CN106568371B - 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法 - Google Patents

基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法 Download PDF

Info

Publication number
CN106568371B
CN106568371B CN201610977501.4A CN201610977501A CN106568371B CN 106568371 B CN106568371 B CN 106568371B CN 201610977501 A CN201610977501 A CN 201610977501A CN 106568371 B CN106568371 B CN 106568371B
Authority
CN
China
Prior art keywords
rotor
valve plate
plunger
oil film
calculates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610977501.4A
Other languages
English (en)
Other versions
CN106568371A (zh
Inventor
王少萍
韩磊
张超
王兴坚
李元
焦宗夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610977501.4A priority Critical patent/CN106568371B/zh
Publication of CN106568371A publication Critical patent/CN106568371A/zh
Application granted granted Critical
Publication of CN106568371B publication Critical patent/CN106568371B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

本发明提出一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法,属于轴向柱塞泵设计与可靠性研究领域。本发明方法针对转子配流盘间混合润滑状态,采用分形理论描述转子和配流盘表面的粗糙峰轮廓,以此计算粗糙峰接触压力分布,采用雷诺方程求解非接触区压力分布,利用接触面积系数将粗糙表面接触与流体润滑融合在了一起。对转子进行完整的受力分析,建立了精确的转子动力学模型,从而可以精确求得转子‑配流盘间实时变化的负载力,并对转子位置、油膜厚度进行实时估计。实验表明,本发明方法能够有效地在混合润滑情况下,预测轴向柱塞泵转子配流盘润滑油膜厚度,并且本发明方法同样适用于纯流体润滑情况,具有兼容性。

Description

基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法
技术领域
本发明属于轴向柱塞泵设计与可靠性研究领域,具体涉及一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法。
背景技术
轴向柱塞泵具有高效率、大功重比、负载能力强等优点,然而,这类泵结构复杂,抗污染能力较差,泵的寿命依赖于内部关键摩擦配合表面的润滑磨损状况。柱塞泵中转子配流盘摩擦副对于保持液压泵的容积效率至关重要,试验数据表明,该摩擦副的泄漏量占液压泵全泵泄漏量的70%以上。因此,进行转子配油盘动态建模对研究轴向柱塞泵摩擦磨损机理具有重要的理论和应用价值。
在理想情况下,柱塞泵工作时转子与配流盘不直接接触,其间有一层几十微米厚的油膜隔开。然而,在泵启动阶段,油膜还没有建立起来的时候,或者长期磨损后性能退化,转子倾斜加剧使局部油膜变得过薄的情况下,转子配流盘间可能发生局部接触,使整个摩擦副处于混合润滑状态。与传统摩擦学中的接触问题相比,转子配流盘之间的接触具有两个特点:第一,它是局部的,只发生在接触面某一侧的边缘;第二,它是瞬时的,接触区的分离力会明显升高,并会产生一个分离力矩使转子与配流盘很快分开。
目前国内外大多数针对转子配流盘油膜的研究,都是在纯流体润滑的情况下,采用雷诺方程求解润滑油膜压力分布。然而,在混合润滑情况下,混合润滑区的油膜是不连续的,这违背了雷诺方程的基本假设,不能单纯采用雷诺方程进行求解。因此,到目前为止尚未有适合于混合润滑情况下的轴向柱塞泵转子配流盘润滑油膜建模方法。
发明内容
本发明的目的是,针对转子配流盘间可能发生局部接触,提出了一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法。
一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法,首先具有下面设定条件:
(1)转子配流盘间在柱塞泵工作过程中既存在流体润滑又可能有局部接触,整个摩擦副处于混合润滑状态。
(2)转子配流盘摩擦副端面粗糙峰轮廓曲线均具有与尺度无关且各向同性的分形特性,接触粗糙峰的曲率半径为
其中,a为粗糙峰接触面积,G为轮廓特征尺度系数,D为轮廓分形维数,1<D<2。
(3)转子与配流盘的接触使端面间粗糙峰发生弹性变形或塑性变形,存在临界弹性变形接触面积ac,当粗糙峰接触面积a>ac时,该粗糙峰处于弹性变形状态;当a<ac时,处于塑性变形状态。
具体该建模方法包括如下步骤:
步骤一,给出转子配流盘间润滑油膜厚度初值。
步骤二,计算当前时刻转子配流盘混合润滑接触表面压力分布。
步骤三,计算当前时刻转子受到的力和力矩。
步骤四,根据当前时刻转子受力,计算下一时刻油膜厚度。
本发明的优点和积极效果是:
(1)本发明方法能够有效地在混合润滑情况下,预测轴向柱塞泵转子配流盘润滑油膜厚度。
(2)本发明方法采用分形理论描述转子和配流盘表面的粗糙峰轮廓,接近工程实际,有很大的工程实用意义。
(3)本发明方法同样适用于纯流体润滑情况,具有兼容性。
附图说明
图1为本发明方法的整体步骤流程图;
图2为本发明方法计算得到的泵启动过程中转子配流盘油膜厚度和压力变化情况。
图3为本发明方法预测油膜厚度与传统方法预测结果和实验测试结果对比曲线图。
具体实施方式
下面结合附图是实施例对本发明的技术方案进行详细说明。
首先,本发明所要建立的模型基于下面的假设条件:
(1)转子配流盘间在柱塞泵工作过程中既存在流体润滑又可能有局部接触,整个摩擦副处于混合润滑状态。
(2)转子配流盘摩擦副端面粗糙峰轮廓曲线均具有与尺度无关且各向同性的分形特性,接触粗糙峰的曲率半径为
其中,a为粗糙峰接触面积,G为轮廓特征尺度系数,D为轮廓分形维数,1<D<2。
(3)转子与配流盘的接触使端面间粗糙峰发生弹性变形或塑性变形,存在临界弹性变形接触面积ac,当粗糙峰接触面积a>ac时,该粗糙峰处于弹性变形状态;当a<ac时,处于塑性变形状态。
如图1所示,本发明损伤累积模型的建模方法的步骤如下:
步骤一,给出转子配流盘间润滑油膜厚度初值h(0)。
步骤二,计算当前时刻转子配流盘混合润滑接触表面压力分布p(x,y),具体步骤为:
第一步,设当前时刻配流盘上点(x,y)处的油膜厚度为h(x,y),油膜对转子的支撑力 pl(x,y)可以根据雷诺方程求解:
其中,vx为流体在x方向流速,vy为流体在y方向流速,μ为流体动力粘度,ρ为流体密度;
第二步,计算转子配流盘综合弹性模量E:
其中,E1和E2分别为转子与配流盘材料的弹性模量,ν1和ν2分别为转子与配流盘材料的泊松比。
第三步,计算转子配流盘粗糙峰临界弹性变形接触面积ac
其中,Kf为摩擦校正系数,σ2y为配流盘材料的抗压屈服强度。
第四步,计算转子配流盘粗糙峰接触面积分布函数n(a):
其中,aL为最大粗糙峰接触面积,可以由下面的公式解出:
其中,Aa为转子配流盘名义接触面积,h(x,y)为配流盘上点(x,y)处的油膜厚度,g(z) 为配流盘表面高度分布。
第五步,计算在弹性变形下,单个粗糙峰接触载荷fe(a):
第六步,计算在塑性变形下,单个粗糙峰接触载荷fp(a):
fp(a)=Ha(8)
其中,H为粗糙峰的表面硬度。
第七步,计算粗糙峰接触压力ps(x,y):
第八步,计算真实接触面积占名义接触面积的比例数aw
第九步,计算配流盘表面压力分布p(x,y):
P(x,y)=Pl(x,y)·(1-aw)+Ps(x,y) (11)
步骤三,计算当前时刻转子受到的力和力矩,具体步骤为:
第一步,计算配流盘及油膜对转子的支撑力和支撑力矩Ffz,Mfx,Mfy
其中,Ω表示整个配流盘表面区域;
第二步,计算转子柱塞腔内油液对转子的压力及相应的力矩Fpz,Mpx,Mpy
其中,pzi为转子第i个柱塞腔内压力,Az为柱塞截面积,Apg为转子底部柱塞孔面积,Rp为柱塞分布圆半径,为第i个柱塞转角。
第三步,计算柱塞对转子施加的径向力矩MPRx,MPRy
其中,NOi为第i个柱塞对转子施加的径向离心力,lco为径向离心力的力臂,NIi为第i个柱塞对转子施加的径向向心力,lp为径向向心力的力臂。
第四步,计算柱塞摩擦力及相应的力矩FPFz,MPFx,MPFy
其中,FPFi为第i个柱塞与柱塞腔摩擦力。
步骤四,根据当前时刻转子受力,计算下一时刻油膜厚度,具体步骤为:
第一步,计算当前时刻转子的加速度和角加速度h″,α″x,α″y
其中,Fspring为预紧弹簧压力,mc为转子质量,Ix为转子x方向转动惯量,Iy为转子y方向转动惯量。
第二步,计算计算下一时刻油膜厚度:
其中,Δt为两个时刻的时间间隔。
第三步,若到达结束时间,则结束仿真;否则返回步骤二。
实施例
对某型号轴向柱塞泵转子配流盘润滑油膜进行建模,如图2所示。设定初始油膜厚度为 0μm,泵的正常工作压力为21MPa,仿真结束时间设定为1500ms。
在开始阶段,由于油膜厚度很薄,配流盘表面压力很大,可以达到接近30MPa;仿真时间从1ms变化到10ms的过程中,油膜厚度迅速提高,达到20μm,同时油膜压力锐减到不足5MPa,在这一过程中油膜基本保持水平,没有发生倾斜;随着仿真时间不断增加,油膜逐渐趋于稳定,仿真时间超过300ms以后,油膜厚度稳定在45μm左右,并且呈现出倾斜的趋势,同时压力达到泵的正常工作压力21MPa。
本发明方法预测油膜厚度与传统方法预测结果和实验测试结果对比曲线如图3所示。在柱塞泵的内部选择了4个测点,通过电涡流传感器分别测定测点处的油膜厚度,从图中可以看出:(1)在开始阶段(300ms以内),转子配流盘之间混合润滑现象明显,本发明方法的预测精度明显优于传统方法;(2)在稳定阶段(300ms以后),转子配流盘之间主要是流体润滑,本发明方法的预测精度仍然略优于传统方法。
各个测点具体的预测误差如表1所示。
表1各个测点的预测误差
实验表明,本发明方法能够有效地在混合润滑情况下,预测轴向柱塞泵转子配流盘润滑油膜厚度,并且本发明方法同样适用于纯流体润滑情况,具有兼容性。

Claims (3)

1.一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法,基于以下假设条件:
(1)转子配流盘间在柱塞泵工作过程中,整个摩擦副处于混合润滑状态;
(2)转子配流盘摩擦副端面粗糙峰轮廓曲线均具有与尺度无关且各向同性的分形特性,接触粗糙峰的曲率半径为:
其中,a为粗糙峰接触面积,G为轮廓特征尺度系数,D为轮廓分形维数,1<D<2;
(3)转子与配流盘的接触使端面间粗糙峰发生弹性变形或塑性变形,存在临界弹性变形接触面积ac,当粗糙峰接触面积a>ac时,该粗糙峰处于弹性变形状态;当a<ac时,处于塑性变形状态;
具体的建模方法,包括以下步骤:
步骤一,获取转子配流盘间润滑油膜厚度初值h(0);
步骤二,计算当前时刻转子配流盘混合润滑接触表面压力分布p(x,y);
具体包括以下几个步骤:
第一步,设当前时刻配流盘上点(x,y)处的油膜厚度为h(x,y),油膜对转子的支撑力pl(x,y)根据雷诺方程求解:
其中,vx为流体在x方向流速,vy为流体在y方向流速,μ为流体动力粘度,ρ为流体密度;
第二步,计算转子配流盘综合弹性模量E:
其中,E1和E2分别为转子与配流盘材料的弹性模量,ν1和ν2分别为转子与配流盘材料的泊松比;
第三步,计算转子配流盘粗糙峰临界弹性变形接触面积ac
其中,Kf为摩擦校正系数,σ2y为配流盘材料的抗压屈服强度;
第四步,计算转子配流盘粗糙峰接触面积分布函数n(a):
其中,aL为最大粗糙峰接触面积,由下面的公式解出:
其中,Aa为转子配流盘名义接触面积,h(x,y)为配流盘上点(x,y)处的油膜厚度,g(z)为配流盘表面高度分布;
第五步,计算在弹性变形下,单个粗糙峰接触载荷fe(a):
第六步,计算在塑性变形下,单个粗糙峰接触载荷fp(a):
fp(a)=Ha (8)
其中,H为粗糙峰的表面硬度;
第七步,计算粗糙峰接触压力ps(x,y):
第八步,计算真实接触面积占名义接触面积的比例数aw
第九步,计算配流盘表面压力分布p(x,y):
P(x,y)=Pl(x,y)·(1-aw)+Ps(x,y) (11)
步骤三,计算当前时刻转子受到的力和力矩;
步骤四,根据当前时刻转子受力,计算下一时刻油膜厚度。
2.根据权利要求1所述的一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法,步骤三具体包括以下几个步骤:
第一步,计算配流盘及油膜对转子的支撑力和支撑力矩Ffz,Mfx,Mfy
其中,Ω表示整个配流盘表面区域;
第二步,计算转子柱塞腔内油液对转子的压力及相应的力矩Fpz,Mpx,Mpy
其中,pzi为转子第i个柱塞腔内压力,Az为柱塞截面积,Apg为转子底部柱塞孔面积,Rp为柱塞分布圆半径,为第i个柱塞转角;
第三步,计算柱塞对转子施加的径向力矩MPRx,MPRy
其中,NOi为第i个柱塞对转子施加的径向离心力,lco为径向离心力的力臂,NIi为第i个柱塞对转子施加的径向向心力,lp为径向向心力的力臂;
第四步,计算柱塞摩擦力及相应的力矩FPFz,MPFx,MPFy
其中,FPFi为第i个柱塞与柱塞腔摩擦力。
3.根据权利要求1所述的一种基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法,步骤四具体包括以下几个步骤:
第一步,计算当前时刻转子的加速度和角加速度h″,α″x,α″y
其中,Fspring为预紧弹簧压力,mc为转子质量,Ix为转子x方向转动惯量,Iy为转子y方向转动惯量;
第二步,计算下一时刻油膜厚度:
其中,Δt为两个时刻的时间间隔;
第三步,若到达结束时间,则结束仿真;否则返回步骤二。
CN201610977501.4A 2016-11-07 2016-11-07 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法 Expired - Fee Related CN106568371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610977501.4A CN106568371B (zh) 2016-11-07 2016-11-07 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610977501.4A CN106568371B (zh) 2016-11-07 2016-11-07 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法

Publications (2)

Publication Number Publication Date
CN106568371A CN106568371A (zh) 2017-04-19
CN106568371B true CN106568371B (zh) 2019-04-26

Family

ID=58540144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610977501.4A Expired - Fee Related CN106568371B (zh) 2016-11-07 2016-11-07 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法

Country Status (1)

Country Link
CN (1) CN106568371B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108304641B (zh) * 2018-01-29 2021-06-25 北京航空航天大学 一种高能容干式摩擦元件耐热性能设计方法
CN109002610B (zh) * 2018-07-17 2023-03-14 合肥工业大学 一种粗糙表面径向滑动轴承湍流润滑计算的随机模型
CN109855848A (zh) * 2018-11-20 2019-06-07 江苏大学 一种预测摩擦副表面在织构化后的润滑性能的方法
CN110836178B (zh) * 2019-12-13 2020-09-15 北京航空航天大学 一种柱塞泵配流副的综合试验装置
CN113738628B (zh) * 2021-08-24 2022-07-08 北京航空航天大学 一种考虑柱塞搅拌的油膜特性模拟实验装置
CN115898851B (zh) * 2022-11-29 2024-04-09 中南大学 一种柱塞泵球面配流副油膜厚度分布测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323063A (zh) * 2011-05-30 2012-01-18 重庆大学 基于曲轴振动信号的活塞组件油膜力测试方法及系统
CN104776998A (zh) * 2015-03-26 2015-07-15 北京工业大学 一种基于动态刚度系数和阻尼系数的转子轴心轨迹求解方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011086A1 (en) * 2011-07-20 2013-01-24 Aktiebolaget Skf Method of determining when a critical film thickness will be reached in a grease-lubricated seal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323063A (zh) * 2011-05-30 2012-01-18 重庆大学 基于曲轴振动信号的活塞组件油膜力测试方法及系统
CN104776998A (zh) * 2015-03-26 2015-07-15 北京工业大学 一种基于动态刚度系数和阻尼系数的转子轴心轨迹求解方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《A new dynamic seven-stage model for thickness prediction of the film between valve plate and cylinder block in axial piston pumps》;Chao Zhang 等;《Advances in Mechanical Engineering》;20160926;第8卷(第9期);全文
《液黏调速离合器摩擦副转矩特性研究》;崔红伟;《中国博士学位论文全文数据库》;20150415(第4期);第62页倒数第2段至第65页第2段
《轴向柱塞泵柱塞副全周期润滑特性理论与试验研究》;高猛;《中国优秀硕士学位论文全文数据库》;20160315(第3期);第6页倒数第2行至第10页倒数第4行,第15页第1段至第19页倒数第3行,第35页第2行至第37页最后一行,图3.2

Also Published As

Publication number Publication date
CN106568371A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106568371B (zh) 基于分形的轴向柱塞泵转子配流盘动态混合润滑建模方法
Tang et al. A novel model for predicting thermoelastohydrodynamic lubrication characteristics of slipper pair in axial piston pump
Bergada et al. The hydrostatic/hydrodynamic behaviour of an axial piston pump slipper with multiple lands
Jiang'ao et al. Review of cylinder block/valve plate interface in axial piston pumps: Theoretical models, experimental investigations, and optimal design
Xu et al. Investigation on structural optimization of anti-overturning slipper of axial piston pump
Hashemi et al. Multibody dynamics of pivot slipper pad thrust bearing in axial piston machines incorporating thermal elastohydrodynamics and mixed lubrication model
Xu et al. Investigation on the radial micro-motion about piston of axial piston pump
Wang et al. Analysis of lubricating characteristics of valve plate pair of a piston pump
CN115013296B (zh) 一种轴向柱塞泵滑靴副油膜厚度确定方法及系统
Zhang et al. Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model
Chao et al. Test rigs and experimental studies of the slipper bearing in axial piston pumps: A review
Zhang et al. Effects of splined shaft bending rigidity on cylinder tilt behaviour for high-speed electro-hydrostatic actuator pumps
Chao et al. Spline design for the cylinder block within a high-speed electro-hydrostatic actuator pump of aircraft
CN111946609A (zh) 一种配流副油膜厚度测量方法
Wondergem et al. The impact of the surface shape of the piston on power losses
Jiang et al. The impact of slipper microstructure on slipper-swashplate lubrication interface in axial piston pump
Hong et al. Effects of Wear Profile and Elastic Deformation on the Slippers Dynamic Characteristics
Łatas et al. Dynamic model of axial piston swash-plate pump for diagnostics of wear in elements
CN103499501B (zh) 一种基于井液润滑效果的抽油杆磨损评价方法及装置
Boucherit et al. Misalignment effects on steady‐state and dynamic behaviour of compliant journal bearings lubricated with couple stress fluids
Kazama Comparison of temperature measurements and thermal characteristics of hydraulic piston, vane, and gear pumps
Luchscheider et al. Development of a contact and a material model of laminated stacks
Sano et al. A study on wear progress of plain bearing under mixed lubrication condition
Thiagarajan et al. Influence of surface roughness effects on the lubrication performance of external gear machines
Matsui et al. High Efficiency Development of a Reciprocating Compressor by Clarification of Loss Generation in Bearings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190426

Termination date: 20201107

CF01 Termination of patent right due to non-payment of annual fee