020-12-04 马克西姆综合产品公司 Led驱动器系统和方法
CN112040595B (zh) * 2019-05-17 2023-10-24 马克西姆综合产品公司 Led驱动器系统和方法
CN113098245A (zh) * 2021-04-08 2021-07-09 广东海洋大学 一种实现输入输出低纹波的升压变换电路及变换器

Also Published As

Publication number Publication date
EP3186877B1 (en) 2019-07-03
KR20170045313A (ko) 2017-04-26
US9178427B1 (en) 2015-11-03
CN106575918B (zh) 2018-12-28
WO2016032579A1 (en) 2016-03-03
EP3186877A1 (en) 2017-07-05
KR101905343B1 (ko) 2018-10-05

Similar Documents

Publication Publication Date Title
CN106575918A (zh) 具有低输入及低输出纹波的使用降压控制器的浮动输出电压升压‑降压调节器
CN106165541B (zh) 使用共用开关控制信号的用于led驱动器的升压-浮动降压模式转换器
US8339055B2 (en) Inrush current limiter for an LED driver
US8188682B2 (en) High current fast rise and fall time LED driver
EP2449665B1 (en) Low cost power supply circuit and method
US8400123B2 (en) Voltage converter and voltage conversion method
CN103477295B (zh) 电流调节装置
CN102549647B (zh) 能够控制恒定发光二极管的电流的发光二极管驱动电路
EP3047565B1 (en) Compact driver, notably for a light emitting diode, having an integrated dual output
TW201444249A (zh) 具有電流調控輸出之功率因數修正電源轉換器
KR20100023770A (ko) 적어도 하나의 반도체 광원을 동작시키기 위한 회로 어레인지먼트
US9226353B2 (en) Lighting device for semiconductor light emitting elements and illumination apparatus including same
US9078317B1 (en) Floating output voltage boost regulator driving LEDs using a buck controller
US9992826B1 (en) Dual mode constant current LED driver
CN206313660U (zh) 开关模式电源系统
US9369050B1 (en) Indirect current sensing method for a constant current flyback converter
US20110181266A1 (en) Switching power supply circuit
WO2014186776A1 (en) Charge pump-based circuitry for bjt power supply
JP6791486B2 (ja) 発光素子駆動装置及びその駆動方法
WO2011050421A1 (en) Improved method and apparatus for dimming a lighting device
CN113273312A (zh) 用于生成dc电压供应的电路以及使用该dc电压供应电路的驱动器电路
CN106601193B (zh) 一种发光二极管背光驱动电路
GB2520963A (en) Power supply circuit
JP5405375B2 (ja) 定電流電源装置
KR20200063816A (ko) 직류-직류 컨버터 및 이를 포함하는 광원 구동 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: LINEAR TECHNOLOGY Corp.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20220104

Address after: Limerick

Patentee after: ANALOG DEVICES INTERNATIONAL UNLIMITED Co.

Address before: California, USA

Patentee before: LINEAR TECHNOLOGY Corp.

TR01 Transfer of patent right