CN106568773B - A kind of manganese ion colorimetric detection kit and detection method thereof - Google Patents
A kind of manganese ion colorimetric detection kit and detection method thereof Download PDFInfo
- Publication number
- CN106568773B CN106568773B CN201611031910.1A CN201611031910A CN106568773B CN 106568773 B CN106568773 B CN 106568773B CN 201611031910 A CN201611031910 A CN 201611031910A CN 106568773 B CN106568773 B CN 106568773B
- Authority
- CN
- China
- Prior art keywords
- solution
- concentration
- manganese
- ctab
- colorimetric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001437 manganese ion Inorganic materials 0.000 title claims abstract description 45
- 238000001514 detection method Methods 0.000 title claims abstract description 28
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000000243 solution Substances 0.000 claims abstract description 87
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 34
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 claims abstract description 20
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 20
- 239000007974 sodium acetate buffer Substances 0.000 claims abstract description 17
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 claims abstract description 17
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000002073 nanorod Substances 0.000 claims abstract description 7
- XQSBLCWFZRTIEO-UHFFFAOYSA-N hexadecan-1-amine;hydrobromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[NH3+] XQSBLCWFZRTIEO-UHFFFAOYSA-N 0.000 claims description 22
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 18
- 239000011572 manganese Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000008901 benefit Effects 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 238000004737 colorimetric analysis Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011897 real-time detection Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000416536 Euproctis pseudoconspersa Species 0.000 description 1
- 229910000616 Ferromanganese Inorganic materials 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 208000005903 Manganese Poisoning Diseases 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 208000007443 Neurasthenia Diseases 0.000 description 1
- 206010060860 Neurological symptom Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- MNZHBXZOPHQGMD-UHFFFAOYSA-N acetic acid;azane Chemical compound N.CC(O)=O.CC(O)=O.CC(O)=O MNZHBXZOPHQGMD-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 231100000704 bioconcentration Toxicity 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及环境和生物分析技术领域,具体的说是一种锰离子比色法检测试剂盒及其检测方法。The invention relates to the technical field of environmental and biological analysis, in particular to a manganese ion colorimetric detection kit and a detection method thereof.
背景技术Background technique
锰是人体必需的微量元素之一,是在许多酶的组成中起着重要作用,同时也是正常骨结构的必需成分。锰缺乏可以引发神经衰弱综合症,甚至导致胰岛素和合成和分泌的降低;而锰过量,则可能引起中毒现象,职业性锰中毒是由于长期吸入含锰深度较高的锰烟及锰尘导致,尤其是锰铁冶炼、电焊条的制造与电焊作业以及锰矿石的开采、粉碎或干电池的生产等作业的工人,长期接触锰则可引起类似帕金森综合征或Wilson病等神经症状。因而,对环境及生物样品中的锰离子的检测是非常重要的。Manganese is one of the essential trace elements in the human body, plays an important role in the composition of many enzymes, and is also an essential component of normal bone structure. Manganese deficiency can cause neurasthenia syndrome, and even lead to the reduction of insulin and synthesis and secretion; while excessive manganese may cause poisoning. Occupational manganese poisoning is caused by long-term inhalation of manganese fume and manganese dust with high manganese content. Especially for workers in ferromanganese smelting, electrode manufacturing and welding, manganese ore mining, crushing or dry battery production, long-term exposure to manganese can cause neurological symptoms such as Parkinson's syndrome or Wilson's disease. Therefore, the detection of manganese ions in environmental and biological samples is very important.
在水体环境中,由于锰离子不能够分解,在生物体内具有生物富集和生物放大效应,从而使得出于食物链越高的生物,其体内锰离子含量也成倍的增加,对其造成的危害也越大。作为食物链顶端的人类,当食用这些含高浓度的重金属离子水体生物时,受到的危害也是最大的。因而,对环境及水体样品中的锰离子的检测是非常有必要的。In the water environment, because manganese ions cannot be decomposed, they have bioconcentration and biomagnification effects in organisms, so that the higher the food chain, the higher the manganese ion content in the body. also bigger. As humans at the top of the food chain, when they eat these water organisms with high concentrations of heavy metal ions, they are also the most harmed. Therefore, the detection of manganese ions in environmental and water samples is very necessary.
目前,对锰离子的检测手段主要有原子吸收法、催化光度法、荧光分光光度法、化学发光法、电感耦合等离子体质谱等方法。然而这些技术需要价格昂贵的大型仪器,或者检测手段过于复杂,不能实现现场检测和技术推广。相对以上检测技术,比色分析法优势在于其肉眼易于观测,非常适合于现场实时检测,操作简单且价格便宜。金纳米粒子因为其表面等离子体共振吸收而具有非常大的摩尔消光系数,因而其运用于比色分析中具有明显的优势。At present, the detection methods of manganese ions mainly include atomic absorption method, catalytic photometry, fluorescence spectrophotometry, chemiluminescence method, inductively coupled plasma mass spectrometry and other methods. However, these technologies require expensive large-scale instruments, or the detection methods are too complicated to realize on-site detection and technology promotion. Compared with the above detection techniques, the advantage of colorimetric analysis is that it is easy to observe with the naked eye, which is very suitable for on-site real-time detection, simple operation and low price. Gold nanoparticles have a very large molar extinction coefficient due to their surface plasmon resonance absorption, so they have obvious advantages in colorimetric analysis.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种锰离子比色法检测试剂盒及其检测方法。The purpose of the present invention is to provide a manganese ion colorimetric detection kit and a detection method thereof.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:
一种锰离子比色法检测试剂盒,试剂盒为醋酸-醋酸钠缓冲溶液、高碘酸钾溶液、氨三乙酸溶液、含十六烷基三甲基溴化铵(CTAB)的金纳米棒溶液、标准比色卡C和比色管;A manganese ion colorimetric detection kit, the kit is an acetic acid-sodium acetate buffer solution, a potassium periodate solution, a nitrilotriacetic acid solution, and a gold nanorod containing cetyltrimethylammonium bromide (CTAB). Solution, standard colorimetric card C and colorimetric tube;
所述含十六烷基三甲基溴化铵(CTAB)的金纳米棒溶液中,纳米棒的浓度为0.5-10nM,CTAB浓度为0.01-100mM。In the gold nanorod solution containing cetyltrimethylammonium bromide (CTAB), the concentration of nanorods is 0.5-10 nM, and the concentration of CTAB is 0.01-100 mM.
所述醋酸-醋酸钠缓冲溶液,pH为3.6-5.8,溶液浓度为0.01-1M;The acetic acid-sodium acetate buffer solution has a pH of 3.6-5.8 and a solution concentration of 0.01-1M;
所述高碘酸钾溶液的浓度为0.01-1M;The concentration of the potassium periodate solution is 0.01-1M;
所述氨三乙酸溶液的浓度为0.01-1M。The concentration of the nitrilotriacetic acid solution is 0.01-1M.
优选所述试剂盒中醋酸-醋酸钠缓冲液的pH为5.4,浓度为50mM;含十六烷基溴化铵(CTAB)的金纳米棒溶液中,金纳米棒浓度为2.3nM、长径比为2∶1,含CTAB的浓度为0.1M;高碘酸钾溶液的浓度为0.02M;氨三乙酸溶液的浓度为0.01M。Preferably, the pH of the acetic acid-sodium acetate buffer in the kit is 5.4, and the concentration is 50 mM; in the gold nanorod solution containing cetyl ammonium bromide (CTAB), the gold nanorod concentration is 2.3 nM, and the aspect ratio is 2.3 nM. The concentration of CTAB is 0.1M; the concentration of potassium periodate solution is 0.02M; the concentration of nitrilotriacetic acid solution is 0.01M.
所述标准比色卡C为不同浓度锰标准色阶溶液,不同浓度分别为0nM,5nM,10nM,15nM,20nM,25nM,30nM,40nM,50nM,100nM。The standard colorimetric card C is a manganese standard color scale solution with different concentrations, and the different concentrations are 0nM, 5nM, 10nM, 15nM, 20nM, 25nM, 30nM, 40nM, 50nM, and 100nM respectively.
一种锰离子比色法检测试剂盒检测锰离子的方法,将醋酸-醋酸钠缓冲溶液加进比色管中,再加入待测样品摇晃混匀,混匀后再加入含CTAB的金纳米棒溶液,摇匀;再依次加入高碘酸钾溶液、氨三乙酸溶液摇晃混匀;而后于20-40℃温度下孵育10-30分钟,进行显色反应,通过肉眼或紫外可见光谱仪观察颜色,与标准比色卡C对比确定锰离子含量。A method for detecting manganese ions by a manganese ion colorimetric detection kit comprises adding an acetic acid-sodium acetate buffer solution into a colorimetric tube, then adding a sample to be tested, shaking and mixing, and then adding a gold nanorod containing CTAB after mixing. solution, shake well; then add potassium periodate solution and nitrilotriacetic acid solution in turn, shake and mix well; then incubate at 20-40 ℃ for 10-30 minutes, carry out color reaction, observe the color by naked eye or UV-visible spectrometer, Determine the manganese ion content by comparing with the standard color chart C.
所述含十六烷基三甲基溴化铵(CTAB)的金纳米棒溶液中,纳米棒的浓度为0.5-10nM,CTAB浓度为0.01-100mM。In the gold nanorod solution containing cetyltrimethylammonium bromide (CTAB), the concentration of nanorods is 0.5-10 nM, and the concentration of CTAB is 0.01-100 mM.
所述醋酸-醋酸钠缓冲溶液,pH为3.6-5.8,溶液浓度为0.01-1M;The acetic acid-sodium acetate buffer solution has a pH of 3.6-5.8 and a solution concentration of 0.01-1M;
所述高碘酸钾溶液的浓度为0.01-1M;The concentration of the potassium periodate solution is 0.01-1M;
所述氨三乙酸溶液的浓度为0.01-1M。The concentration of the nitrilotriacetic acid solution is 0.01-1M.
所述试剂盒中醋酸-醋酸钠缓冲液的pH为5.4,浓度为50mM;含十六烷基溴化铵(CTAB)的金纳米棒溶液中,金纳米棒浓度为2.3nM、长径比为2∶1,含CTAB的浓度为0.1M;高碘酸钾溶液的浓度为0.02M;氨三乙酸溶液的浓度为0.01M。The pH of the acetic acid-sodium acetate buffer in the kit is 5.4, and the concentration is 50 mM; in the gold nanorod solution containing cetyl ammonium bromide (CTAB), the gold nanorod concentration is 2.3 nM, and the aspect ratio is 2.3 nM. 2:1, the concentration of CTAB is 0.1M; the concentration of potassium periodate solution is 0.02M; the concentration of nitrilotriacetic acid solution is 0.01M.
所述标准比色卡C为不同浓度锰标准色阶溶液,不同浓度分别为0nM,5nM,10nM,15nM,20nM,25nM,30nM,40nM,50nM,100nM。The standard colorimetric card C is a manganese standard color scale solution with different concentrations, and the different concentrations are 0nM, 5nM, 10nM, 15nM, 20nM, 25nM, 30nM, 40nM, 50nM, and 100nM respectively.
所述标准比色卡C的制备是,取0-100nM不同浓度锰标准色阶溶液分别放置于比色管中,加入醋酸-醋酸钠缓冲溶液摇晃混匀,混匀后再加入含CTAB的金纳米棒溶液,摇匀;再依次加入高碘酸钾溶液、氨三乙酸溶液摇晃混匀;而后于20-40℃温度下孵育10-30分钟,进行显色反应,使用专业照相机记录显色结果,采集图片后,用有颜色梯度的图片组成锰离子标准比色卡C。The preparation of the standard colorimetric card C is to take 0-100nM manganese standard color scale solutions of different concentrations and place them in colorimetric tubes respectively, add acetic acid-sodium acetate buffer solution, shake and mix, and then add CTAB-containing gold after mixing. Nanorod solution, shake well; then add potassium periodate solution and nitrilotriacetic acid solution in turn, shake and mix well; then incubate at 20-40°C for 10-30 minutes, carry out color reaction, and use professional camera to record color development results , after collecting the pictures, use the pictures with color gradients to form the manganese ion standard colorimetric card C.
本发明的原理(见图1)是在酸性溶液中,用氨三乙酸作为活化剂,锰离子催化高碘酸钾氧化金纳米棒而生成三价锰离子,三价锰离子又会还原为锰离子,从而形成循环催化刻蚀金纳米棒,同时使其吸收光谱发生改变(见图3)并伴随着明显的形态变化(图2)和颜色变化(图4),这种变化与锰离子浓度呈线性关系(见图5)。The principle of the present invention (see Fig. 1) is that in an acidic solution, ammonia triacetic acid is used as an activator, and manganese ions catalyze potassium periodate to oxidize gold nanorods to generate trivalent manganese ions, which can be reduced to manganese again. ions, resulting in the formation of cyclically catalytically etched gold nanorods with a simultaneous change in their absorption spectrum (see Figure 3) accompanied by significant morphological changes (Figure 2) and color changes (Figure 4), which are correlated with manganese ion concentration There is a linear relationship (see Figure 5).
本发明所具有的优点:The advantages of the present invention:
本发明利用锰离子催化刻蚀金纳米棒比色法检测锰离子,具有灵敏度高(检出限为10nM),选择性好,操作简单,速度快,肉眼容易观测,适合现场实时检测等优点。The invention utilizes the manganese ion catalyzed etching gold nanorod colorimetric method to detect manganese ions, and has the advantages of high sensitivity (detection limit is 10 nM), good selectivity, simple operation, high speed, easy observation with naked eyes, and is suitable for on-site real-time detection.
附图说明Description of drawings
图1为本发明提供的锰离子催化刻蚀金纳米棒的原理。Fig. 1 is the principle of manganese ion catalyzed etching gold nanorod provided by the present invention.
图2为本发明实施例提供的锰离子催化刻蚀金纳米棒前后的透射电镜图像;其中,金纳米棒在锰离子催化刻蚀前(左),后(中间为低浓度,右为高浓度)。Fig. 2 is the transmission electron microscope image before and after manganese ion catalytic etching of gold nanorods provided in the embodiment of the present invention; wherein, the gold nanorods are before (left) and after (the middle is low concentration, the right is high concentration) before manganese ion catalytic etching ).
图3为本发明实施例提供的锰离子(浓度从低到高)催化刻蚀金纳米棒后的吸收光谱图。FIG. 3 is an absorption spectrum diagram of manganese ions (concentration from low to high) after catalytic etching of gold nanorods provided in an embodiment of the present invention.
图4为本发明实施例提供的的锰离子标准比色卡C。FIG. 4 is a manganese ion standard colorimetric card C provided in an embodiment of the present invention.
图5为本发明检测锰离子标准曲线。Fig. 5 is the standard curve of manganese ion detection of the present invention.
图6为本发明实施例提供的检测锰离子的选择性实验结果(图6A)与相应照片(图6B)。FIG. 6 is a result of a selectivity experiment for detecting manganese ions ( FIG. 6A ) and a corresponding photo ( FIG. 6B ) according to an embodiment of the present invention.
图7为本发明实施例提供的检测锰离子流程图。FIG. 7 is a flow chart of detecting manganese ions according to an embodiment of the present invention.
具体实施方式Detailed ways
通过以下实施例,对本发明作进一步具体说明。但是本发明绝非仅限于此。The present invention is further described in detail through the following examples. But the present invention is by no means limited to this.
本发明试剂盒采用pH=3.6-5.8、浓度为0.01-1M的弱酸醋酸,使锰催化的高碘酸钾氧化反应处在弱酸性条件下,CTAB修饰的金纳米棒,其中CTAB作为一种表面活性剂具有增敏作用,助催化作用的氨三乙酸,反应过程中金纳米棒在正常状态下是蓝色的,在被高碘酸钾氧化刻蚀后,其形态由棒状变为球状,颜色由蓝色变为红色,这种变化与加入作为催化剂的锰离子的浓度变化呈现一定的线性关系,依据这种线性关系进行锰离子的检测。The kit of the invention adopts weak acid acetic acid with pH=3.6-5.8 and concentration of 0.01-1M, so that the oxidation reaction of potassium periodate catalyzed by manganese is under weak acid conditions, and CTAB-modified gold nanorods, wherein CTAB is used as a surface The active agent has a sensitizing effect and promotes the catalytic effect of nitrilotriacetic acid. During the reaction process, the gold nanorods are blue in normal state. From blue to red, this change has a certain linear relationship with the concentration change of manganese ions added as catalysts, and the detection of manganese ions is carried out according to this linear relationship.
实施例饮用水中锰离子(加标)检测Example Manganese ion (spike) detection in drinking water
试剂盒包括醋酸-醋酸钠缓冲溶液、高碘酸钾溶液、氨三乙酸溶液、含十六烷基三甲基溴化铵(CTAB)的金纳米棒溶液、标准比色卡C和比色管;The kit includes acetic acid-sodium acetate buffer solution, potassium periodate solution, nitrilotriacetic acid solution, gold nanorod solution containing cetyltrimethylammonium bromide (CTAB), standard colorimetric card C and colorimetric tube ;
所述的醋酸-醋酸钠缓冲溶液是使用分析纯的醋酸钠和冰醋酸用二次去离子水配制而成,配制后的缓冲液的pH为5.4,浓度为50mM。The acetic acid-sodium acetate buffer solution is prepared by using analytically pure sodium acetate and glacial acetic acid with secondary deionized water. The pH of the prepared buffer solution is 5.4 and the concentration is 50 mM.
所述的高碘酸钾溶液浓度为0.02M,由分析纯的高碘酸钾溶于二次去离子水获得;The described potassium periodate solution concentration is 0.02M, obtained by dissolving analytically pure potassium periodate in secondary deionized water;
所述的氨三乙酸溶液浓度为0.01M,由分析纯的氨三乙酸溶于二次去离子水获得;The concentration of described nitrilotriacetic acid solution is 0.01M, obtained by dissolving analytically pure nitrilotriacetic acid in secondary deionized water;
含十六烷基三甲基溴化铵(CTAB)的金纳米棒溶液的制备方式如下:The gold nanorod solution containing cetyltrimethylammonium bromide (CTAB) was prepared as follows:
1)合成金种子液:取50μL氯金酸溶液(50mM)加入到7.7mL浓度为0.1M的十六烷基三甲基溴化铵(CTAB)溶液中搅拌摇匀,再加入600μL冰镇硼氢化钠(0.01M)溶液,加速摇晃几分钟,混合溶液颜色由亮黄色变为紫灰色时停止,在26℃环境下静置2小时后待用。1) Synthesis of gold seed solution: add 50 μL of chloroauric acid solution (50 mM) to 7.7 mL of 0.1 M cetyltrimethylammonium bromide (CTAB) solution, stir and shake, and then add 600 μL of ice-cold borohydride Sodium (0.01M) solution, shake at an accelerated rate for a few minutes, stop when the color of the mixed solution changes from bright yellow to purple-gray, and stand at 26°C for 2 hours before use.
2)纳米棒合成:将1200μL氯金酸(50mM)溶液加入到100mL浓度为0.1M的十六烷基三甲基溴化铵(CTAB)溶液中搅拌混匀,再加入300μL硝酸银(0.01M)溶液,混匀后加入960μL抗坏血酸(0.1M)溶液,待溶液由黄棕色变为无色时,边搅拌边加入200μL上述合成的金种子液至溶液,继续搅拌至溶液颜色由无色逐渐变为蓝绿色,停止搅拌,静置20小时,即得到金纳米棒。从透射电镜其中金纳米棒长径比约为2∶1(见图2(左)),紫外-可见吸收光谱图径向吸收峰在660nm-670nm(见图3吸收光谱图),根据朗伯比尔定律,估算出纳米棒的浓度为2.3nM。2) Nanorod synthesis: Add 1200 μL of chloroauric acid (50 mM) solution to 100 mL of 0.1 M cetyltrimethylammonium bromide (CTAB) solution, stir and mix, and then add 300 μL of silver nitrate (0.01 M ) solution, add 960 μL of ascorbic acid (0.1M) solution after mixing, when the solution changes from yellow-brown to colorless, add 200 μL of the above-synthesized gold seed solution to the solution while stirring, and continue to stir until the color of the solution gradually changes from colorless It is blue-green, stop stirring, and stand for 20 hours to obtain gold nanorods. From the transmission electron microscope, the aspect ratio of gold nanorods is about 2:1 (see Figure 2 (left)), and the radial absorption peak of the UV-Vis absorption spectrum is at 660nm-670nm (see the absorption spectrum of Figure 3), according to Lambertian Beer's Law, the concentration of nanorods was estimated to be 2.3 nM.
标准比色卡C的制备是,制备浓度为0nM,5nM,10nM,15nM,20nM,25nM,30nM,40nM,50nM,100nM的锰标准色阶溶液10μL。The preparation of standard colorimetric card C is to prepare 10 μL of manganese standard color scale solution with concentrations of 0nM, 5nM, 10nM, 15nM, 20nM, 25nM, 30nM, 40nM, 50nM and 100nM.
即试剂盒:i.e. the kit:
醋酸-醋酸钠缓冲溶液,pH为5.4,浓度为50mM;Acetic acid-sodium acetate buffer solution, pH 5.4, concentration 50mM;
高碘酸钾溶液,浓度为0.02M;Potassium periodate solution, the concentration is 0.02M;
氨三乙酸溶液,浓度为0.01M;nitrilotriacetic acid solution, the concentration is 0.01M;
比色管,2mL;Colorimetric tube, 2mL;
玻璃刻度吸管;glass graduated straw;
锰标准色阶溶液;Manganese standard color scale solution;
锰标准比色卡。Manganese standard color chart.
检测方法:分别加入到装有1mL醋酸-醋酸钠缓冲溶液的比色管中,摇晃混匀后加入含CTAB的金纳米棒,摇匀;再分别加入高碘酸钾溶液、氨三乙酸溶液摇晃混匀;混匀后加入含有CTAB的金纳米棒溶液,摇匀;而后于20-40℃温度下孵育10-30分钟,进行显色反应,使用专业照相机记录显色结果,采集图片后,用有颜色梯度的图片组成锰标准比色卡C(见图4),同时可以采集对应紫外-可见吸收光谱图,并根据峰位移制作标准曲线(如图5)。Detection method: respectively add it to a colorimetric tube containing 1 mL of acetic acid-sodium acetate buffer solution, shake and mix well, add gold nanorods containing CTAB, and shake well; then add potassium periodate solution and nitrilotriacetic acid solution and shake Mix well; after mixing, add the gold nanorod solution containing CTAB, and shake well; then incubate at 20-40°C for 10-30 minutes to carry out color reaction, use a professional camera to record the color results, collect pictures, use The pictures with color gradients form the manganese standard colorimetric card C (see Figure 4). At the same time, the corresponding UV-Vis absorption spectrum can be collected, and a standard curve can be made according to the peak shift (see Figure 5).
具体,饮用水中锰离子(加标)检测:Specifically, the detection of manganese ions (spiked) in drinking water:
(1)取2.0mL比色管,向每个比色管中加入1mL醋酸-醋酸钠缓冲溶液,分别加入含有三种不同浓度锰离子加标样品10μL,摇晃混匀后,标记1、2、3号,分别加入含有CTAB金纳米棒,摇匀;(1) Take a 2.0 mL colorimetric tube, add 1 mL of acetic acid-sodium acetate buffer solution to each colorimetric tube, add 10 μL of spiked samples containing three different concentrations of manganese ions, shake and mix well, mark 1, 2, No. 3, respectively add gold nanorods containing CTAB, shake well;
(2)再依次加入高碘酸钾溶液、氨三乙酸溶液,摇晃混匀;(2) Add potassium periodate solution and nitrilotriacetic acid solution in turn, shake and mix;
(3)在20-40℃温度下孵育10-30分钟,(3) Incubate at 20-40°C for 10-30 minutes,
(3)观察颜色变化,将比色管与标准比色卡C进行比对确定饮用水加标样品锰离子的浓度范围,可以看出和比色卡浓度对应很一致;同时可以通过之外可见光谱图获得峰位移,并根据标准曲线确定锰离子的确定含量,本方法检测结果的加标回收率在85-103%(见表1),说明了本方法的实际应用的可靠性。(3) Observe the color change, and compare the colorimetric tube with the standard colorimetric card C to determine the concentration range of manganese ions in the drinking water spiked sample. It can be seen that it corresponds to the colorimetric card concentration. The peak shift was obtained from the spectrogram, and the definite content of manganese ions was determined according to the standard curve. The standard addition recovery rate of the detection results of this method was 85-103% (see Table 1), indicating the reliability of the practical application of this method.
表1锰离子加标测试结果Table 1 Manganese ion spike test results
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611031910.1A CN106568773B (en) | 2016-11-22 | 2016-11-22 | A kind of manganese ion colorimetric detection kit and detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611031910.1A CN106568773B (en) | 2016-11-22 | 2016-11-22 | A kind of manganese ion colorimetric detection kit and detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106568773A CN106568773A (en) | 2017-04-19 |
CN106568773B true CN106568773B (en) | 2020-02-21 |
Family
ID=58542889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611031910.1A Expired - Fee Related CN106568773B (en) | 2016-11-22 | 2016-11-22 | A kind of manganese ion colorimetric detection kit and detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106568773B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064134A (en) * | 2017-06-14 | 2017-08-18 | 大连理工大学 | A kind of analysis method for organophosphorus pesticide Glassless half-quantitative detection |
CN117554362B (en) * | 2024-01-10 | 2024-03-12 | 中国科学院烟台海岸带研究所 | Highly sensitive method for detecting cyanide at room temperature and nanocolorimetric analysis kit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101078688A (en) * | 2007-05-31 | 2007-11-28 | 中国铝业股份有限公司 | Method for determining phosphor and manganese of ferro-phosphorus |
CN101625312A (en) * | 2008-07-09 | 2010-01-13 | 苏州艾杰生物科技有限公司 | Manganese ion diagnostic/assay kit and method for assaying concentration of manganese ions |
CN103278497A (en) * | 2013-05-15 | 2013-09-04 | 中国科学院烟台海岸带研究所 | Copper ion colorimetry detecting kit and detecting method thereof |
CN103411962A (en) * | 2013-05-15 | 2013-11-27 | 中国科学院烟台海岸带研究所 | Kit and method for detecting cobalt ions through colorimetric method |
CN103884693A (en) * | 2012-12-20 | 2014-06-25 | 江南大学 | Preparation method for monodispersed and low-biotoxicity gold nanorods, and use for detection of allergen |
CN104215595A (en) * | 2014-09-17 | 2014-12-17 | 陕西华陆化工环保有限公司 | Method for detecting trace manganese in environmental sample |
-
2016
- 2016-11-22 CN CN201611031910.1A patent/CN106568773B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101078688A (en) * | 2007-05-31 | 2007-11-28 | 中国铝业股份有限公司 | Method for determining phosphor and manganese of ferro-phosphorus |
CN101625312A (en) * | 2008-07-09 | 2010-01-13 | 苏州艾杰生物科技有限公司 | Manganese ion diagnostic/assay kit and method for assaying concentration of manganese ions |
CN103884693A (en) * | 2012-12-20 | 2014-06-25 | 江南大学 | Preparation method for monodispersed and low-biotoxicity gold nanorods, and use for detection of allergen |
CN103278497A (en) * | 2013-05-15 | 2013-09-04 | 中国科学院烟台海岸带研究所 | Copper ion colorimetry detecting kit and detecting method thereof |
CN103411962A (en) * | 2013-05-15 | 2013-11-27 | 中国科学院烟台海岸带研究所 | Kit and method for detecting cobalt ions through colorimetric method |
CN104215595A (en) * | 2014-09-17 | 2014-12-17 | 陕西华陆化工环保有限公司 | Method for detecting trace manganese in environmental sample |
Non-Patent Citations (2)
Title |
---|
Fenton-like Reaction-Mediated Etching of Gold Nanorods for Visual Detection of Co2+;Zhiyang Zhang et al.;《Langmuir》;20141208;第643?650页 * |
污水中锰的动力学分光光度法测定;王尊本等;《分析化学》;19860630;第14卷(第6期);第467-468页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106568773A (en) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101936905B (en) | A kind of mercury ion detection reagent and detection method | |
Zhang et al. | Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR | |
CN103264165B (en) | A kind of method of synthesizing silver nanoclusters taking single stranded DNA as template | |
CN103411962B (en) | A kind of cobalt ions colorimetric determination kit and detection method thereof | |
CN108444995B (en) | A kind of on-site rapid detection method of sulfur dioxide in wine | |
CN105241854A (en) | Method for detecting ferric ions by using fluorescent carbon quantum dots | |
CN115060704B (en) | Method for detecting methylmercury and aflatoxin B1 by surface enhanced Raman scattering | |
CN103278497B (en) | Copper ion colorimetry detecting kit and detecting method thereof | |
CN106442514A (en) | Simple ultrasensitive colorimetric detection method for bivalent copper ions | |
CN105717290B (en) | A kind of detection method and kit of the bivalent cupric ion based on click chemistry | |
CN108680541B (en) | A method for the determination of trace uranium (VI) by fluorescent molybdenum oxide quantum dots | |
CN106568773B (en) | A kind of manganese ion colorimetric detection kit and detection method thereof | |
CN107976437A (en) | Method based on how dendritic nano particle detection mercury ion | |
Tavallali et al. | Developing a new method of 4-(2-pyridylazo)-resorcinol immobilization on triacetylcellulose membrane for selective determination of Ga3+ in water samples | |
CN106546585A (en) | Mercury ion, total mercury and organomercurial detection method and detection kit | |
CN107356583B (en) | A method for the determination of NH4+ by using nano-silver catalyzed surface-enhanced Raman spectroscopy | |
CN106596504B (en) | A kind of method of cyanide in super sensitivity detection water body | |
CN103487430B (en) | A kind of trivalent aluminium ion detection reagent and detection method | |
CN102759526A (en) | Method for quantitative detection of mercury ions through gold label silver stain and kit thereof | |
Lai et al. | Dual-mode photothermal/chemiluminescence vertical flow assay for sensitive point-of-care detection of carcinoembryonic antigen using Cu2-xAgxS@ liposome on a filter membrane | |
CN106501245B (en) | Preparation method of nano-gold-coated silver colorimetric probe and method for detecting lead ions | |
CN103969237A (en) | A Method for Quickly Detecting Trace Hg2+ Concentration in River Water | |
CN101201316A (en) | Spectrophotometric method for detection of trace horseradish peroxidase | |
Pang et al. | Controllable construction of ratiometric fluorescent probe based on Ag/Au nanoclusters and silicon nanoparticles for multivariate detection of Ag+, Cu2+, and Hg2+ | |
CN104165852A (en) | Resonance Rayleigh scattering energy transfer spectroscopy method for determining fluorinion simply and rapidly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200221 |
|
CF01 | Termination of patent right due to non-payment of annual fee |