CN106564604A - 一种油电混合四旋翼动力单元及其控制方法 - Google Patents

一种油电混合四旋翼动力单元及其控制方法 Download PDF

Info

Publication number
CN106564604A
CN106564604A CN201610900300.4A CN201610900300A CN106564604A CN 106564604 A CN106564604 A CN 106564604A CN 201610900300 A CN201610900300 A CN 201610900300A CN 106564604 A CN106564604 A CN 106564604A
Authority
CN
China
Prior art keywords
propeller
torque
motor
aircraft
revolution speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610900300.4A
Other languages
English (en)
Inventor
胡龙
王博
王一博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tianyu New Super Aviation Technology Co Ltd
Original Assignee
Beijing Tianyu New Super Aviation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tianyu New Super Aviation Technology Co Ltd filed Critical Beijing Tianyu New Super Aviation Technology Co Ltd
Publication of CN106564604A publication Critical patent/CN106564604A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/026
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

本发明公开了混合动力四旋翼无人飞行器及其控制方法。所述混合动力无人飞行器包括燃油发动机(1)、牵引电动机(2)、传动系统(3)以及整机控制单元(4)。所述系统和方法基于测量的传动系统输入扭矩通过控制牵引电动机的扭矩源,而控制或补偿实际传动系统输入轴扭矩。所述四旋翼无人飞行器中,燃油发动机提供大部分的螺旋桨驱动力,牵引电机提供螺旋桨加速驱动力和再生制动力,从而实现无人飞行器的姿态控制。本发明兼顾了燃油发动机能量密度高和电动多旋翼控制简单的优点。

Description

一种油电混合四旋翼动力单元及其控制方法
技术领域
本发明涉及一种油电混合四旋翼动力单元及其控制方法,属于航空产品技术领域。
背景技术
四旋翼飞行器通过无线电遥控系统及自主飞行控制系统对其进行操作控制,以实现飞行器的起降、前后左右飞行、加减速以及方向控制等。可操纵性、稳定性、有效任务载荷和续航时间是考察四旋翼飞行器的重要指标,在相同的可操纵性及稳定性条件下,使用者追求更大的有效任务载荷与长时间续航飞行能力。
传统的四旋翼飞行器分别在螺旋桨所在旋转轴上安装电动机以驱动螺旋桨从而达到飞行的目的,通过改变电机转速来改变各旋翼的升力大小,以控制飞行姿态。这种布局方案的控制策略发展较为成熟,但其电机耗能高,且对蓄电池的蓄电能力有较高要求,因此难以满足大载重长时有效续航的任务需求。为利用燃油发动机能量密度较高的优势,油电混合动力四旋翼飞行器兼顾了油机和电机的优点,目前,油电混合四旋翼飞行器还没有较为成熟的产品及控制方法。
发明内容
本发明的目的是为了提供一种能有效解决电动四旋翼飞行器载荷小与油动四旋翼飞行器控制复杂这一矛盾的飞行器,同时提供了混合动力四旋翼飞行器的控制方法。
此外,本发明的另一目的在于提供一种能够提高使用者使用便利性的混合动力四旋翼飞行器。
根据本发明,所述混合动力四旋翼动力单元具有燃油发动机,传动系统,螺旋桨以及设置在螺旋桨与传动系统之间的电动机。所述系统和方法基于测量的螺旋桨转速通过控制电动机扭矩的扭矩源,而控制或补偿实际螺旋桨所需扭矩。
根据本发明提供的一种油电混合四旋翼动力单元,包括:燃油发动机;传动系统,齿轮减速装置且输出轴与电机同轴;螺旋桨;牵引电动机,设置在传动系统与螺旋桨之间。混合动力四旋翼还包括控制器,控制器被构造成在姿态控制时,控制电动机扭矩,以使得实际的螺旋桨转速达到目标螺旋桨转速。
所述控制方法由控制器实施,控制器被构造成:检测螺旋桨转速,获得实际螺旋桨转速需用扭矩,根据发动机输出扭矩反馈,调整发动机
在飞行器起飞阶段,燃油发动机输出扭矩不断增加,以增加螺旋桨升力;飞行器进行姿态控制阶段,电动机基于采集的飞行器姿态反馈提供螺旋桨驱动力矩和制动力矩,以改变螺旋桨转速,从而使螺旋桨转速达到目标转速;在飞行器降落阶段,燃油发动机输出扭矩逐渐减小,以减小螺旋桨升力。
在飞行器起飞阶段,基于测量的飞行器高度反馈,利用闭环控制来控制燃油发动机的输出扭矩;在飞行器起飞和在飞行器姿态控制阶段,基于测量的螺旋桨转速反馈,利用闭环控制来控制电动机驱动扭矩和制动扭矩;在飞行器降落阶段,基于测量的飞行器高度反馈,利用闭环控制来控制燃油发动机的输出扭矩。
在飞行器起飞阶段,当可用的电动机扭矩小于用于减小速度扰动的期望螺旋桨转速增量所需的扭矩时,使发动机输出扭矩储备增加到期望的水平。
期望的螺旋桨转速增量所需的扭矩基于实际的螺旋桨转速所需扭矩和目标螺旋桨转速所需扭矩之间的差。
燃油发动机扭矩储备的期望水平基于可用的电动机扭矩和期望的螺旋桨转速增量所需扭矩之间的差。
当可用的电动机扭矩小于期望的螺旋桨扭矩增量所需扭矩时,以同步的方式协调发动机扭矩的控制和电动机扭矩的控制,以使实际的螺旋桨转速达到目标的螺旋桨转速。
在目标转速小于实际转速时,利用电动机进行再生制动,基于目标螺旋桨转速与实际螺旋桨转速差进行电动机再生制动力矩的控制。
可用的电动机扭矩基于测量的电池荷电状态和电动机的当前状态。
目标螺旋桨转速所需扭矩可从螺旋桨转速与需用扭矩曲线中得到。
本发明兼顾了燃油发动机能量密度高和电动多旋翼控制简单的优点,延长了飞行器续航时间,继承了传统电动多旋翼以电机控制为主的姿态控制策略,扩大多旋翼无人机的应用范围,提升了多旋翼无人机的应用价值。
附图说明
图1是根据本发明的一种油电混合四旋翼动力单元示意图;
图2是本发明的实施例中起飞工作状态控制序列操作流程图;
具体实施方式
下面将结合附图和实施例对本发明作进一步说明。
图1示出了所述混合动力四旋翼动力单元的整体框图,图中虚线表示通信线缆连接,实线表示机械连接。参照图1,混合动力四旋翼动力单元包括燃油发动机、传动系统、发电机、螺旋桨以及设置在螺旋桨与传动系统之间的牵引电动机。当动力单元需要额外扭矩起动时,电动机可直接产生牵引扭矩,启动发动机。本实施例中,牵引电动机位于传动系统与螺旋桨之间,这样有利于动力单元的结构设计。
根据本发明一个实施例,发动机将由燃料的燃烧产生的热能变换为活塞、转子等运动部件的动能,将该变换后的动力向传动系统输出。
根据本发明一个实施例,传动系统将实现提高燃油发动机输出扭矩的功能,同时通过减震措施,减小发动机对螺旋桨的振动干扰。
根据本发明一个实施例,牵引电动机是直流永磁电动机。牵引电动机可利用蓄电池电力产生驱动力矩或制动力矩,进行螺旋桨的转速控制。在姿态控制过程中,电动机基于螺旋桨转速的反馈信号进行螺旋桨的转速控制。
根据本发明一个实施例,发电机时直流永磁电动机。在蓄电池SOC低值状态时,发电机可利用发动机输出扭矩发电,保持蓄电池电力;在螺旋桨减速过程中,发电机可产生再生制动力矩,以控制飞行器姿态。
此外,混合动力四旋翼动力单元还包括蓄电池、整机系统控制器和动力单元控制器。其中,动力单元控制器包括发动机控制器、能源管理系统、牵引电机控制器和发电机控制器。
根据本发明一个实施例,蓄电池室能够充放电的直流电源,如镍氢或锂离子二次电池构成。蓄电池提供整机电器系统电力;可利用发电机再生制动产生的电能进行充电,而且在飞行器未启动时,可以通过外部电源进行充电。作为蓄电池,也能够采用大容量电容器,暂时存储有发电机、外部电源的电力。蓄电池的电压和输入输出电流均可由传感器检测,并输出至能源管理系统。
整机系统控制器可实现整机姿态控制和飞行器各工作状态的转换功能,其与姿态传感器,GPS定位传感器以及动力单元控制器通信。整机姿态控制基于姿态传感器俯仰、偏航和滚转的反馈信号对各动力单元中螺旋桨转速进行控制,从而实现飞行器姿态控制。
动力单元控制器接收整机系统控制器的指令,进行螺旋桨转速控制。动力单元控制器接收整机控制器指令,分别通过发动机控制器、牵引电机控制器、能源管理系统控制器与牵引电动机、燃油发动机、蓄电池和发电机通信。
所述实施例中发动机控制器基于扭矩传感器反馈信号进行发动机输出扭矩的控制,用于检测发动机输出扭矩的传感器安装在发动机输出轴上,扭矩传感器可由基于应变仪的系统、压电式测压元件或磁弹性扭矩的扭矩传感器实现。
所述实施例中牵引电机控制器基于螺旋桨转速传感器反馈信号进行牵引电动机驱动扭矩与再生制动扭矩的控制,从而进行螺旋桨转速的控制。用于检测螺旋桨转速的传感器安装在输出轴上,转速传感器可由基于光电效应或霍尔效应的转速传感器实现。
所述实施例中能源管理系统基于蓄电池电量传感器反馈信号,设置电力分配,并与发电机、牵引电动机及整机系统控制器进行通信,以切换工作状态或进行能源管理。此外,能源管理控制器与发电机通信,进行发电机充电控制,并与整机系统控制器通信,协调各动力单元的充电控制。
根据本发明的一个实施例,所述整机系统控制器的工作状态应包括:起飞工作状态、悬停工作状态、平飞工作状态、降落工作状态和充电悬停工作状态。
图2示出了混合动力四旋翼控制方法流程图。该流程图的处理,在混合动力四旋翼飞行状态下,每隔一定时间或预定的条件成立时从主程序中调出并执行。起飞工作状态时,
参照图2,整机系统控制器接收指定任务指令后,首先基于蓄电池SOC状态,飞行高度和飞行姿态判断目前工作状态。其次,基于来自测距传感器的反馈信号,判断飞行器飞行高度和爬升率,解算出目标发动机输出扭矩,与发动机控制器通信,以控制发动机油门开度;同时,基于来自姿态传感器的信号,判断飞行器姿态,解算出各动力单元目标螺旋桨转速,与牵引电机控制器通信。最后,整机系统控制器将目标发动机输出扭矩与目标螺旋桨转速分别输出到发动机控制器和牵引电机控制器,各控制器根据实际输出扭矩和实际螺旋桨转速对油门开度和电机输出扭矩进行闭控制。
根据本发明的一个实施例,飞行器处于起飞工作状态时,整机综合控制器逐渐增加燃油发动机输出扭矩,发动机控制器基于实际扭矩反馈信号进行油门开度控制,以增加螺旋桨升力;此工作状态下整机综合控制器实时的基于当前飞行器姿态反馈信号进行目标螺旋桨转速的解算,并通过牵引电机控制器控制电机输出扭矩,以调整飞行姿态。
根据本发明的一个实施例,飞行器处于悬停工作状态时,整机综合控制器基于飞行高度的反馈信号,输出稳定的目标燃油发动机输出扭矩,发动机控制器进行油门开度控制,以保持当前飞行器飞行高度;同时,此工作状态下整机综合控制器实时的基于当前飞行器姿态反馈信号进行目标螺旋桨转速的解算,并通过牵引电机控制器控制电机输出扭矩,以调整飞行姿态。
根据本发明的一个实施例,飞行器处于平飞工作状态时,整机综合控制器基于飞行高度的反馈信号,输出稳定的目标燃油发动机输出扭矩,发动机控制器进行油门开度控制,以保持当前飞行器飞行高度;此工作状态下整机综合控制器基于当前飞行器姿态反馈信号进行平飞状态各动力单元目标螺旋桨转速的解算,以改变飞行器飞行姿态,并通过牵引电机控制器控制电机输出扭矩,保持飞行姿态平飞。
根据本发明的一个实施例,飞行器处于降落工作状态时,整机综合控制器逐渐减小燃油发动机目标发动机输出扭矩,发动机控制器基于实际扭矩反馈信号进行油门开度控制,以减小螺旋桨升力;此工作状态下整机综合控制器实时的基于当前飞行器姿态反馈信号进行目标螺旋桨转速的解算,并通过牵引电机控制器控制电机输出扭矩,以调整飞行姿态。
根据本发明的一个实施例,飞行器处于充电悬停工作状态时,整机综合控制器判断蓄电池SOC状态,当蓄电池电量低于SOC低值时,通过能量管理系统启动发电机,对蓄电池充电,充电电流基于发动机实际输出扭矩反馈信号逐渐增加,以减小扭矩损失;同时,基于飞行高度发的反馈信号,逐渐增加目标发动机输出扭矩,以保持飞行高度;此工作状态下整机综合控制器实时的基于当前飞行器姿态反馈信号进行目标螺旋桨转速的解算,并通过牵引电机控制器控制电机输出扭矩,以调整飞行姿态。
本发明的核心在于并联式油电混合系统在多旋翼无人机上的应用,燃油发动机提供大部分驱动动力,电机实现螺旋桨加减速,以完成姿态控制;同时,在低速制动状态下,电机可产生再生制动力矩,为蓄电池蓄电。本发明不局限于上述实施方式,如果对本发明的各种改动和变形不脱离本发明范围,仍属于本发明的权利要求和同等技术范围之内。

Claims (9)

1.一种油电混合四旋翼动力单元及其控制方法,所述混合动力四旋翼动力单元具有设置在发动机和传动系统与螺旋桨之间的牵引电动机,燃油发动机提供螺旋桨的主要驱动力,电动机提供加速驱动力和再生制动力,所述方法包括:
在飞行器起飞阶段,燃油发动机输出扭矩不断增加,以增加螺旋桨升力;飞行器进行姿态控制阶段,电动机基于采集的飞行器姿态反馈提供螺旋桨驱动力矩和制动力矩,以改变螺旋桨转速,从而使螺旋桨转速达到目标转速;在飞行器降落阶段,燃油发动机输出扭矩逐渐减小,以减小螺旋桨升力。
2.根据权利要求1所述的方法,所述方法还包括:
在飞行器起飞阶段,基于测量的飞行器高度反馈,利用闭环控制来控制燃油发动机的输出扭矩;在飞行器起飞和在飞行器姿态控制阶段,基于测量的螺旋桨转速反馈,利用闭环控制来控制电动机驱动扭矩和制动扭矩;在飞行器降落阶段,基于测量的飞行器高度反馈,利用闭环控制来控制燃油发动机的输出扭矩。
3.根据权利要求1所述的方法,所述方法还包括:
在飞行器起飞阶段,当可用的电动机扭矩小于用于减小速度扰动的期望螺旋桨转速增量所需的扭矩时,使发动机输出扭矩储备增加到期望的水平。
4.根据权利要求3所述的方法,其中,期望的螺旋桨转速增量所需的扭矩基于实际的螺旋桨转速所需扭矩和目标螺旋桨转速所需扭矩之间的差。
5.根据权利要求3所述的方法,其中,燃油发动机扭矩储备的期望水平基于可用的电动机扭矩和期望的螺旋桨转速增量所需扭矩之间的差。
6.根据权利要求3所述的方法,其中可用的电动机扭矩基于测量的电池荷电状态和电动机的当前状态。
7.根据权利要求3所述的方法,所述方法还包括:
当可用的电动机扭矩小于期望的螺旋桨扭矩增量所需扭矩时,以同步的方式协调发动机扭矩的控制和电动机扭矩的控制,以使实际的螺旋桨转速达到目标的螺旋桨转速。
8.根据权利要求1所述的方法,所述方法还包括:
在目标转速小于实际转速时,利用电动机进行再生制动,基于目标螺旋桨转速与实际螺旋桨转速差进行电动机再生制动力矩的控制。
9.根据权利要求1所述的方法,其中,目标螺旋桨转速所需扭矩从螺旋桨转速与需用扭矩曲线中得到。
CN201610900300.4A 2016-04-13 2016-10-18 一种油电混合四旋翼动力单元及其控制方法 Pending CN106564604A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016102253259 2016-04-13
CN201610225325 2016-04-13

Publications (1)

Publication Number Publication Date
CN106564604A true CN106564604A (zh) 2017-04-19

Family

ID=58532000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610900300.4A Pending CN106564604A (zh) 2016-04-13 2016-10-18 一种油电混合四旋翼动力单元及其控制方法

Country Status (1)

Country Link
CN (1) CN106564604A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193285A (zh) * 2017-04-20 2017-09-22 湖北工业大学 多旋翼燃料电池植保无人机控制系统及其工作方法
CN107878762A (zh) * 2017-11-28 2018-04-06 北京正兴弘业科技有限公司 一种长航时无人机油电混合动力系统及控制方法
CN108190032A (zh) * 2018-02-05 2018-06-22 南京婆娑航空科技有限公司 一种油电混合无人机能源系统的电子控制系统及其控制方法
CN108238247A (zh) * 2018-02-11 2018-07-03 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器
CN108803643A (zh) * 2018-06-19 2018-11-13 成都纵横自动化技术有限公司 飞行控制方法、装置、飞行控制器及复合翼飞行器
CN108974348A (zh) * 2017-05-31 2018-12-11 贝尔直升机德事隆公司 使用电分布式反扭矩发电机和反向电动马达推力来使主旋翼减速的旋翼制动效果
TWI643777B (zh) * 2018-03-08 2018-12-11 周鴻儒 Remote electric vehicle fuel electric drive system
CN109204797A (zh) * 2018-08-31 2019-01-15 辽宁同心圆科技有限公司 航空发动机节能助力装置
CN109383785A (zh) * 2018-08-31 2019-02-26 辽宁同心圆科技有限公司 带有节能助力系统的空中平台
CN109693796A (zh) * 2018-12-29 2019-04-30 成都纵横大鹏无人机科技有限公司 飞行器油电混合供能系统、飞行器以及其控制方法
CN109710989A (zh) * 2018-12-05 2019-05-03 西北工业大学 无人机油电混合动力能源管理优化方法及系统
CN110297511A (zh) * 2018-03-22 2019-10-01 杭州海康机器人技术有限公司 一种力矩控制方法、装置、电子设备及存储介质
CN111032507A (zh) * 2017-06-04 2020-04-17 阿里·图任 在具有发动机的无人机中由电动机支持的平衡控制
CN111099024A (zh) * 2018-10-29 2020-05-05 中科灵动航空科技成都有限公司 油电混合动力旋翼无人机点火重启动方法、系统及存储器
CN112046762A (zh) * 2020-09-07 2020-12-08 南京航空航天大学 基于涡桨发动机的混合动力无人机及其起降控制方法
CN112416014A (zh) * 2019-08-23 2021-02-26 杭州海康机器人技术有限公司 一种多旋翼无人机的飞行控制方法、装置和多旋翼无人机
CN113212755A (zh) * 2020-01-21 2021-08-06 辽宁壮龙无人机科技有限公司 一种油电混动多旋翼无人机控制方法
CN113232868A (zh) * 2021-05-24 2021-08-10 南京航空航天大学 一种多能量复合推进的混联式无人机及其控制方法
CN113565164A (zh) * 2021-09-26 2021-10-29 徐工集团工程机械股份有限公司科技分公司 装载机控制系统、装载机以及装载机控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746507A (zh) * 2008-12-12 2010-06-23 霍尼韦尔国际公司 用于函道风扇式无人空中系统的混合动力
CN103386978A (zh) * 2012-05-07 2013-11-13 福特全球技术公司 混合动力车辆以及控制混合动力车辆的方法
CN104742897A (zh) * 2013-12-26 2015-07-01 现代自动车株式会社 混合动力车辆的再生制动器装置及其方法
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机
WO2016049030A1 (en) * 2014-09-23 2016-03-31 Sikorsky Aircraft Corporation Hybrid contingency power drive system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746507A (zh) * 2008-12-12 2010-06-23 霍尼韦尔国际公司 用于函道风扇式无人空中系统的混合动力
CN103386978A (zh) * 2012-05-07 2013-11-13 福特全球技术公司 混合动力车辆以及控制混合动力车辆的方法
CN104742897A (zh) * 2013-12-26 2015-07-01 现代自动车株式会社 混合动力车辆的再生制动器装置及其方法
WO2016049030A1 (en) * 2014-09-23 2016-03-31 Sikorsky Aircraft Corporation Hybrid contingency power drive system
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193285B (zh) * 2017-04-20 2020-11-10 湖北工业大学 多旋翼燃料电池植保无人机控制系统及其工作方法
CN107193285A (zh) * 2017-04-20 2017-09-22 湖北工业大学 多旋翼燃料电池植保无人机控制系统及其工作方法
CN108974348B (zh) * 2017-05-31 2021-11-16 贝尔直升机德事隆公司 使用电分布式反扭矩发电机和反向电动马达推力来使主旋翼减速的旋翼制动效果
CN108974348A (zh) * 2017-05-31 2018-12-11 贝尔直升机德事隆公司 使用电分布式反扭矩发电机和反向电动马达推力来使主旋翼减速的旋翼制动效果
US20200189735A1 (en) * 2017-06-04 2020-06-18 Ali TURAN Electric motor supported balance control in drones with engine
CN111032507A (zh) * 2017-06-04 2020-04-17 阿里·图任 在具有发动机的无人机中由电动机支持的平衡控制
CN107878762B (zh) * 2017-11-28 2023-09-12 沈观清 一种长航时无人机油电混合动力系统及控制方法
CN107878762A (zh) * 2017-11-28 2018-04-06 北京正兴弘业科技有限公司 一种长航时无人机油电混合动力系统及控制方法
CN108190032B (zh) * 2018-02-05 2024-04-16 南京婆娑航空科技有限公司 一种油电混合无人机能源系统的电子控制系统及其控制方法
CN108190032A (zh) * 2018-02-05 2018-06-22 南京婆娑航空科技有限公司 一种油电混合无人机能源系统的电子控制系统及其控制方法
CN108238247A (zh) * 2018-02-11 2018-07-03 桂艳春 一种油电混合动力主动旋翼垂直起降飞行器
TWI643777B (zh) * 2018-03-08 2018-12-11 周鴻儒 Remote electric vehicle fuel electric drive system
CN110297511B (zh) * 2018-03-22 2021-11-19 杭州海康机器人技术有限公司 一种力矩控制方法、装置、电子设备及存储介质
CN110297511A (zh) * 2018-03-22 2019-10-01 杭州海康机器人技术有限公司 一种力矩控制方法、装置、电子设备及存储介质
CN108803643B (zh) * 2018-06-19 2021-08-20 成都纵横自动化技术股份有限公司 飞行控制方法、装置、飞行控制器及复合翼飞行器
CN108803643A (zh) * 2018-06-19 2018-11-13 成都纵横自动化技术有限公司 飞行控制方法、装置、飞行控制器及复合翼飞行器
CN109204797A (zh) * 2018-08-31 2019-01-15 辽宁同心圆科技有限公司 航空发动机节能助力装置
CN109383785A (zh) * 2018-08-31 2019-02-26 辽宁同心圆科技有限公司 带有节能助力系统的空中平台
CN111099024A (zh) * 2018-10-29 2020-05-05 中科灵动航空科技成都有限公司 油电混合动力旋翼无人机点火重启动方法、系统及存储器
CN109710989A (zh) * 2018-12-05 2019-05-03 西北工业大学 无人机油电混合动力能源管理优化方法及系统
CN109710989B (zh) * 2018-12-05 2022-07-22 西北工业大学 无人机油电混合动力能源管理优化方法及系统
CN109693796A (zh) * 2018-12-29 2019-04-30 成都纵横大鹏无人机科技有限公司 飞行器油电混合供能系统、飞行器以及其控制方法
CN112416014A (zh) * 2019-08-23 2021-02-26 杭州海康机器人技术有限公司 一种多旋翼无人机的飞行控制方法、装置和多旋翼无人机
CN112416014B (zh) * 2019-08-23 2024-03-08 杭州海康威视数字技术股份有限公司 一种多旋翼无人机的飞行控制方法、装置和多旋翼无人机
CN113212755A (zh) * 2020-01-21 2021-08-06 辽宁壮龙无人机科技有限公司 一种油电混动多旋翼无人机控制方法
CN112046762A (zh) * 2020-09-07 2020-12-08 南京航空航天大学 基于涡桨发动机的混合动力无人机及其起降控制方法
CN113232868A (zh) * 2021-05-24 2021-08-10 南京航空航天大学 一种多能量复合推进的混联式无人机及其控制方法
CN113232868B (zh) * 2021-05-24 2022-06-17 南京航空航天大学 一种多能量复合推进的混联式无人机及其控制方法
CN113565164A (zh) * 2021-09-26 2021-10-29 徐工集团工程机械股份有限公司科技分公司 装载机控制系统、装载机以及装载机控制方法

Similar Documents

Publication Publication Date Title
CN106564604A (zh) 一种油电混合四旋翼动力单元及其控制方法
EP3299295B1 (en) Vertical take-off and landing aircraft using hybrid electric propulsion system
CN102971216B (zh) 用于飞行器的混合动力驱动系统和能量系统
CN109733621B (zh) 一种多推进模式的混合动力无人机
CN205602114U (zh) 一种多旋翼无人机
WO2020107373A1 (zh) 动力组件、动力系统及无人机
CN108263618A (zh) 一种混合动力多轴旋翼无人机
CN105711826A (zh) 一种串联式油电混合动力无人飞行器
CN206520748U (zh) 一种油电混合动力多旋翼无人机
CN110001973A (zh) 轻型固定翼无人机的混合动力推进系统与控制方法
CN112758335B (zh) 一种混联式混合动力无人机动力系统及其控制方法
CN104670504A (zh) 油/光/电多动力源固定翼飞行器
CN207791151U (zh) 一种新型混合动力复合控制飞行器
Recoskie et al. Hybrid power plant design for a long-range dirigible UAV
CN215753045U (zh) 一种混合动力垂直起降固定翼无人机动力系统
CN108454864A (zh) 通用飞机串联式混合动力系统
CN114212274A (zh) 一种直升机多动力源驱动系统实验平台
Recoskie et al. Experimental testing of a hybrid power plant for a dirigible UAV
CN105035328A (zh) 一种混合动力飞行器
CN207141404U (zh) 一种多旋翼无人机
CN205440864U (zh) 多旋翼无人直升机
CN109383787A (zh) 航空发动机助力系统
Krznar Modelling and control of hybrid propulsion systems for multirotor unmanned aerial vehicles
CN210027898U (zh) 一种动力系统及无人机
CN107539468A (zh) 一种多旋翼无人机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170419